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EMBEDDINGS INTO COUNTABLY COMPACT HAUSDORFF SPACES

ВКЛАДЕННЯ В ЗЛIЧЕННО КОМПАКТНI ГАУСДОРФОВI ПРОСТОРИ

We consider the problem of characterization of topological spaces embedded into countably compact Hausdorff topological
spaces. We study the separation axioms for subspaces of Hausdorff countably compact topological spaces and construct
an example of a regular separable scattered topological space that cannot be embedded into a Urysohn countably compact
topological space.

Розглянуто проблему характеризацiї топологiчних просторiв, що вкладаються в злiченно компактнi гаусдорфовi
топологiчнi простори. Вивчаються аксiоми вiдокремлення пiдпросторiв злiченно компактних гаусдорфових топо-
логiчних просторiв та побудовано приклад регулярного сепарабельного розрiдженого топологiчного простору, який
не вкладається у злiченно компактний топологiчний простiр Урисона.

It is well-known that a topological space X is homeomorphic to a subspace of a compact Hausdorff
space if and only if the space X is Tychonoff.

In this paper we discuss the following problem.

Problem 1. Which topological spaces are homeomorphic to subspaces of countably compact
Hausdorff spaces?

A topological space X is:

compact if each open cover of X has a finite subcover;

\omega -bounded if each countable set in X has compact closure in X;

countably compact if each sequence in X has an accumulation point in X;

totally countably compact if each infinite set in X contains an infinite subset with compact closure
in X;

ultracompact if each sequence in X has a p-limit for every ultrafilter p on \omega ;

Lindelöf if each open cover or X has a countable subcover.

These properties relate as follows:

compact +3

��

\omega -bounded +3

��

totally countably compact

��

Lindelöf ultracompact +3 countably compact.

Countably compact topological spaces were investigated in [2, 8 – 12]. The problem of construc-
ting embeddings into \omega -bounded or ultracompact spaces was considered in [2] and [1] (see also [7]
for basic information on ultracompact spaces). Since the class of countably compact spaces in not
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EMBEDDINGS INTO COUNTABLY COMPACT HAUSDORFF SPACES 1033

closed with respect to Tychonoff product, there is no possibility to apply the technique of reflections
(applied in [1]) for constructing embeddings into countably compact spaces.

Nonetheless, in this paper we establish some properties of subspaces of countably compact
Hausdorff spaces and hence find some necessary conditions of embeddability of topological spaces
into Hausdorff countably compact spaces. Also, we construct an example of regular separable first-
countable scattered topological space which cannot be embedded into a Urysohn countably compact
topological space.

Let \scrF be a family of closed subsets of a topological space X. The topological space X is called

\scrF -regular if for any set F \in \scrF and point x \in X \setminus F there exist disjoint open sets U, V \subset X

such that F \subset U and x \in V.

We recall [6, § 3.6] that the Wallman extension W (X) of a topological space X consists of closed
ultrafilters, i.e., families \scrU of closed subsets of X satisfying the following conditions:

\varnothing /\in \scrU ;
A \cap B \in \scrU for any A,B \in \scrU ;
a closed set F \subset X belongs to \scrU if F \cap U \not = \varnothing for every U \in \scrU .

The Wallman extension W (X) of X carries the topology generated by the base consisting of the sets

\langle U\rangle =
\bigl\{ 
\scrF \in W (X) : \exists F \in \scrF , F \subset U

\bigr\} 
,

where U runs over open subsets of X.

By (the proof of) Theorem 3.6.21 in [6], the Wallman extension W (X) is compact.

If X is a T1-space, then we can consider the map jX : X \rightarrow W (X) assigning to each x \in X

the principal ultrafilter consisting of all closed sets F \subset X containing the point x. It is easy to see
that the image jX(X) is dense in W (X). By [6, Theorem 3.6.21], the map jX : X \rightarrow W (X) is a
topological embedding, so we can identify the T1-space X with its image jX(X) in W (X).

In the Wallman extension W (X), consider the subspace

W\omega X =
\bigcup \bigl\{ 

jX(C) : C \subset X, | C| \leq \omega 
\bigr\} 
,

which is the union of closures of countable subsets of jX(X) in W (X). The space W\omega X will
be called the Wallman \omega -bounded extension of X. By Proposition 3.2 from [2], the space W\omega X

is \omega -bounded. In [2] (resp., [1]) the Wallman extension was used for constructing embeddings of
topological spaces into Hausdorff \omega -compact (resp., ultracompact) spaces. In this paper we shall use
the Wallman extension in Examples 1 and 3 below.

A topological space X is called

locally countable if each x \in X possesses a countable open neighborhood;

first-countable at a point x \in X if it has a countable neighborhood base at x;

of countable pseudocharacter at a point x \in X if \{ x\} =
\bigcap 
\scrU for a countable family \scrU of open

sets in X;

Fréchet – Urysohn at a point x \in X if for each subset A of X with x \in A there exists a sequence
\{ an\} n\in \omega \subset A that converges to x;

regular at a point x \in X if any neighborhood of x contains a closed neighborhood of x;
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completely regular at a point x \in X if for any neighborhood U \subset X of x there exists a
continuous function f : X \rightarrow [0, 1] such that f(x) = 1 and f(X \setminus U) \subset \{ 0\} .
A topological space X is first-countable (resp., Fréchet – Urysohn, regular, completely regular, of
countable pseudocharacter) if X has that property at each point x \in X.

Theorem 1. Let X be a subspace of a countably compact Hausdorff space Y. If X is first-
countable at a point x \in X, then X is regular at the point x.

Proof. Fix a countable neighborhood base \{ Un\} n\in \BbbN at x and assume that X is not regular at
x. Consequently, there exists a neighborhood U0 of x such that V \not \subset U0 for any neighborhood V of
x. Replacing each basic neighborhood Un by

\bigcap 
k\leq n Uk, we can assume that Un \subset Un - 1 for every

n \in \BbbN . The choice of the neighborhood U0 ensures that, for every n \in \BbbN , the set Un \setminus U0 contains
some point xn. Since the space Y is countably compact and Hausdorff, the sequence (xn)n\in \omega has
an accumulation point y \in Y. Since U0 \cap \{ xn\} n\in \omega = \varnothing , the point y does not coincide with x.

Since Y is Hausdorff, there exists a neighborhood V \subset Y of x such that y /\in V . Find n \in \omega 

such that Un \subset V and observe that Oy := Y \setminus V is a neighborhood of y such that Oy \cap \{ xi :
i \in \omega \} \subset \{ xi\} i<n, which means that y is not an accumulating point of the sequence (xi)i\in \omega .

Remark 1. Example 6.1 from [2] shows that in Theorem 1 the regularity of X at the point x

cannot be improved to the complete regularity at x.

Corollary 1. Let X be a subspace of a countably compact Hausdorff space Y. If X is first-
countable, then X is regular.

The following example shows that Theorem 1 cannot be generalized over Fréchet – Urysohn
spaces with countable pseudocharacter.

Example 1. There exists a Hausdorff space X such that:

(1) X is locally countable and hence has countable pseudocharacter;

(2) X is separable and Fréchet – Urysohn;

(3) X is not regular;

(4) X is a subspace of a totally countably compact Hausdorff space.

Proof. Choose any point \infty /\in \omega \times \omega and consider the space Y = \{ \infty \} \cup (\omega \times \omega ) endowed with
the topology consisting of the sets U \subset Y such that if \infty \in U, then for every n \in \omega the complement
(\{ n\} \times \omega ) \setminus U is finite. The definition of this topology ensures that Y is Fréchet – Urysohn at the
unique nonisolated point \infty of Y.

Let \scrF be the family of closed infinite subsets of Y that do not contain the point \infty . The definition
of the topology on Y implies that for every F \in \scrF and n \in \omega the intersection (\{ n\} \times \omega ) \cap F is
finite. By the Kuratowski – Zorn lemma, the family \scrF contains a maximal almost disjoint subfamily
\scrA \subset \scrF . The maximality of \scrA guarantees that each set F \in \scrF has infinite intersection with some set
A \in \scrA .

Consider the space X = Y \cup \scrA endowed with the topology consisting of the sets U \subset X such
that U \cap Y is open in Y and, for any A \in \scrA \cap U, the set A \setminus U \subset \omega \times \omega is finite.

We claim that the space X has properties (1) – (4). The definition of the topology of X implies that
X is separable, Hausdorff and locally countable, which implies that X has countable pseudocharacter.
Moreover, X is first-countable at all points except for \infty . At the point \infty the space X is Fréchet –
Urysohn (because its open subspace Y is Fréchet – Urysohn at \infty ).
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The maximality of the maximal almost disjoint family \scrA guarantees that each neighborhood
U \subset Y \subset X of \infty has an infinite intersection with some set A \in \scrA , which implies that A \in U and
hence U \not \subset Y. This means that X is not regular (at \infty ).

In the Wallman extension W (X) of the space X consider the subspace Z := X \cup W\omega \scrA =

Y \cup W\omega \scrA . We claim that the space Z is Hausdorff and totally countably compact. To prove that Z
is Hausdorff, take two distinct ultrafilters a, b \in Z. If the ultrafilters a, b are principal, then since
X is Hausdorff, they have disjoint neighborhoods in W (X) and hence in Z. Now assume that one
of the ultrafilters a or b is principal and the other is not. We lose no generality assuming that a is
principal and b is not. If a \not = \infty , then we can use the regularity of the space X at a and prove
that a and b have disjoint neighborhoods in W (X) \supset Z. So, assume that a = \infty . It follows from
b \in Z = X \cup W\omega \scrA that the ultrafilter b contains some countable set \{ An\} n\in \omega \subset \scrA . Consider the set

V =
\bigcup 
n\in \omega 

\biggl( 
\{ An\} \cup An \setminus 

\bigcup 
k\leq n

\{ k\} \times \omega 

\biggr) 
and observe that V has finite intersection with every set \{ k\} \times \omega , which implies that Y \setminus V is a
neighborhood of \infty . Then \langle Y \setminus V \rangle and \langle V \rangle are disjoint open neighborhoods of a = \infty and b in
W (X).

Finally, assume that both ultrafilters a, b are not principal. Since a, b \in W\omega \scrA are distinct, there
are disjoint countable sets \{ An\} n\in \omega , \{ Bn\} n\in \omega \subset \scrA such that \{ An\} n\in \omega \in a and \{ Bn\} n\in \omega \in b.

Observe that the sets

V =
\bigcup 
n\in \omega 

\biggl( 
\{ An\} \cup An \setminus 

\bigcup 
k\leq n

Bk

\biggr) 
and W =

\bigcup 
n\in \omega 

\biggl( 
\{ Bn\} \cup Bn \setminus 

\bigcup 
k\leq n

Ak

\biggr) 
are disjoint and open in X. Then \langle V \rangle and \langle W \rangle are disjoint open neighborhoods of the ultrafilters
a, b in W (X), respectively.

To see that Z is totally countably compact, take any infinite set I \subset Z. We should find an infinite
set J \subset I with compact closure J in Z. We lose no generality assume that I is countable and
\infty /\in I. If J = I \cap W\omega \scrA is infinite, then J is compact by the \omega -boundedness of W\omega \scrA (see [2]). If
I \cap W\omega \scrA is finite, then I \cap Z \setminus W\omega \scrA = I \cap Y = I \cap (\omega \times \omega ) is infinite. If for some n \in \omega the set
Jn = I \cap (\{ n\} \times \omega ) is infinite, then Jn = Jn \cup \{ \infty \} is compact by the definition of the topology of
the space Y. If for every n \in \omega the set I \cap (\{ n\} \times \omega ) is finite, then I \cap (\omega \times \omega ) \in \scrF and by the
maximality of the family \scrA , for some set A \in \scrA the intersection J = A \cap I is infinite, and then
J = J \cup \{ A\} is compact.

A topological space X is called locally countably compact if for each x \in X there exists an open
neighborhood U of x such that U is countably compact.

Theorem 2. A first-countable topological space X can be embedded as an open subspace into
a Hausdorff countably compact topological space Y if and only if X is locally countably compact.

Proof. Assume that a first-countable topological space X is an open subspace of a countably
compact topological space Y and X is not locally countably compact. Then there exists x \in X such
that, for each open neighborhood U of x, the closure of U in X is not countably compact. Fix any
countable base \{ Un\} n\in \omega at the point x such that Un \subset Um, whenever n > m. Then there exists
a family \{ An\} n\in \omega of closed discrete subsets of X such that An \subset Un for each n \in \omega . Since Y
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is countably compact for each n \in \omega , the set An has an accumulation point yn \in Y. Since An is
closed in X, yn \in Y \setminus X, n \in \omega . Using one more time countably compactness of Y we can find an
accumulation point z of the set \{ yn\} n\in \omega . Since X is open in Y, z \in Y \setminus X. It is easy to see that
z \in Un for all n \in \omega which contradicts the Hausdorffness of Y.

Let X be a locally countably compact topological space. Put Y = X \cup \{ \infty \} where \infty /\in X. Let
\tau be the topology on Y which satisfies the following conditions:

X is an open subspace of Y ;

if \infty \in U \in \tau , then X \setminus U is closed and countably compact.

It is easy to check that the space Y is Hausdorff and countably compact.

The following example shows that Theorem 2 does not hold for topological spaces of character \omega 1.

Example 2. By [0, \omega 1] we denote the ordinal \omega 1 + 1 endowed with the order topology. By X

we denote the subspace \{ \omega 1\} \cup \{ \alpha \in \omega 1 | \alpha is isolated in [0, \omega 1]\} of [0, \omega 1]. Obviously, X is not
locally countably compact (at the point \omega 1) and the character of X is equal \omega 1. Nevertheless, X can
be embedded as an open subspace into a Hausdorff countably compact space Y. Let Y be the set
\omega 1 + 1 endowed with the topology \tau which satisfies the following conditions:

X is open in Y ;

if \alpha \in U \in \tau , then there exists an ordinal \beta \leq \alpha such that \{ \gamma | \beta < \gamma \leq \alpha \} \subset U.

Observe that Y \setminus \{ \omega 1\} is homeomorphic to \omega 1 endowed with the order topology. At this point it is
easy to see that Y is countably compact.

A topological space X is called weakly \infty -regular if for any infinite closed subset F \subset X and
point x \in X \setminus F there exist disjoint open sets V,U \subset X such that x \in V and U \cap F is infinite.

Proposition 1. Each subspace X of a Hausdorff countably compact space Y is weakly \infty -
regular.

Proof. Given an infinite closed subset F \subset X and a point x \in X \setminus F, consider the closure F

of F in Y and observe that x /\in F . By the countable compactness of Y, the infinite set F has an
accumulation point y \in F . Since Y is Hausdorff, there are two disjoint open sets V,U \subset Y such that
x \in V and y \in U. Since y is an accumulation point of the set F, the intersection F \cap U is infinite.
Then V \cap X and U \cap X are two disjoint open sets in X such that x \in V \cap X and F \cap U \cap X is
infinite, witnessing that the space X is weakly \infty -regular.

A subset D of a topological space X is called:

strictly discrete if each point x \in D has a neighborhood Ox \subset X such that the family (Ox)x\in D
is disjoint in the sense that Ox \cap Oy = \varnothing for any distinct points x, y \in D;

strongly discrete if each point x \in D has a neighborhood Ox \subset X such that the family (Ox)x\in D
is disjoint and locally finite in X.

It is clear that for every subset D \subset X we have the implications

strongly discrete \Rightarrow strictly discrete \Rightarrow discrete.

Theorem 3. Let X be a subspace of a countably compact Hausdorff space Y. Then each infinite
subset I \subset X contains an infinite subset D \subset I which is strictly discrete in X.
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Proof. By the countable compactness of Y, the set I has an accumulation point y \in Y. Choose
any point x0 \in I \setminus \{ y\} and using the Hausdorffness of Y, find a disjoint open neighborhoods V0

and U0 of the points x0 and y, respectively. Choose any point y1 \in U0 \cap I \setminus \{ y\} and using the
Hausdorffness of Y choose open disjoint neighborhoods V1 \subset U0 and U1 \subset U0 of the points x1
and y, respectively. Proceeding by induction, we can construct a sequence (xn)n\in \omega of points of X

and sequences (Vn)n\in \omega and (Un)n\in \omega of open sets in Y such that for every n \in \BbbN the following
conditions are satisfied:

(1) xn \in Vn \subset Un - 1;

(2) y \in Un \subset Un - 1;

(3) Vn \cap Un = \varnothing .

The inductive conditions imply that the sets Vn, n \in \omega , are pairwise disjoint, witnessing that the set
D = \{ xn\} n\in \omega \subset I is strictly discrete in X.

Theorem 4. Let X be a Lindelöf subspace of a countably compact Hausdorff space Y. Then
each infinite closed discrete subset I \subset X contains an infinite subset D \subset I which is strongly
discrete in X.

Proof. By the countable compactness of Y, the set I has an accumulation point y \in Y. Since
I is closed and discrete in X, the point y does not belong to the space X. Since Y is Hausdorff,
for every x \in X, there are disjoint open sets Vx,Wx \subset Y such that x \in Vx and y \in Wx. Since the
space X is Lindelöf, the open cover \{ Vx : x \in X\} has a countable subcover \{ Vxn\} n\in \omega . For every
n \in \omega , consider the open neighborhood Wn =

\bigcap 
k\leq nWxk

of y.

Choose any point y0 \in I\setminus \{ y\} and using the Hausdorffness of Y, find disjoint open neighborhoods
V0 and U0 \subset W0 of the points y0 and y, respectively. Choose any point y1 \in U0 \cap W1 \cap I \setminus \{ y\} and
using the Hausdorffness of Y choose open disjoint neighborhoods V1 \subset U0 and U1 \subset U0 \cap W1 of
the points y1 and y, respectively. Proceeding by induction, we can construct a sequence (yn)n\in \omega of
points of X and sequences (Vn)n\in \omega and (Un)n\in \omega of open sets in Y such that for every n \in \BbbN the
following conditions are satisfied:

(1) yn \in Vn \subset Un - 1 \cap Wn;

(2) y \in Un \subset Un - 1 \cap Wn;

(3) Vn \cap Un = \varnothing .

The inductive conditions imply that the family (Vn)n\in \omega are pairwise disjoint, witnessing that the set
D = \{ yn\} n\in \omega \subset I is strictly discrete in X. To show that D is strongly discrete, it remains to show
that the family (Vn)n\in \omega is locally finite in X. Given any point x \in X, find n \in \omega such that x \in Vxn

and observe that for every i > n we have Vi \cap Vxn \subset Wi \cap Vxn \subset Wn \cap Vxn = \varnothing .

A topological space X is called \"\omega -regular if it is \scrF -regular for the family \scrF of countable closed
discrete subsets in X.

Proposition 2. Each countable closed discrete subset D of a (Lindelöf ) \"\omega -regular T1-space X

is strictly discrete (and strongly discrete) in X.

Proof. The space X is Hausdorff, being a \"\omega -regular T1-space. If the subset D \subset X is finite, then
D is strongly discrete, because X is Hausdorff. So, assume that D is infinite and hence D = \{ zn\} n\in \omega 
for some pairwise distinct points zn. By the \"\omega -regularity there are two disjoint open sets V0,W0 \subset X

such that z0 \in V0 and \{ zn\} n\geq 1 \subset W0.
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Proceeding by induction, we can construct sequences of open sets (Vn)n\in \omega and (Wn)n\in \omega in X

such that for every n \in \omega the following conditions are satisfied:

zn \in Vn \subset Wn - 1;

\{ zk\} k>n \subset Wn \subset Wn - 1;

Vn \cap Wn = \varnothing .

These conditions imply that the family (Vn)n\in \omega is disjoint, witnessing that the set D is strictly
discrete in X.

Now assume that the space X is Lindelöf and V =
\bigcup 

n\in \omega Vn. By the \"\omega -regularity of X, each
point x \in X \setminus V has a neighborhood Ox \subset X whose closure Ox does not intersect the closed
discrete subset D of X. Since X is Lindelöf, there exists a countable set \{ xn\} n\in \omega \subset X \setminus V such
that X = V \cup 

\bigcup 
n\in \omega Oxn . For every n \in \omega , consider the open neighborhood Un := Vn \setminus 

\bigcup 
k\leq nOxk

of zn and observe that the family (Un)n\in \omega is disjoint and locally finite in X, witnessing that the set
D is strongly discrete in X.

The following proposition shows that the property described in Theorem 3 holds for \"\omega -regular
spaces.

Proposition 3. Every infinite subset I of an \"\omega -regular T1-space X contains an infinite subset
D \subset I, which is strictly discrete in X.

Proof. If I has an accumulation point in X, then a strictly discrete infinite subset can be
constructed repeating the argument of the proof of Theorem 3. So, we assume that I has no
accumulation point in X and hence I is closed and discrete in X. Replacing I by a countable
infinite subset of I, we can assume that I is countable. By Proposition 2, the set I is strictly discrete
in X.

A topological space X is called superconnected [3] if for any nonempty open sets U1, . . . , Un

the intersection U1 \cap \cdot \cdot \cdot \cap Un is not empty. It is clear that a superconnected space containing more
than one point is not regular. An example of a superconnected second-countable Hausdorff space can
be found in [3].

Proposition 4. Any first-countable superconnected Hausdorff space X with | X| > 1 contains
an infinite set I \subset X such that each infinite subset D \subset I is not strictly discrete in X.

Proof. For every point x \in X fix a countable neighborhood base \{ Ux,n\} n\in \omega at x such that
Ux,n+1 \subset Ux,n for every n \in \omega .

Choose any two distinct points x0, x1 \in X and for every n \geq 2 choose a point xn \in 
\bigcap 

k<n Uxk,n.

We claim that the set I = \{ xn\} n\in \omega is infinite. In the opposite case, we use the Hausdorffness and
find a neighborhood V of x0 such that V \cap I = \{ x0\} . Find m \in \omega such that Ux0,m \subset V and
x0 /\in Ux1,m. Observe that

xm \in I \cap Ux0,m \cap Ux1,m = \varnothing ,

which is a desired contradiction showing that the set I is infinite.

Next, we show that any infinite subset D \subset I is not strictly discrete in X. To derive a contradic-
tion, assume that D is strictly discrete. Then each point x \in D has a neighborhood Ox \subset X

such that the family (Ox)x\in D is disjoint. Choose any point xk \in D and find m \in \omega such that
Uxk,m \subset Oxk

. Replacing m by a larger number, we can assume that m > k and xm \in D. Since
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xm \in Uxk,m \subset Oxk
, the intersection Oxm \cap Ox,k is not empty, which contradicts the choice of the

neighborhoods Ox, x \in D.

Next, we establish one property of subspaces of functionally Hausdorff countably compact spaces.
We recall that a topological space X is functionally Hausdorff if for any distinct points x, y \in X

there exists a continuous function f : X \rightarrow [0, 1] such that f(x) = 0 and f(x) = 1.

A subset U of a topological space X is called functionally open if U = f - 1(V ) for some
continuous function f : X \rightarrow \BbbR and some open set V \subset \BbbR .

A subset K of a topological space X is called functionally compact if each open cover of K by
functionally open subsets of X has a finite subcover.

Proposition 5. If X is a subspace of a functionally Hausdorff countably compact space Y, then
no infinite closed discrete subspace D \subset X is contained in a functionally compact subset of X.

Proof. To derive a contradiction, assume that D is contained in a functionally compact subset
K of X. By the countable compactness of Y, the set D has an accumulation point y \in Y. Since
D is closed and discrete in X, the point y does not belong to X and hence y /\in K. Since Y is
functionally Hausdorff, for every x \in K there exists a continuous function fx : Y \rightarrow [0, 1] such

that fx(x) = 0 and fx(y) = 1. By the functional compactness of K, the cover

\biggl\{ 
f - 1
x

\biggl( \biggl[ 
0,

1

2

\biggr) \biggr) 
:

x \in K

\biggr\} 
contains a finite subcover

\biggl\{ 
f - 1
x

\biggl( \biggl[ 
0,

1

2

\biggr) \biggr) 
: x \in E

\biggr\} 
where E is a finite subset of K.

Then D \subset K \subset f - 1

\biggl( \biggl[ 
0,

1

2

\biggr) \biggr) 
for the continuous function f = \mathrm{m}\mathrm{a}\mathrm{x}x\in E fx : Y \rightarrow [0, 1], and

f - 1

\biggl( \biggl( 
1

2
, 1

\biggr] \biggr) 
is a neighborhood of y, which is disjoint with the set D. But this is not possible as y

is an accumulation point of D.

Finally, we construct an example of a regular separable first-countable scattered space that embeds
into a Hausdorff countably compact space but does not embed into Urysohn countably compact spaces.

Example 3. There exists a topological space X such that:

(1) X is regular, separable, and first-countable;

(2) X cannot be embedded as an open subspace into a Hausdorff countably compact space;

(3) X cannot be embedded into a Urysohn countably compact space;

(4) X can be embedded into a Hausdorff totally countably compact space.

Proof. In the construction of the space X we shall use almost disjoint dominating subsets of
\omega \omega . Let us recall [5] that a subset D \subset \omega \omega is called dominating if for any x \in \omega \omega there exists y \in D

such that x \leq \ast y, which means that x(n) \leq y(n) for all but finitely many numbers n \in \omega . By d we
denote the smallest cardinality of a dominating subset D \subset \omega \omega . It is clear that \omega 1 \leq d \leq c.

We say that a family of functions D \subset \omega \omega is almost disjoint if for any distinct x, y \in D

the intersection x \cap y is finite. Here we identify a function x \in \omega \omega with its graph \{ (n, x(n)) :
n \in \omega \} and hence identify the set of functions \omega \omega with a subset of the family [\omega \times \omega ]\omega of all infinite
subsets of \omega \times \omega .

Claim 1. There exists an almost disjoint dominating subset D \subset \omega \omega of cardinality | D| = d.

Proof. By the definition of d, there exists a dominating family \{ x\alpha \} \alpha \in d \subset \omega \omega . It is well-known
that [\omega ]\omega contains an almost disjoint family \{ A\alpha \} \alpha \in c of cardinality continuum. For every \alpha < d
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choose a strictly increasing function y\alpha : \omega \rightarrow A\alpha such that x\alpha \leq y\alpha . Then the set D = \{ y\alpha \} \alpha \in d is
dominating and almost disjoint.

By Claim 1, there exists an almost disjoint dominating subset D \subset \omega \omega \subset [\omega \times \omega ]\omega . For every
n \in \omega , consider the set \lambda n = \{ n\} \times \omega and observe that the family L = \{ \lambda n\} n\in \omega is disjoint and the
family D \cup L \subset [\omega \times \omega ]\omega is almost disjoint.

Consider the space Y = (D \cup L) \cup (\omega \times \omega ) endowed with the topology consisting of the sets
U \subset Y such that, for every y \in (D \cup L)\cap U, the set y \setminus U \subset \omega \times \omega is finite. Observe that all points
from \omega \times \omega are isolated in Y. Using the almost disjointness of the family D \cup L, it can be shown
that the space Y is regular, separable, locally countable, scattered and locally compact.

Choose any point \infty /\in \omega \times Y and consider the space Z = \{ \infty \} \cup (\omega \times Y ) endowed with the
topology consisting of the sets W \subset Z such that

for every n \in \omega the set \{ y \in Y : (n, y) \in W\} is open in Y

and
if \infty \in W, then there exists n \in \omega such that

\bigcup 
m\geq n\{ m\} \times Y \subset W.

It is easy to see Z = \{ \infty \} \cup (\omega \times Y ) is first-countable, separable, scattered and regular.
Let \sim be the smallest equivalence relation on Z such that

(2n, \lambda ) \sim (2n+ 1, \lambda ) and (2n+ 1, d) \sim (2n+ 2, d)

for any n \in \omega , \lambda \in L and d \in D.

Let X be the quotient space Z/\sim of Z by the equivalence relation \sim . It is easy to see that
the equivalence relation \sim has at most two-element equivalence classes and the quotient map q :
Z \rightarrow X is closed and hence perfect. Applying [6, Theorem 3.7.20], we conclude that the space X

is regular. It is easy to see that X is separable, scattered and first-countable. Observe that X is not
locally countably compact at the point \infty . Hence Theorem 2 implies that X cannot be embedded
as an open subspace into a Hausdorff countably compact space. It remains to show that X has the
properties (3), (4) of Example 3. This is proved in the following two claims.

Claim 2. The space X does not admit an embedding into a Urysohn countably compact space.

Proof. To derive a contradiction, assume that X = q(Z) is a subspace of a Urysohn countably
compact space C. By the countable compactness of C, the set q(\{ 0\} \times L) \subset X \subset C has an
accumulation point c0 \in C. The point c0 is distinct from q(\infty ), as q(\infty ) is not an accumulation
point of the set q(\{ 0\} \times L) in X. Let l \in \omega be the largest number such that c0 is an accumulation
point of the set q(\{ l\} \times L) in C.

Let us show that the number l is well-defined. Indeed, by the Hausdorffness of the space C, there
exists a neighborhood W \subset C of q(\infty ) such that c0 \not \subset W. By the definition of the topology of the
space Z, there exists m \in \omega such that

\bigcup 
k\geq m\{ k\} \times Y \subset q - 1(W ). Then c0 is not an accumulation

point of the set
\bigcup 

k\geq m q(\{ k\} \times L) and hence the number l is well-defined and l < m.

The definition of the equivalence relation \sim implies that the number l is odd. By the countable
compactness of C, the infinite set q(\{ l+1\} \times L) has an accumulation point c1 \in C. The maximality
of l ensures that c1 \not = c0. Since C is Urysohn, the points c0, c1 have open neighborhoods U0, U1 \subset C

with disjoint closures in C.

For every i \in \{ 0, 1\} , consider the set Ji =
\bigl\{ 
n \in \omega : q(l+ i, \lambda n) \in Ui

\bigr\} 
, which is infinite, because

ci is an accumulation point of the set q(\{ l+ i\} \times L) =
\bigl\{ 
q(l+ i, \lambda n) : n \in \omega 

\bigr\} 
. For every n \in Ji, the
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open set q - 1(Ui) \subset Z contains the pair (l + i, \lambda n). By the definition of the topology at (l + i, \lambda n),

the set (\{ l + i\} \times \lambda n) \setminus q - 1(Ui) \subset \{ l + i\} \times \{ n\} \times \omega is finite and hence is contained in the set
\{ l+ i\} \times \{ n\} \times [0, fi(n)] for some number fi(n) \in \omega . Using the dominating property of the family
D, choose a function f \in D such that f(n) \geq fi(n) for any i \in \{ 0, 1\} and n \in Ji. It follows that,
for every i \in \{ 1, 2\} , the set \{ l + i\} \times f \subset \{ l + i\} \times (\omega \times \omega ) has infinite intersections with the
preimage q - 1(Ui) and hence \{ (l+ i, f)\} \in q - 1(Ui) \subset q - 1(U i). Taking into account that the number
l is odd, we conclude that

q(l, f) = q(l + 1, f) \in U0 \cap U1 = \varnothing ,

which is a desired contradiction completing the proof of the claim.

Claim 3. The space X admits an embedding into a Hausdorff totally countably compact space.

Proof. Using the Kuratowski – Zorn lemma, enlarge the almost disjoint family D\cup L to a maximal
almost disjoint family M \subset [\omega \times \omega ]\omega . Consider the space YM = M \cup (\omega \times \omega ) endowed with the
topology consisting of the sets U \subset YM such that for every y \in M \cap U the set y \setminus U \subset \omega \times \omega 

is finite. It follows that YM is a regular locally compact first-countable space, containing Y as
an open dense subspace. The maximality of M implies that each sequence in \omega \times \omega contains a
subsequence that converges to some point of the space YM . This property implies that the subspace
\~Y := (W\omega M) \cup (\omega \times \omega ) of the Wallman extension W (YM ) is totally countably compact. Repeating
the argument from Example 1, one can show that the space \~Y is Hausdorff.

Let \~Z = \{ \infty \} \cup (\omega \times \~Y ) where \infty /\in \omega \times \~Y . The space \~Z is endowed with the topology consisting
of the sets W \subset \~Z such that

for every n \in \omega the set \{ y \in \~Y : (n, y) \in W\} is open in \~Y

and

if \infty \in W, then there exists n \in \omega such that
\bigcup 

m\geq n\{ m\} \times \~Y \subset W.

Taking into account that the space \~Y is Hausdorff and totally countably compact, we can prove that
so is the the space \~Z.

Let \sim be the smallest equivalence relation on \~Z such that

(2n, \lambda ) \sim (2n+ 1, \lambda ) and (2n+ 1, d) \sim (2n+ 2, d)

for any n \in \omega , \lambda \in W\omega L and d \in W\omega D.

Let \~X be the quotient space \~Z/\sim of \~Z by the equivalence relation \sim . It is easy to see that the
space \~X is Hausdorff, totally countably compact and contains the space X as a dense subspace.

However, we do not know the answer on the following intriguing problem (from Lviv Scottish
Book [4]).

Problem 2. Is it true that each (scattered, functionally Hausdorff ) regular topological space
can be embedded into a Hausdorff countably compact topological space?
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