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A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES

MOAVIb ITTAAKOCTI AJsA JEAKNX BAHAXOBUX
OYHKIIOHAJIBHUX ITPOCTOPIB

Based on the Steklov operator, we consider a modulus of smoothness of functions in some Banach function spaces, which
can be not translation invariant and establish its main properties. A constructive characterization of the Lipschitz class is
obtained by using the Jackson-type direct theorem and inverse theorem of trigonometric approximation. As application, we
present several examples of related (weighted) function spaces.

Ha ocHoBi omepatopa CTekioBa po3IISHYTO MOIYNb DIAAKOCTI (QYHKIIH y Aeskux OaHaXxoBHX (PYyHKIIOHAIBHUX MpO-
CTOpax, AKi MOXYTh He OyTH TpPaHCIALIHHO-IHBapiaHTHUMH, Ta BHBYEHO HOro OCHOBHI BiIacTUBOCTI. KOHCTpyKTHBHY
XapaKTepPUCTHUKy Kiacy JIIMIIMIs OTpUMaHO 3a JJONOMOTOIO0 HpsiIMOi TeopeMH TuIly J[»ekcoHa Ta 00epHEHOI TeOpeMH Ipo
TPUTOHOMETPUYHE HAOMMKEHHA. SIK 3acTOCYBaHHS, HABEJCHO KiJIbKa MPHUKJIAAIB BiAMOBITHUX (BaroBHX) (yHKIIOHAJIBHUX
HpPOCTOPIB.

1. Introduction and the main results. Celebrated theorem of Jackson and Bernstein— Stechkin,
on constructive characterization of the Lipschitz classes, states that’ (see, e.g., [13, Chapter 7,
Theorem 3.3])

a necessary and sufficient condition for f € LP, 1 < p < 0o, belong to the Lipschitz class of
order o > 0,

Lip(a,p) := {f € L?: w|q)41(f,8)p S 6%, 6 > 0},
is
. B . <. -a
Tigrn If = Talle =: En(f)r S0

for all n € N := {1,2,3,...} with [z] := max{n € N:n < z}, where T, is the class of
trigonometrical polynomials

To(z) = Z(ak coskx + bgsinkz), ag,bp € R,

k=0

of degree at most n € N,

! E-mail: rakgun@balikesir.edu.tr.
2 Here and in what follows, A < B will mean that there exists a positive constant C, independent of essential parameters,
such that the inequality A < C'B is holds.

© RAMAZAN AKGUN, 2023
ISSN 1027-3190. Yxp. mam. ocypn., 2023, m. 75, Ne 8 1015



1016 RAMAZAN AKGUN

wr(f,0)Lr = (I =Th)" fll

sup ||
0<h<§

is the modulus of smoothness of order » € N and 7}, f(-) := f(- + h), h € R, is the translation
operator.

By this equivalence, functions in the Lipschitz classes are characterized with respect to only its
best approximation orders. To obtain this equivalence, it is necessary to relate the best approximation

. 1
order E,(f), with the modulus of smoothness w; < f, > .
n)p

Direct and inverse inequalities of trigonometric approximation constitute the relation

En(f)LP SJWT(fa 1> ) TGN, (1)
n Lp
1 1 . 1
o (f, n) < LGB @
Lp §=0

for any n € N with constants depending only on r. We note that the inequalities (1) and (2) are hold
true (see [15]) for more general homogeneous Banach spaces X (shortly HBS), that is, the class of
measurable functions, defined on 7" := [0, 2], such that the translation operator T}, is a continuous
isometry and ||f(—)|lx = ||f(-)|lx holds. See also the results [20, 21, 27].

Here the definition of the modulus of smoothness w,(f,-)x is depend heavily on the translation
invariance of the space X considered. If the space X is not translation invariant (for example, when
the Lebesgue spaces with a weight) the modulus of smoothness w,.(f,-) x may not be well defined.

The main purpose of this paper is to define a modulus of smoothness €2,(-, d) x, that can be used
also for such spaces X that can be not invariant under the translation operator 7. Also, X may be
some weighted spaces.

We suppose that:

(I) X is a Banach function space (shortly BES, see [9]) on T,

(II) T,, is a dense subset of X,

(III) the Steklov operator

f(x)Hohf(x)::/f(t)dt, zeT, feX,

is uniformly bounded (in ~) on X.
Let S,,(-, f) be the nth partial sum of the Fourier series of f € X C L!.
The modulus of smoothness in X, satisfying the property (III), is defined as

Qr(fa 5)X = (I - O—h)erXa re Na

sup |
0<h<6

where [ is the identity operator on 7'
The following theorem is the main result of this paper and estimates the best approximation error
1
E.(f)x :=infp er, ||f — Tn||x from above by the modulus of smoothness €2, (f, > .
nJx
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A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES 1017

Theorem 1. Let X be satisfy the conditions (I)—(1l) and f € X. If
(IV) the operator f — Sy, be uniformly bounded (in n) on X
and
< p2 d
(V) En(g)x S @9(1’)
the Jackson — Stechkin-type estimate

d
for any g € X" := {g e X: ﬁg(x) € X}, then we have
X x

En<f>xsﬂr(f,1) . ren, 3)
X

n

for n € N with some constant depending only on r and X.

In approximation theory, inequalities of type (3) is known as the direct theorem of trigonometric
approximation. When X = L2, the inequality (3) was proved in [1]. When X is a HBS, (3) can be
obtained from Theorem 10.7 of [16]. When X is the Lebesgue spaces with a weight w, satisfying
the Muckenhoupt condition A4,, 1 < p < oo, the inequality (3) in the form

H(I - Uhi)f

=1

En(f)p,w S QT <fa 1> = sup , TE Nv (4)
pw

0<h;<1/n

was proved in [17] (see also, e.g., Theorem 2 of [19]). Considering Example 5 of § 2, clearly (3)
improves the inequality (4) for » > 2. Similarly (3) also improves direct theorems obtained in
[3, 4, 6, 18, 19] for r > 2.

The weak inverse of the Jackson-type estimate (3) is given in the following theorem.
Theorem 2. Let X be satisfy the properties (1)—(1l) and f € X. If

(VI) the inequality || T, v S n||Tw||x holds for any T,, € Ty, then we have

1 1 -, -
Q(f) S5 > GHDTE(f)x, reEN,
n X n

J=0

for n € N with some constant depending only on r and X.
Theorems 1 and 2 gives the following Marchaud-type inequality.

Corollary 1. Under the conditions of Theorems 1 and 2, we obtain

1
Q. (f,0)x S 52T/u_2"_lﬂk(f, uw)xdu, 0<d<1,
é

Sfor r.k € N with r <k.
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Theorem 3. Under the conditions of Theorems 1 and 2, if
E.(f)x Sn™”, meN,

for some 3 > 0, then, for a given r € N, we get

LR r>(3/2,

1
Qr(fv(s)X S 5'810g5> T:/B/2>
5%, r < /2.

Definition 1. Let § > 0, r := |5/2]| + 1, and X be a BFS satisfying the condition (III). We
define Lip(B,X) := {f € X: Q.(f,0)x S %, 6> 0}.

The following result gives a constructive characterization of the Lipschitz classes Lip(3, X ). As
a corollary of Theorems 1, 2, and 3 and Definition 1 we have the following corollary.

Corollary2. Let 8 > 0. Under the conditions of Theorems 1 and 2, the following conditions are
equivalent:

() f € Lip(8, X),

(i) En(f)x Sn? nel

Some examples for the space X is given in the Section 2. In Section 3, we give the proofs of the
results.

2. Applications. In this section, we will collect some definitions of the function classes that are
suitable for the method given in the previous section.

Nonweighted setting. Let M be the set of all measurable, scalar valued, functions on 7" and M™
be the subset of functions from M whose values lie in [0, co]. By x g, we denote the characteristic
function of a measurable set & C T.

A mapping p: M™ — [0, o0] is called a function norm if for all constants a > 0, for all functions
f,9, fn, n € N, and for all measurable subsets E of T, the following properties are hold:

(@) p(f) =0iff f=0ae; p(af) = ap(f) and p(f + g) < p(f) + p(9);

(i) if 0 < g < f a.e., then p(g) < p(f);

(iii) if 0 < fo 1 f ace., then p(f) T p(f);

(iv) if a set E of T have a finite Lebesgue measure |E|, then p(xg) < oo holds;

(v) ifa set E of T satisfies |E| < oo, then there exists a positive constant C, depending only

on E and p, such that / f(z)dx < Cp(f) holds.

E
For a function norm p, the class of functions X := X (p) = {f € M: p(|f|) < oo} is called
BFS. For each f € X, we define the norm

1fllx == p(fD),  feX.

A BFS X, equipped with norm || - || x, is a Banach space [9, p. 3—5, Theorems 1.4 and 1.6]. If p is
a function norm, its associate norm p? is defined on M™ by

p'(g)i=su? [ flalgla)do: fe M p(f) <11 gE M
T
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A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES 1019

If p is a function norm, then p® is itself a function norm [9, p. 8, Theorem 2.2]. The BFS X (pa),
determined by the function norm p“, is called the associate space of X = X (p) and is denoted by
X@. It is well-known (see, e.g., [9, p. 9]) that

[fllx = sup /\f(w)g(fﬂ)ldﬁvi ge X llgllxe <1p. )
T

The distribution function 1y of a measurable function f is defined as the Lebesgue measure of the
set {z € T: |f(z)] > A} for A > 0. A Banach function norm is said to be rearrangement invariant
(shortly r.i.) if p(f) = p(g) for every pair of functions f, g, which are equimeasurable, that is,
pg(A) = pg(X). If p is ri. function norm, the BFS X (p) is called r.i. BFS. Let X be BFS. A function
f € X is said to have absolutely continuous norm if lim,, . || fXx 4, |[x = O for every decreasing
sequence of measurable sets { Ay, },>1 with x4, — 0 a.e.. If every f € X has this property, we will
say that X has absolutely continuous norm.

Remark1 [9, Chapter 3, Lemma 6.3, Theorem 6.10]. Let X be a ri. BF'S. The following condi-
tions are equivalent:

(1) the set of trigonometric polynomials T,, is a dense subset of X,

(i1) translation operator Ty, is uniformly bounded (in h) on X,

(ii1)) X has absolutely continuous norm,

(iv) Fourier series of f € X converges in norm in X,

(V) partial sum operator Sy (-, f) is uniformly bounded (in n) on X.

We note also that, when X is separable r.i. BFS, the condition (i) of Remark 1 is equivalent to

(vi) X hasnontrivial (i.e., 0 < ax, Sx < 1) Boydindices a.x, 8x (see Chapter 3, Corollary 6.11
of [9]).

Now, we give some examples of BFS.

(1) Lebesgue spaces. We define the Lebesgue functionals

1/p

pof)i= | [frds)] . 0<p<oc and pu(f) = esup f(a).
b xeT

Then p,(|f]) is Banach function norm for 1 < p < co. We set LP := X(p,) and || f||, := pp(|f])- In
this case the property (I) was proved in Theorem 1.2 of [9]. Property (II) is well-known and it can be
found in any monograph on approximation theory (see, e.g., Chapter 1, Part 1.4.1 of [29]). Property
(IIT) is a consequence of integral Minkowski’s inequality [29, p. 592, (12)] and translation invariance
of LP, 1 < p < oco. Property (V) is known from, e.g., [13, p. 206, (2.17)], (VI) was proved in [8] for
p =o00;in[30] for 1 < p < oo andin[7] for 0 < p < oco. For (IV), one can see [28, §3, Theorem 1].

(2a) Lorentz spaces LP9. Let 0 < p,q < oo and M be the subset of functions from M such
that finite a.e. on 7. We set for f € My that

o] 1/q

o= | [[e7r0)" ) 0<p<oc,

0

1flpoe = sup t2F (), | fll ooy = sup £/PF(1),

2€(0,00) z€(0,00)

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 8



1020 RAMAZAN AKGUN

o) 1/q
e n19dt
1Pl = | [ @]"F) o 0<p<es
0

where f* is the decreasing rearrangement of the function f [9, Chapter 2, Section 1] and f**(t) :=

1 t
t/ f*(s)ds, t > 0. The class of functions {f € My ||f|lp,q < oo} is denoted by LP4. It is
0

known that LP9 coincides with L” for 0 < p < oo and || f||,, = || ||, when f € LP. On the other
hand, if 1 < ¢ <p < oo or ¢ =p = oo, then | - ||pq is a r.i. Banach function norm. If 1 < p < oo,
1 <g<ocoorq=p=oo,then |||, isari Banach function norm (see Chapter 4, Theorem 4.3
and Lemma 4.5 of [9]).

(2b) Lorentz A and M spaces. Let X be a r.i. BFS on (RT, dx) and suppose that X has been
renormed so that its fundamental function ¢x is concave. The Lorentz space A(X) consists of all
functions f in M7 (R*,dz) for which

P,q)

I fllax) = /f*(S) dox(s) < oo.
0

The Lorentz space M (X) consists of all functions f in M (R, dz) for which

Ifllarcxy = sup [ (t)ex (t) < oo.
te(0,00)
The Lorentz spaces A(X) and M (X) are r.i. BFS (see Chapter 2, Theorem 5.13 of [9]).

(c) Zygmund spaces. L(log L) and L.y, are ri. BFS (see Chapter 4, Part 6 of [9]). If X is
a r.i. BFS and has absolutely continuous norm, the properties (I), (II) and (IV) can be obtained
from Remark 1 and the properties (III) and (V), (V1) were obtained in [18, Lemmas 2.2 and 2.5,
Theorem 1.2].

(3) Orlicz spaces. A function ¢ is called Young function if ¢ is even, continuous, nonnegative
in R, increasing on (0, c0) such that ¢(0) = 0, lim,_,o ¢(x) = co. A Young function ¢ is said to
satisfy Ay condition (shortly ¢ € Ay) if there exists a constant C' > 0 such that p(2z) < Cp(x)
for all x € R. Two Young functions ¢ and ¢; are said to be equivalent (shortly ¢ ~ 1) if there are
C, C'" > 0 such that ¢1(Cz) < ¢(x) < ¢1(C’z) holds for any z > 0. A nonnegative function M :
[0,00)— [0, 00) is said to be quasiconvex if there exist a convex Young function ® and a constant
C > 1 such that ®(x) < M(xz) < ®(Cx) holds for any x > 0. Let ¢ be a quasiconvex Young
function. We denote by IN@(T), the class of Lebesgue measurable functions f: T — R, satisfying

the condition / @(|f(x))dz < oo. The linear span of the Orlicz class Ly, (T"), denoted by ¢(L),

T
becomes a normed space with the Orlicz norm

[[flly := sup /f(ff)g(@ldfﬂi /@“(IQI)MS Lo, (6)
T

T

where ©%(y) := sup,>o{zy — ¢(x)}, y > 0, is the complementary function of ¢. It can be easily
seen that (L) C L'(T) and (L) becomes a Banach space with the Orlicz norm. The Banach space
(L) is called Orlicz space. In this case the condition (I) can be changed with (I') X is a Banach
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A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES 1021

space with a norm satisfying the integral Minkowski inequality. So the Orlicz norm (6) satisfies
this property. Under the conditions ¢“ is quasiconvex function for some o € (0,1) and ¢ € Ag,
the property (II) is a consequence of [23, Lemma 3] and the properties (III)-(VI) were proved in
[6, Lemmas 2, 3 and 5, Theorem 1].

The examples given in 1-3 above are HBS and, in these cases, the inequalities (1) and (2) can
be obtained also by the method developed in [16, §10]. On the other hand, the examples given below
are not translation invariant, in general, and in these cases, the method given in [16] is not applicable.
The aim of this work is arise from this fact.

The following example is demonstrate a function class that is not rearrangement invariant.

(4) Variable exponent Lebesgue spaces. Let P be the class of 27-periodic, Lebesgue measurable
functions p = p(x): T — (1, 00) such that essup,cpp(x) < co. We define class ngr')
measurable functions f, defined on T, satisfying

of 2m-periodic,

/ £ (2) P dz < oo,
T

The class ngr') is a Banach space [24, Theorem 2.5] with the norm

p(z)
der <1

£ 1lp() := infq a > 0: /‘fgﬂ)
T

The variable exponent p(-), defined on 7', is said to be satisfy Dini— Lipschitz property D L., of order
~ if

1\”
sup {|p(x1) —p(x2)|: |1 — 2] < 0} (ln > <C, 0<dé<LlL (7)
x1,22€T )

If p(-) satisfies the properties 1 < essinf,crp(z), essup,crp(x) < oo and the Dini—Lipschitz
condition (7) of order > 1, then the property (I) follows from Theorem 3.2.13 of [14]; (II)-(IV)
follows from [26, Theorems 6.1 and 6.2, Lemma 3.1] and (V), (VI) follows from [3, Theorem 1,
Lemma 1].

Weighted case. A function w: T—[0, o] will be called weight if w is measurable and positive
a.e.. A 2m-periodic weight function w belongs to the Muckenhoupt class A4,, p > 1, if

p—1

1 / L[ va-»
sup| — [ w(z)dx /w P)(x)dx <C
T ANEY

with a finite positive constant C, independent of J, where J is any subinterval of 7.

(5) Weighted Lebesgue spaces. For a weight w, we denote by LP(T,w), the class of measurable
functions, defined on T, such that wf € LP(T). We set ||f|pw = ||wf|p for f € LP(T,w). If
wP € A, and 1 < p < oo, the properties (II)-(VI) are known from [19] and (I) is a consequence
of [22, Lemma 2.5 (b)].

(6a) Weighted Orlicz spaces ¢, (L). Let ¢ be a quasiconvex Young function. We denote, by
E%M (T'), the class of Lebesgue measurable functions f: 7" — R, satisfying the condition
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[ els@Dee) o < o

T

The linear span of the weighted Orlicz class I:%w, denoted by ¢, (L), becomes a normed space with
the Orlicz

£l = sup /If(ﬂ?)g(w)u)(fﬂ) dx: /90“(9\)00(56) dr<1.. (®)
T

T

For a quasiconvex function ¢, we define the indice p(y) of ¢ as

b :=1inf{p: p >0, ¢’ is quasiconvex}.
p(p)
If w € Ay, then it can be easily seen that ¢, (L) C L'(T) and ¢, (L) becomes a Banach space
with the Orlicz norm. The Banach space ¢, (L) is called weighted Orlicz space. In this case also the
condition (I) can be changed with the condition (I"). So the Orlicz norm (8) satisfies the property (I').
If the conditions ¢ quasiconvex for some a € (0,1), » € Az and w € A, are fulfilled, then the
properties (II)—(VI) were proved in [6].

(6b) Weighted Orlicz spaces Lz ,. A convex and continuous function M : [0, 00) — [0, 00),
for which M (0) =0, M(z) > 0 for z > 0 and
M (z)

M
lim M@ o M@ _
x—0 xT T—00 €T

is called a N -function. The complementary Young function N of M is defined by
N(y) == max{zy — M(z): z > 0}

for y > 0.
Let M be a N-function. We denote by L) the linear space of 27-periodic measurable functions
f:T — R such that

/Mwmwm<w
T

holds for some A > 0. Equipped with the norm

[ f1lar := sup /!f(ﬂf)g(ﬂﬂ)\dxi /N(Ig(fﬂ)l)dl‘ﬁ Lo,
T T

where N is the complementary function, L); becomes a Banach space, called the Orlicz space
generated by M.
Let M~1:[0,00) — [0,00) be the inverse of the Young function M and

M~Y(z)
h(t) = limsup———"2_ 0.
(£) := limsup = 7

The numbers Sjs and ayy, defined by
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A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES 1023

log h(t) . logh(t)
im ,  ap = lim
t—oo logt t—0+ logt

Bum = ;
are called the upper and lower Boyd indices of the Orlicz space L, respectively.

Let w be a weight function. We denote, by Lz, the space of the measurable functions f:
T — R such that fw € Lj;. The norm on Ly, is defined by || f||arw = ||fw|/as. The normed
space Ly, is called a weighted Orlicz space. If M is an N-function, Ly, has nontrivial Boyd
indices any, By and w'/oM € Ay, W'/ € Ay, then the properties (I)— (V) were proved
in [19]. We note also that the spaces Ly, and ¢, (L) are different, in general (see [10]).

7. Weighted variable exponent Lebesgue spaces. By Lﬁ('), we will denote the class of Lebesgue
measurable functions f: 7T — R, satisfying the condition wf € Lg;). The weighted variable
exponent Lebesgue space LEY) is a Banach space with the norm || f[|,(.) o = [[wfllp()-

For given p € P, the class of weights w, satisfying the condition (see [11])

for all balls @ in T, will be denoted by A,.y. Here, p'(z) := p(z)/(p(x) — 1) is the conjugate
exponent of p(z). The variable exponent p(z) is said to be satisfy log-Ho6lder continuous on 7' if
there exists a constant C' > 0 such that

p’(-) 5 |Q|7

1
Ip(x1) — p(x2)| S log(e + 1/|z1 — x2])

forall 1,z €T.

If 1 < essinfyerp(x), essup,crp(z) < oo, 1/p is Log-Holder continuous on 7', and wP® €
Ap()/po)y for some pg € (1, essinf erp(z)), then the properties (I) - (VI) were obtained in [4].

8. Weighted r.i. BFS. For a weight w, we denote, by X (T, w), the class of measurable functions,
defined on T, such that wf € X(T). We set ||f||xw = |lwf|x for f € X(T,w). If X(T)
is a reflexive r.i. BFS that having nontrivial Boyd indices ax, Sx such that wl/ X € Aljays
wl/Px e A Jax» then the properties (I) - (VI) were obtained in [18].

3. Proofs of the results. The following two lemmas are required for the proof of Theorem 1. If
A < B and B < A, simultaneously, we will write A = B.

Lemma 1. Let X be satisfy the conditions (1)—(l), f € X and t,1 > 0. Then

Ql(f7 lt)X 5 (1 + I_”)QQI(f7 t)X

holds with some constant depending only on r and X.
Proof. Let t > 0. Then there exists a n € N such that 1/n < ¢t < 2/n. We define the operator

1/n t w

(Uijnf)(x) := ///fx—i—s Ydsdudt, x€T,feX.

0 —u
In this case (see [3, p. 14])

d2

2 U () = o1 = ay,) ()

holds for almost every € 1" with some constant C' € R.
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Hence, using the uniform boundedness of the operator f +— oy, f (for fixed n € N) in X, we
2

get that @Ul/nf(m) € X and Uy, f € X"”. On the other hand, from (5), we obtain
1/n t u l/n t
[Unfllx = 3n? ///f x +s)dsdudt n3//2u|auf||xdudt
0 ~u 00
1/n ¢

s3nﬂuwxl/L/2ududt=\vux
0 0

and hence f — Uy, f € X. Then

lIlf {Hf g”X tZH.g”H)(} = KQ(fvtha X”) < 2K2(f7 1/7’L,X,X”)

X//
ol d
S = Uyl + 072Ut | = hvm O
We estimate [;. Using (5), we have
1/n ¢
£ = Uiuflx S0* [ [ 201 = o) flx duds
0 0
1/n ¢
< sup  ||(I — o) f||x3n® / /2ududt
0<u<l1/n
0 0
S osup (I —ou)fllx = (f,1/n)x. (10)
0<u<l/n
For the estimate I, we find
d? 9 d?
1 nf( ) - B Ul nf( ) = HC(I_ 01 n)fHX
dz2 "1/ . dz2 "1/ . /
S osup (I —ou)fllx = u(f, 1/n)x. (an
0<u<l/n

Now (9)—(11) give
Ko(ft, X, X") SQu(f,1/n)x <u(f t)x

On the other hand, for g € X",

h h t u
(1= ong(e) = o [ (@) = g(o+ it =~ [ [ [ o' 9)dsdud
—h 0 0 —u
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A MODULUS OF SMOOTHNESS FOR SOME BANACH FUNCTION SPACES 1025

Therefore,

h t u
1
(I —on)gllx = = sup ////g"(:v—{—s)dsdudt lv(z)|dx: ||v]|xe <1
T 10 0 —u

h t
1 1
< = L 7
_8h//2u 2u/g(az+s)d8 du dt
0 0 —u

X

h t
1
S g [ [ 2l dude =125
0 0

and we obtain

Ql(gat)X StzHg”HX (12)

for g € X”.
Then, for g € X",
0 (fit)x SN —gllx + 29"«

and taking infimum on g € X"
Ql(f7t)X S KQ(fvta X7X”)'
We obtained that Q4 (f,t)x ~ Ka(f,t; X, X"”). By using the last equivalence, we have

Ui s inf {17 = gllx -+ 0?]lg"] }
S A+ 1) inf {IF = gllx + 29"}

S 1+ [)*Qu(f t)x-

The lemma is proved.
Lemma 2. Let X be satisfy the conditions (1)—(Ill), f € X and n,m,r € N. Then there exists
a number ¢ € (0, 1), depending only on X, such that

Qe (f,t)x S COMIfllx + C'Qrpa (£ t)x

holds for any t € (0,1/n), where the constant C > 0 depending only on r and X, the constant
C' > 0 depending only on r,m and X.
Proof. For any h > 0, there exists a constant C > 1 such that

lonfllx < Cllfllx-

We set 6 := C/(1 + C). Now, for any h € (0,1/n), we prove firstly that
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17 = o) Fllx < 0| = a7)" f]| x + CQia (£, )x. (13)
To prove (13), we observe
I—op=2"Y1~0op)I +op)+27 1T —0op)?

and
on(l —op) =271 (I —on)(I +op) =271 (I — 0p)*.

Hence, for g € X,
1= on)gllx + llon(l = ongllx < (7= o0) (I +an)gllx +[|(1 = onPglly  (14)
On the other hand,
(= 00)" fllx = (/O (I = on) Fllx + (2 = 2)" fI1x)
< (T = 0n) Fllpo + 12 = 00)" £l )
= 6(|(1 = o) (L = 00) e + 111 = oa)" fll)
= 6(| (oI = on) + (I =n)?) (T = on) || +[1(Z = 02)" 1)
< O(llon(r —on) (I =on)" [ x + (T =on)* (T —on) " f] )
+ 311 = )" fllx
<6(llon( =) fllx + 1= o) f, + 1T =0n) fllx)- (15

Taking g := (I — 01,)" "' f in (14), we have

llon (I = on)" fllx + (I = on)" fllx < 1T = 0n)"(on + D flle + |7 = on) f x,

and using this in (15), we find

(I —on) flly < 5(Hoh<f = 03)" Fllpo + (T = o) f ]| + I = 0n)"f Hx)
<5(I(I = o) (o + D fllx + |1 = on) 1 )
+6[|(T = an) f |

<8I = on)"(on + 1) fllx +20[|(1 — on)" ™ | - (16)
Repeating r times the last inequality, we get
I(I = on)" fllx <O = an)"(on+ D) fllx +28[|(1 —on)"" f|
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<& —on) (on+ I f||x +28°||(I = 0n) (o + D) f||

+25H(I_0'h)r+1fHX < LSS —on) (on 1) fl i

+QZ5kH W) (o +Ik lfH

= 7|1 = 02 ||, +2 2 0% (= on) Hon + 1)
k=1

Hence,
I(I = an)" fllx < 0"[[(1 = a3)" fll + C(r, X)Qr1(f, h)x
and the proof of (13) is finished. By using (13), we obtain

(I —on) fllx <8 ||(T =02 £l + Clr, X)Qia(f,h)x
<O = o)l + (6" + DO, X) Qi1 (fh)x < ...
S 6m1‘

(I — J,Zlm)rf

For g € C(T), the class of continuous functions on 7', inequality

|+ O X m)Q(fh)x (7

Vo] <
H( o )9 oy = 2 ol
holds with a constant ¢ independent of m. The last inequality and Theorem 1.5 of [5] implies that

|@=at"ys

| <2Clflx

with constant C' independent of m.
Taking supremum in the inequality (17) imply the result

Q(f, 1) x S O™fllx + Qe (S 1) x

The lemma is proved.
Proof of Theorem 1. Case r = 1. Let n € N and f € X be fixed. We will use the operator
Ui/ f. By using (IV), (10) and (11), we have

En(f)X = En(f - Ul/nf + Ul/nf)X < En(f - Ul/nf)X + En(Ul/nf)X

1
S Ql(f, ) (18)
b's nJ)x
for any n € N.

Case r > 2. Following the idea given in [12], we will use induction on r. We know that the
Jackson-type estimate (3) holds for » = 1 (see (18)). We suppose that the inequality (3) holds for

ol d
S = Oyl 4072|150 @)
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g € X and some r = 2,3,4,...:

En(9)x S O (97 i) : (19)
X

We have to verify the fulfilment of inequality (3) for » + 1. We will use the mean .5, f and show that

15 = Sufllx £ (1)

X

We set u(-) := f(-) — Snf(+). In this case S, (u) = 0. Since S,, f is near best approximant for f, i.e.,

Hf - SanX 5 En(f)X;

using induction hypothesis (19), we obtain
1
Jullx =l = Su(wlx S Eulu)x < 02 (w1 )
X
We know, from Lemma 2, that
1 mnr / 1
Qlu,—) <CM|ullx +C"Ugr|u,— | .
"/ x nJjx
Choosing m so big that CC§™" < 1/2, we get
1 - 1
lullx < CQ| u, — < CC"Mullx + CQpgr | u, —
nJ)x njx

and

1
lullx < Qr+1<u7 )
n/x

From uniform boundedness of operator f — S, f in X, we have

1 1
QT+1 (U, > 5 QTJrl <f7 > )
n/x n/x

1 1
En(f)x < I1f = Sufllx = lullx S Qo (u ) <0 (f, )
n/x X

n

and the result

holds for » € N.

Theorem 1 is proved.

Proof of Theorem 2. Let T,, € T,,, n € {0} UN, be the best approximating trigonometric
polynomial for f € X. From (12) we get

2r)

Qr(gvé)X SéQT g( X’ TGN?

for ¢2") € X and & > 0. On the other hand, for any m € N,
Qr(f, (5))( < Qr(f —T2m+1,5)X +QT(T2m+1,(5)X (20)
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and
V(f = Tomer,0)x Sf = Tomnrl x S Eomr(f)x. @n
Then
r r 2r r 2r 27" 2r 21"
Q (T2m+1,5) < 52 T2(m421 5 (52 {HTI( ) - 0 + ZHT2(1+3 - X}

S 62"{Eo<f>x +> 2<"“>2"Egz~<f>x}

i=1

S 527’ {Eo(f)x + 22rE1 (f)X + Z 2(i+1)2TE21(f)X}-

=1

Applying here the inequality

2m
2B (f)x S Y, KTE()x, i1, (22)
k=2i-141
we get
2’!’7’1/
Q" (Tym+1,0) x 52T{Eo(f)x +27E1(f)x + ) k%—lEk(f)X}
k=2
2777,
< 52T{Eo(f)x +> k”‘lEkmx}. (23)
k=1
Since .
1 . 2r—1
Eypnii(A)x S — >, K E(f)x
k=2m—141

choosing m as 2™ < n < 2™*1 from (20)—(23), we obtain the result.
Theorem 2 is proved.
Proof of Theorem 3. Let f € X and

E,(f)x <n® n=1,23,...,

for some 5 > 0. We suppose that 6 > 0 and n := [1/J]. From Theorem 2 we get

n

Y U +D7TE()x

J=0

aroxse(f) o

2r
X n

SO Eo(f)x + D77 Ei(f)x
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n
5 527" EO(f)X + ZjQTflfﬁ
j=1

If 2r > 3, then we get Q,.(f,0)x < 05, If 2r = 3, then

S =Y < log(1f0),

j=1 J=1
and hence Q,.(f,8)x < 6°log(1/6). If 2r < B3, then the series Zn OjQTflfﬁ is convergent and
]:
0 (f,0)x SO Bo(f)x + Y 577 ) S 67
j=1
holds.

Theorem 3 is proved.
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