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\bfitS -COLOCALIZATION AND ADAMS COCOMPLETION

\bfitS -КОЛОКАЛIЗАЦIЯ ТА КОПОПОВНЕННЯ АДАМСА

A relationship between the S -colocalization of an object and the Adams cocompletion of the same object in a
complete small U -category (U is a fixed Grothendieck universe) is established, together with a specific set of
morphisms S.

Встановлено зв’язок мiж S -колокалiзацiєю об’єкта та копоповненням Адамса того самого об’єкта в деякiй
повнiй малiй U -категорiї (U — фiксований всесвiт Гротендiка), а також специфiчну множину морфiзмiв S.

1. Introduction. Mathematical entities and their relationships can be described in a fundamen-
tal and abstract way by introducing the concept of categories. The idea of localization in
categories was first introduced by A. K. Bousfield [6]. In addition, he has also explained
about the determination of an S -localization functor E : C \rightarrow C by a class of morphisms
S in a category C . Deleanu, Frei and Hilton have introduced the idea Adams completion
[1 – 3] in a broader way; they have also suggested its dual notion, known to be the Adams
cocompletion [7].

The central idea of this note is to deduce an isomorphism between the S -colocalization
[10], the dual of S -localization, of an object and Adams cocompletion of the same object in
a complete small U -category (U being a fixed Grothendieck universe [12]) together with a
specific set of morphisms S.

Definition 1.1 [7, 8]. Let C be a U -category and S be a set of morphisms of C . Let
C [S - 1] denote the category of fractions of C with respect to S and F : C \rightarrow C [S - 1] be
the canonical functor. Let S denote the category of sets and functions. Then for a given
object Y of C , C [S - 1](Y, - ) : C \rightarrow S defines a covariant functor. If this functor is
representable by an object YS of C , that is, C [S - 1](Y, - ) \sim = C (YS , - ), then YS is called
the (generalized) Adams cocompletion of Y with respect to the set of morphisms S or simply
the S -cocompletion of Y. We shall often refer to YS as the cocompletion of Y.

Definition 1.2 [7]. Given a set S of morphisms of C , we define \=S, the saturation of S,
as the set of all morphisms u in C such that FS(u) is an isomorphism in C [S - 1]. S is said
to be saturated if S = \=S.

2. \bfitS -colocalization of an object in a category. Let C be any U -category and S be a
set of morphisms of C .

Definition 2.1 [10]. An object X in C is said to be S -colocal if for every s : A \rightarrow B in
S, the map \mathrm{H}\mathrm{o}\mathrm{m}(X, s) : \mathrm{H}\mathrm{o}\mathrm{m}(X,A) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(X,B) is a bijection.

Definition 2.2 [10]. An S -colocalization of an object A in C is a morphism f : X \rightarrow A

with X S -colocal and f \in S.
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We usually refer X to be the S -colocalization of A and assume the map X \rightarrow A

understood. The following properties regarding S -colocalization of an object can be easily
shown:

1. Any two S -colocalizations of an object A in C are isomorphic.

2. If A in C is S -colocal and f : X \rightarrow A is an S -colocalization, then f is an isomor-
phism.

3. Let f1 : X1 \rightarrow A1 and f2 : X2 \rightarrow A2 be S -colocalizations of A1 and A2, respectively.
Let g : A1 \rightarrow A2 be a morphism. Then there exists a unique morphism h : X1 \rightarrow X2 such
that the following diagram commutes:

X1

X2

A1

A2

g

f2

f1

h

Next we will show that the S -colocalization f : X \rightarrow A of an object A in C has the
following interesting properties:

Proposition 2.1. The morphism f is terminal among the morphisms s : Y \rightarrow A having
Y to be S -colocal, that is, f is universal with respect to morphisms s : Y \rightarrow A having Y to
be S -colocal.

Proof. Since f is S -colocalization of A, then X is S -colocal and f \in S. Also, given
that Y is S -colocal. So \mathrm{H}\mathrm{o}\mathrm{m}(Y, f) : \mathrm{H}\mathrm{o}\mathrm{m}(Y,X) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(Y,A) is a bijective function. Now
s \in \mathrm{H}\mathrm{o}\mathrm{m}(Y,A).

X A

Y

f

\eta 
s

So there exists a unique morphism \eta \in \mathrm{H}\mathrm{o}\mathrm{m}(Y,X) such that \mathrm{H}\mathrm{o}\mathrm{m}(Y, f)(\eta ) = s, that is,
f\eta = s.

Proposition 2.2. The morphism f is initial among the morphisms s : Y \rightarrow A with s \in S,

that is, f is couniversal with respect to morphisms s : Y \rightarrow A with s \in S.

Proof. Since f is S -colocalization of A, then X is S -colocal and f \in S. Also, it
is given that s \in S. So \mathrm{H}\mathrm{o}\mathrm{m}(X, s) : \mathrm{H}\mathrm{o}\mathrm{m}(X,Y ) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(X,A) is a bijective function.
As f \in \mathrm{H}\mathrm{o}\mathrm{m}(X,A) and \mathrm{H}\mathrm{o}\mathrm{m}(X, s) is a bijection, so there exists a unique morphism
\theta \in \mathrm{H}\mathrm{o}\mathrm{m}(X,Y ) such that \mathrm{H}\mathrm{o}\mathrm{m}(X, s)(\theta ) = f, that is, s\theta = f,

X A

Y

f

\theta s

and this proves that f is couniversal with respect to morphisms s : Y \rightarrow A with s \in S.
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But it is not in general true that a morphism s : A \rightarrow B in S having couniversal property
is the S -colocalization map of the object B in C . This fact is clearly seen in the following
example.

Example 2.1. Let \=G be the category whose objects and morphisms are as follows:

objects: groups generated by sets where between every pair of sets there is a bijection,

morphisms: all epimorphisms f : (G,X) \rightarrow (H,Y ) sending each element of X to its
image in Y under the bijection (here (G,X) denotes the group generated by the set X ).

Let S be class of all morphisms in \=G . Suppose G and FX are the group and free group
generated by X, respectively. Then \alpha : FX \rightarrow G is a surjective homomorphism which is the
unique homomorphism sending each element in X to its image in X under a bijection [9].
Let H = (H,Y ) \in \=G and \beta \in S be given. Clearly, there is a bijection between X and Y.

So there exists a surjective homomorphism \theta : FX \rightarrow H which is the unique homomorphism
sending each element in X to its image in Y under a bijection.

FX

H

G
\alpha 

\beta 
\theta 

Now \beta \theta is a surjective homomorphism from FX to G sending each element in X to its
image in X under a bijection. Uniqueness of \alpha gives that \beta \theta = \alpha , that is, the above diagram
is commutative.

Next for any s : A \rightarrow B in S, \mathrm{H}\mathrm{o}\mathrm{m}(FX , s) = s\ast : \mathrm{H}\mathrm{o}\mathrm{m}(FX , A) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(FX , B) is
defined by s\ast (p) = s \circ p for all p \in \mathrm{H}\mathrm{o}\mathrm{m}(FX , A). Suppose p1, p2 \in \mathrm{H}\mathrm{o}\mathrm{m}(FX , A) and
s\ast (p1) = s\ast (p2). Then s \circ p1 = s \circ p2, that is, s(p1(c)) = s(p2(c)) for all c \in FX . From
this we can not conclude p1(c) = p2(c) for all c \in FX , that is, s\ast is not injective. So s\ast is
not a bijection and it proves that FX is not S -colocal. So even if \alpha \in S and has couniversal
property, but it is not the S -colocalization map of G in \=G .

The following result shows that the converse of Proposition 2.2 is always true when there
is an additional condition on S.

Proposition 2.3. Suppose that:

(a) w : X \rightarrow M is in S,

(b) w is couniversal with respect to all the morphisms to M belonging to S,

(c) S admits a calculus of right fractions.

Then w is the S -colocalization of M.

Proof. We have to show w is the S -colocalization of M, that is, to show w \in S and X is
S -colocal. Since w \in S is given, it is enough to show X is S -colocal, that is, to show each s :
A \rightarrow B in S induces a bijection \mathrm{H}\mathrm{o}\mathrm{m}(X, s) : \mathrm{H}\mathrm{o}\mathrm{m}(X,A) \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(X,B). Consider the
following diagram:

A

X

B

f

s
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in C with s \in S. As S admits a calculus of right fractions, this diagram can be embedded to
a weak pull-back diagram

C

A

X

B

f

s

t

g

in C with t \in S. Next it is clear that wt \in S. From (b) we conclude that there exists a unique
morphism \theta : X \rightarrow C making the following diagram commutative:

X M

C

w

\theta 
wt

that is, wt\theta = w. Next \mathrm{H}\mathrm{o}\mathrm{m}(X, s)(g\theta ) = sg\theta = ft\theta . If we can show t\theta = 1X , then
\mathrm{H}\mathrm{o}\mathrm{m}(X, s) will be surjective. Since w is couniversal with respect to all the morphisms to
M in S, there exists a unique morphism \eta : X \rightarrow X such that w\eta = w. Also, w1X = w.

As \eta is unique, \eta = t\theta = 1X and hence \mathrm{H}\mathrm{o}\mathrm{m}(X, s)(g\theta ) = f, showing the surjectivity of
\mathrm{H}\mathrm{o}\mathrm{m}(X, s). Next consider p, q \in \mathrm{H}\mathrm{o}\mathrm{m}(X,A) such that \mathrm{H}\mathrm{o}\mathrm{m}(X, s)(p) = \mathrm{H}\mathrm{o}\mathrm{m}(X, s)(q),

that is, sp = sq. As S admits a calculus of right fractions, there exists a morphism r :
Y \rightarrow X in S such that pr = qr. By using condition (b), we get a unique morrphism \gamma :
X \rightarrow Y such that wr\gamma = w. In other words, the following diagram commutes:

X M

Y

w

\gamma 
wr

Again from the couniversal property of w we will have a unique morphism \beta : X \rightarrow X

such that w\beta = w. But w1X = w. From the uniqueness of \beta , it can be concluded that
\beta = r\gamma = 1X . So p = p1X = pr\gamma = qr\gamma = q1X = q shows the injectivity of \mathrm{H}\mathrm{o}\mathrm{m}(X, s).

Thus \mathrm{H}\mathrm{o}\mathrm{m}(X, s) is a bijection, which shows that X is S -colocal. Hence, w : X \rightarrow M is
S -colocalization of M.

3. Correspondence between \bfitS -colocalization and Adams cocompletion. Before establi-
shing the main result, at first we recall some results related to Adams cocompletion. Consider
a complete small U -category A , where U is a fixed Grothendieck universe and a set of
morphisms S admitting a calculus of right fractions. Moreover, assume a compatibility condi-
tion with product in S, that is, if each si : Xi \rightarrow Yi for i \in I is an element of S, where the
index set I is an element of U , then

\prod 
i\in I

si :
\prod 

i\in I
Xi \rightarrow 

\prod 
i\in I

Yi is an element of S.

Then from dual of Deleanu’s theorem [8] and Theorem 2 of [11], it follows that every object
X of A has an Adams cocompletion XS with respect to the set of morphisms S.

In many cases, the set of morphisms S is not saturated. Behera and Nanda [4] have given
the generalization of Deleanu, Frei and Hilton’s characterization of Adams completion in
terms of a couniversal property and the dualization is as follows:
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Theorem 3.1 ([5, p. 224], Proposition 1.1). Let S be a set of morphisms of A admitting
a calculus of right fractions. Then an object AS of A is the cocompletion of the object A
with respect to S if and only if there exists a morphism e : AS \rightarrow A in \=S which is couniversal
with respect to morphisms of S : given a morphism s : B \rightarrow A in S there exists a unique
morphism t : AS \rightarrow B in \=S such that st = e. In other words, the following diagram is
commutative:

AS A

B

e

t s

By using Behera and Nanda’s result ([4, p. 533], dual of Theorem 1.3), the following can
be easily deduced.

Theorem 3.2. The morphism e : AS \rightarrow A as constructed in Theorem 3.1 is in S.

Next we present the relation between the S -colocalization and Adams cocompletion of
an object A in A . Let f : X \rightarrow A be the S -colocalization morphism of A and AS be the
Adams cocompletion of A.

Theorem 3.3. In assumptions of Theorem 3.1 there is an isomorphism between X and
AS , that is, X \sim = AS .

Proof. Both e and f are in S. By the couniversal property of e (Theorem 3.1), it can be
concluded that there exists a unique morphism \alpha : AS \rightarrow X such that f\alpha = e, that is, the
following diagram is commutative:

AS A

X

e

\alpha 
f

As f is couniversal with respect to all the morphisms in S (Proposition 2.2), there exists
a unique morphism \beta : X \rightarrow AS making the following triangle commutative:

X A

AS

f

\beta e

that is, e\beta = f. From the diagram

AS

AS

A

X

e

\alpha 

e

\beta 

1AS
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we have e\beta \alpha = f\alpha = e and from the uniqueness condition of the couniversal property of e
we get \beta \alpha = 1AS

. Consider the following diagram:

X

X

A

AS

f

\beta 

f
\alpha 

1X

f\alpha \beta = e\beta = f. The uniqueness condition of the couniversal property of f shows that
\alpha \beta = 1X .

Now we have \beta \alpha = 1AS
and \alpha \beta = 1X . Hence X \sim = AS .

It is a pleasure to thank the anonymous referee for his/her valuable comments and suggesti-
ons which resulted in an improved presentation of the paper.
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