DOI: 10.3842/umzh.v75i8.916

UDC 512

Snigdha Bharati Choudhury¹ (Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), India),

A. Behera (Department of Mathematics, National Institute of Technology Rourkela, India)

S-COLOCALIZATION AND ADAMS COCOMPLETION S-КОЛОКАЛІЗАЦІЯ ТА КОПОПОВНЕННЯ АДАМСА

A relationship between the S-colocalization of an object and the Adams cocompletion of the same object in a complete small $\mathscr U$ -category ($\mathscr U$ is a fixed Grothendieck universe) is established, together with a specific set of morphisms S.

Встановлено зв'язок між S-колокалізацією об'єкта та копоповненням Адамса того самого об'єкта в деякій повній малій \mathscr{U} -категорії (\mathscr{U} — фіксований всесвіт Гротендіка), а також специфічну множину морфізмів S.

1. Introduction. Mathematical entities and their relationships can be described in a fundamental and abstract way by introducing the concept of categories. The idea of localization in categories was first introduced by A. K. Bousfield [6]. In addition, he has also explained about the determination of an S-localization functor $E: \mathscr{C} \to \mathscr{C}$ by a class of morphisms S in a category \mathscr{C} . Deleanu, Frei and Hilton have introduced the idea Adams completion [1-3] in a broader way; they have also suggested its dual notion, known to be the Adams cocompletion [7].

The central idea of this note is to deduce an isomorphism between the S-colocalization [10], the dual of S-localization, of an object and Adams cocompletion of the same object in a complete small \mathscr{U} -category (\mathscr{U} being a fixed Grothendieck universe [12]) together with a specific set of morphisms S.

Definition 1.1 [7, 8]. Let \mathscr{C} be a \mathscr{U} -category and S be a set of morphisms of \mathscr{C} . Let $\mathscr{C}[S^{-1}]$ denote the category of fractions of \mathscr{C} with respect to S and $F:\mathscr{C}\to\mathscr{C}[S^{-1}]$ be the canonical functor. Let \mathscr{S} denote the category of sets and functions. Then for a given object Y of \mathscr{C} , $\mathscr{C}[S^{-1}](Y,-):\mathscr{C}\to\mathscr{S}$ defines a covariant functor. If this functor is representable by an object Y_S of \mathscr{C} , that is, $\mathscr{C}[S^{-1}](Y,-)\cong\mathscr{C}(Y_S,-)$, then Y_S is called the (generalized) Adams cocompletion of Y with respect to the set of morphisms S or simply the S-cocompletion of Y. We shall often refer to Y_S as the cocompletion of Y.

Definition 1.2 [7]. Given a set S of morphisms of \mathscr{C} , we define \bar{S} , the saturation of S, as the set of all morphisms u in \mathscr{C} such that $F_S(u)$ is an isomorphism in $\mathscr{C}[S^{-1}]$. S is said to be saturated if $S = \bar{S}$.

2. S-colocalization of an object in a category. Let $\mathscr C$ be any $\mathscr U$ -category and S be a set of morphisms of $\mathscr C$.

Definition 2.1 [10]. An object X in $\mathscr C$ is said to be S-colocal if for every $s:A\to B$ in S, the map $\operatorname{Hom}(X,s):\operatorname{Hom}(X,A)\to\operatorname{Hom}(X,B)$ is a bijection.

Definition 2.2 [10]. An S-colocalization of an object A in $\mathscr C$ is a morphism $f: X \to A$ with X S-colocal and $f \in S$.

¹ Corresponding author, e-mail: snigdha23choudhury@gmail.com.

We usually refer X to be the S-colocalization of A and assume the map $X \to A$ understood. The following properties regarding S-colocalization of an object can be easily shown:

- 1. Any two S-colocalizations of an object A in $\mathscr C$ are isomorphic.
- 2. If A in $\mathscr C$ is S-colocal and $f:X\to A$ is an S-colocalization, then f is an isomorphism.
- 3. Let $f_1: X_1 \to A_1$ and $f_2: X_2 \to A_2$ be S-colocalizations of A_1 and A_2 , respectively. Let $g: A_1 \to A_2$ be a morphism. Then there exists a unique morphism $h: X_1 \to X_2$ such that the following diagram commutes:

$$X_{1} \xrightarrow{f_{1}} A_{1}$$

$$\downarrow g$$

$$X_{2} \xrightarrow{f_{2}} A_{2}$$

Next we will show that the S-colocalization $f: X \to A$ of an object A in $\mathscr C$ has the following interesting properties:

Proposition 2.1. The morphism f is terminal among the morphisms $s: Y \to A$ having Y to be S-colocal, that is, f is universal with respect to morphisms $s: Y \to A$ having Y to be S-colocal.

Proof. Since f is S-colocalization of A, then X is S-colocal and $f \in S$. Also, given that Y is S-colocal. So $\operatorname{Hom}(Y,f) \colon \operatorname{Hom}(Y,X) \to \operatorname{Hom}(Y,A)$ is a bijective function. Now $s \in \operatorname{Hom}(Y,A)$.

So there exists a unique morphism $\eta \in \operatorname{Hom}(Y,X)$ such that $\operatorname{Hom}(Y,f)(\eta) = s$, that is, $f\eta = s$.

Proposition 2.2. The morphism f is initial among the morphisms $s: Y \to A$ with $s \in S$, that is, f is couniversal with respect to morphisms $s: Y \to A$ with $s \in S$.

Proof. Since f is S-colocalization of A, then X is S-colocal and $f \in S$. Also, it is given that $s \in S$. So $\operatorname{Hom}(X,s) \colon \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X,A)$ is a bijective function. As $f \in \operatorname{Hom}(X,A)$ and $\operatorname{Hom}(X,s)$ is a bijection, so there exists a unique morphism $\theta \in \operatorname{Hom}(X,Y)$ such that $\operatorname{Hom}(X,s)(\theta) = f$, that is, $s\theta = f$,

and this proves that f is couniversal with respect to morphisms $s: Y \to A$ with $s \in S$.

But it is not in general true that a morphism $s:A\to B$ in S having couniversal property is the S-colocalization map of the object B in $\mathscr C$. This fact is clearly seen in the following example.

Example 2.1. Let $\bar{\mathscr{G}}$ be the category whose objects and morphisms are as follows:

objects: groups generated by sets where between every pair of sets there is a bijection,

morphisms: all epimorphisms $f:(G,X)\to (H,Y)$ sending each element of X to its image in Y under the bijection (here (G,X) denotes the group generated by the set X). Let S be class of all morphisms in \mathscr{G} . Suppose G and F_X are the group and free group generated by X, respectively. Then $\alpha:F_X\to G$ is a surjective homomorphism which is the unique homomorphism sending each element in X to its image in X under a bijection [9]. Let $H=(H,Y)\in\mathscr{G}$ and $\beta\in S$ be given. Clearly, there is a bijection between X and Y. So there exists a surjective homomorphism $\theta:F_X\to H$ which is the unique homomorphism sending each element in X to its image in Y under a bijection.

Now $\beta\theta$ is a surjective homomorphism from F_X to G sending each element in X to its image in X under a bijection. Uniqueness of α gives that $\beta\theta=\alpha$, that is, the above diagram is commutative.

Next for any $s:A\to B$ in S, $\operatorname{Hom}(F_X,s)=s_*\colon \operatorname{Hom}(F_X,A)\to \operatorname{Hom}(F_X,B)$ is defined by $s_*(p)=s\circ p$ for all $p\in \operatorname{Hom}(F_X,A)$. Suppose $p_1,p_2\in \operatorname{Hom}(F_X,A)$ and $s_*(p_1)=s_*(p_2)$. Then $s\circ p_1=s\circ p_2$, that is, $s(p_1(c))=s(p_2(c))$ for all $c\in F_X$. From this we can not conclude $p_1(c)=p_2(c)$ for all $c\in F_X$, that is, s_* is not injective. So s_* is not a bijection and it proves that F_X is not S-colocal. So even if $\alpha\in S$ and has couniversal property, but it is not the S-colocalization map of G in $\widehat{\mathscr{G}}$.

The following result shows that the converse of Proposition 2.2 is always true when there is an additional condition on S.

Proposition 2.3. *Suppose that*:

- (a) $w: X \to M$ is in S,
- (b) w is couniversal with respect to all the morphisms to M belonging to S,
- (c) S admits a calculus of right fractions.

Then w is the S-colocalization of M.

Proof. We have to show w is the S-colocalization of M, that is, to show $w \in S$ and X is S-colocal. Since $w \in S$ is given, it is enough to show X is S-colocal, that is, to show each s: $A \to B$ in S induces a bijection $\operatorname{Hom}(X,s)$: $\operatorname{Hom}(X,A) \to \operatorname{Hom}(X,B)$. Consider the following diagram:

in $\mathscr C$ with $s \in S$. As S admits a calculus of right fractions, this diagram can be embedded to a weak pull-back diagram

$$C \xrightarrow{t} X$$

$$g \downarrow \qquad \qquad \downarrow f$$

$$A \xrightarrow{s} B$$

in $\mathscr C$ with $t \in S$. Next it is clear that $wt \in S$. From (b) we conclude that there exists a unique morphism $\theta: X \to C$ making the following diagram commutative:

that is, $wt\theta = w$. Next $\operatorname{Hom}(X,s)(g\theta) = sg\theta = ft\theta$. If we can show $t\theta = 1_X$, then $\operatorname{Hom}(X,s)$ will be surjective. Since w is couniversal with respect to all the morphisms to M in S, there exists a unique morphism $\eta \colon X \to X$ such that $w\eta = w$. Also, $w1_X = w$. As η is unique, $\eta = t\theta = 1_X$ and hence $\operatorname{Hom}(X,s)(g\theta) = f$, showing the surjectivity of $\operatorname{Hom}(X,s)$. Next consider $p,q \in \operatorname{Hom}(X,A)$ such that $\operatorname{Hom}(X,s)(p) = \operatorname{Hom}(X,s)(q)$, that is, sp = sq. As S admits a calculus of right fractions, there exists a morphism $r: Y \to X$ in S such that pr = qr. By using condition (b), we get a unique morrphism $\gamma: X \to Y$ such that $wr\gamma = w$. In other words, the following diagram commutes:

Again from the couniversal property of w we will have a unique morphism $\beta: X \to X$ such that $w\beta = w$. But $w1_X = w$. From the uniqueness of β , it can be concluded that $\beta = r\gamma = 1_X$. So $p = p1_X = pr\gamma = qr\gamma = q1_X = q$ shows the injectivity of $\operatorname{Hom}(X,s)$. Thus $\operatorname{Hom}(X,s)$ is a bijection, which shows that X is S-colocal. Hence, $w: X \to M$ is S-colocalization of M.

3. Correspondence between S**-colocalization and Adams cocompletion.** Before establishing the main result, at first we recall some results related to Adams cocompletion. Consider a complete small $\mathscr U$ -category $\mathscr A$, where $\mathscr U$ is a fixed Grothendieck universe and a set of morphisms S admitting a calculus of right fractions. Moreover, assume a compatibility condition with product in S, that is, if each $s_i \colon X_i \to Y_i$ for $i \in I$ is an element of S, where the index set I is an element of $\mathscr U$, then $\prod_{i \in I} s_i \colon \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$ is an element of S. Then from dual of Deleanu's theorem [8] and Theorem 2 of [11], it follows that every object S0 of S1 has an Adams cocompletion S2 with respect to the set of morphisms S3.

In many cases, the set of morphisms S is not saturated. Behera and Nanda [4] have given the generalization of Deleanu, Frei and Hilton's characterization of Adams completion in terms of a couniversal property and the dualization is as follows:

Theorem 3.1 ([5, p. 224], Proposition 1.1). Let S be a set of morphisms of $\mathscr A$ admitting a calculus of right fractions. Then an object A_S of $\mathscr A$ is the cocompletion of the object A with respect to S if and only if there exists a morphism $e:A_S\to A$ in $\bar S$ which is couniversal with respect to morphisms of S: given a morphism $s:B\to A$ in S there exists a unique morphism $t:A_S\to B$ in $\bar S$ such that st=e. In other words, the following diagram is commutative:

By using Behera and Nanda's result ([4, p. 533], dual of Theorem 1.3), the following can be easily deduced.

Theorem 3.2. The morphism $e: A_S \to A$ as constructed in Theorem 3.1 is in S.

Next we present the relation between the S-colocalization and Adams cocompletion of an object A in \mathscr{A} . Let $f: X \to A$ be the S-colocalization morphism of A and A_S be the Adams cocompletion of A.

Theorem 3.3. In assumptions of Theorem 3.1 there is an isomorphism between X and A_S , that is, $X \cong A_S$.

Proof. Both e and f are in S. By the couniversal property of e (Theorem 3.1), it can be concluded that there exists a unique morphism $\alpha: A_S \to X$ such that $f\alpha = e$, that is, the following diagram is commutative:

As f is couniversal with respect to all the morphisms in S (Proposition 2.2), there exists a unique morphism $\beta: X \to A_S$ making the following triangle commutative:

that is, $e\beta = f$. From the diagram

we have $e\beta\alpha=f\alpha=e$ and from the uniqueness condition of the couniversal property of e we get $\beta\alpha=1_{A_S}$. Consider the following diagram:

 $f\alpha\beta=e\beta=f.$ The uniqueness condition of the couniversal property of f shows that $\alpha\beta=1_X.$

Now we have $\beta \alpha = 1_{A_S}$ and $\alpha \beta = 1_X$. Hence $X \cong A_S$.

It is a pleasure to thank the anonymous referee for his/her valuable comments and suggestions which resulted in an improved presentation of the paper.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

- 1. J. F. Adams, *Idempotent functors in homotopy theory*, Manifolds, Conf. Univ. Tokyo Press, Tokyo (1973).
- 2. J. F. Adams, Stable homotopy and generalised homology, Univ. Chicago Press, Chicago and London (1974).
- 3. J. F. Adams, Localization and completion, Lect. Notes Math., Univ. Chicago (1975).
- 4. A. Behera, S. Nanda, *Mod-* **C Postnikov approximation of a 1-connected space, Canad. J. Math., **39**, № 3, 527 543 (1987).
- 5. A. Behera, S. Nanda, *Cartan Whitehead decomposition as Adams cocompletion*, J. Austral. Math. Soc. A, **42**, 223 226 (1987).
- 6. A. K. Bousfield, The localization of spaces with respect to homology, Topology, 14, 133-150 (1975).
- A. Deleanu, A. Frei, P. Hilton, Generalized Adams completions, Cah. Top. Géom. Différent. Catég., 15, № 1, 61–82 (1974).
- 8. A. Deleanu, Existence of the Adams completion for objects of complete categories, J. Pure and Appl. Algebra, 6, № 1, 31–39 (1975).
- 9. D. S. Dummit, R. M. Foote, Abstract algebra, John Wiley and Sons, Inc., Hoboken, NJ (2004).
- 10. W. G. Dwyer, *Localizations*, Axiomatic, Enriched and Motivic Homotopy Theory, Kluwer, Proc. NATO ASI, 3-28 (2004).
- 11. S. Nanda, A note on the universe of a category of fractions, Canad. Math. Bull., 23, № 4, 425 427 (1980).
- 12. H. Schubert, Categories, Springer-Verlag, New York (1972).

Received 06.05.19