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EMBEDDINGS INTO COUNTABLY COMPACT HAUSDORFF SPACES
BKIIAJEHHA B 3JITYEHHO KOMITAKTHI TAYCAOP®OBI ITPOCTOPHU

We consider the problem of characterization of topological spaces embedded into countably compact Hausdorff topological
spaces. We study the separation axioms for subspaces of Hausdorff countably compact topological spaces and construct
an example of a regular separable scattered topological space that cannot be embedded into a Urysohn countably compact
topological space.

PosmisiHyTO TIpoOiieMy XapakTepH3alii TOIOJOTIYHHX IPOCTOPIB, IO BKIANAIOTHCS B 3TIYEHHO KOMIIAKTHI raycaopgosi
TOIOJIOTIYHI MPOCTOpH. BHBUAIOTHCSA aKCiOMH BiZOKPEMIICHHS MIiANPOCTOPIB 3TIYEHHO KOMIIAKTHHX Taycaop(oBHX TOIMO-
JIOTIYHUX MPOCTOPIB Ta NOOYJOBAHO MPHKIIAL PErYIIPHOTO cenapabebHOro PO3PiIXKEHOTO TOMOIOTIYHOTO IIPOCTOPY, STKHH
HE BKJIQJIA€ThCS Y 3/1IY€HHO KOMIAKTHUH TOMONOTIYHHI IIpocTip YpHCOHa.

It is well-known that a topological space X is homeomorphic to a subspace of a compact Hausdorff
space if and only if the space X is Tychonoff.

In this paper we discuss the following problem.

Problem 1. Which topological spaces are homeomorphic to subspaces of countably compact
Hausdorff spaces?

A topological space X is:

compact if each open cover of X has a finite subcover;

w-bounded if each countable set in X has compact closure in X;

countably compact if each sequence in X has an accumulation point in X;

totally countably compact if each infinite set in X contains an infinite subset with compact closure
in X;

ultracompact if each sequence in X has a p-limit for every ultrafilter p on w;

Lindeldf if each open cover or X has a countable subcover.
These properties relate as follows:

compact === w-bounded == totally countably compact

ﬂ ﬂ ﬂ

Lindelof ultracompact === countably compact.

Countably compact topological spaces were investigated in [2, 8 — 12]. The problem of construc-
ting embeddings into w-bounded or ultracompact spaces was considered in [2] and [1] (see also [7]
for basic information on ultracompact spaces). Since the class of countably compact spaces in not
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EMBEDDINGS INTO COUNTABLY COMPACT HAUSDORFF SPACES 1033

closed with respect to Tychonoff product, there is no possibility to apply the technique of reflections
(applied in [1]) for constructing embeddings into countably compact spaces.

Nonetheless, in this paper we establish some properties of subspaces of countably compact
Hausdorff spaces and hence find some necessary conditions of embeddability of topological spaces
into Hausdorff countably compact spaces. Also, we construct an example of regular separable first-
countable scattered topological space which cannot be embedded into a Urysohn countably compact
topological space.

Let F be a family of closed subsets of a topological space X. The topological space X is called

F-regular if for any set F' € F and point 2z € X \ F there exist disjoint open sets U,V C X
such that F C U and z € V.

We recall [6, § 3.6] that the Wallman extension W (X) of a topological space X consists of closed
ultrafilters, i.e., families U of closed subsets of X satisfying the following conditions:

@ ¢ U;

ANBeU forany A, B € U,

a closed set F' C X belongsto U if FNU # @ forevery U € U.
The Wallman extension W (X ) of X carries the topology generated by the base consisting of the sets

U)={FeW(X):3FeF, FCU},

where U runs over open subsets of X.

By (the proof of) Theorem 3.6.21 in [6], the Wallman extension W (X)) is compact.

If X is a T)-space, then we can consider the map jx : X — W/(X) assigning to each z € X
the principal ultrafilter consisting of all closed sets ' C X containing the point x. It is easy to see
that the image jx(X) is dense in W (X). By [6, Theorem 3.6.21], the map jx: X — W(X) is a
topological embedding, so we can identify the 7 -space X with its image jx(X) in W(X).

In the Wallman extension W (X), consider the subspace

WoX = U{jx(C): C c X, |C| <w},

which is the union of closures of countable subsets of jx(X) in W(X). The space W,X will
be called the Wallman w-bounded extension of X. By Proposition 3.2 from [2], the space W, ,X
is w-bounded. In [2] (resp., [1]) the Wallman extension was used for constructing embeddings of
topological spaces into Hausdorff w-compact (resp., ultracompact) spaces. In this paper we shall use
the Wallman extension in Examples 1 and 3 below.

A topological space X is called

locally countable if each x € X possesses a countable open neighborhood;

first-countable at a point x € X if it has a countable neighborhood base at z;

of countable pseudocharacter at a point x € X if {x} = (U for a countable family &/ of open
sets in X;

Fréchet— Urysohn at a point x € X if for each subset A of X with = € A there exists a sequence
{an}new C A that converges to z;

regular at a point x € X if any neighborhood of x contains a closed neighborhood of z;
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1034 TARAS BANAKH, SERHII BARDYLA, ALEX RAVSKY

completely regular at a point x € X if for any neighborhood U C X of z there exists a
continuous function f: X — [0, 1] such that f(z) =1 and f(X \ U) C {0}.
A topological space X is first-countable (resp., Fréchet— Urysohn, regular, completely regular, of
countable pseudocharacter) if X has that property at each point z € X.

Theorem 1. Let X be a subspace of a countably compact Hausdorff space Y. If X is first-
countable at a point x € X, then X is regular at the point x.

Proof. Fix a countable neighborhood base {U,, },cn at x and assume that X is not regular at
x. Consequently, there exists a neighborhood Uy of z such that V' ¢ Uy for any neighborhood V' of
x. Replacing each basic neighborhood U,, by (), ,, Uk, we can assume that U,, C U,_; for every
n € N. The choice of the neighborhood Uy ensures that, for every n € N, the set U, \ Up contains
some point x,. Since the space Y is countably compact and Hausdorff, the sequence (x,)ncw has
an accumulation point y € Y. Since Uy N {zp}new = &, the point y does not coincide with z.
Since Y is Hausdorff, there exists a neighborhood V' C Y of x such that y ¢ V. Find n € w
such that U, C V and observe that O, := Y \ V is a neighborhood of y such that O, N {z;:
i € w} C {x;}icn, which means that y is not an accumulating point of the sequence (x;);cq,-

Remark 1. Example 6.1 from [2] shows that in Theorem 1 the regularity of X at the point x
cannot be improved to the complete regularity at x.

Corollary1. Let X be a subspace of a countably compact Hausdorff space Y. If X is first-
countable, then X is regular.

The following example shows that Theorem 1 cannot be generalized over Fréchet—Urysohn
spaces with countable pseudocharacter.

Example 1. There exists a Hausdorff space X such that:

(1) X is locally countable and hence has countable pseudocharacter;

(2) X is separable and Fréchet— Urysohn;

(3) X is not regular;

(4) X is a subspace of a totally countably compact Hausdorff space.

Proof. Choose any point co ¢ w X w and consider the space Y = {00} U (w X w) endowed with
the topology consisting of the sets U C Y such that if co € U, then for every n € w the complement
({n} x w) \ U is finite. The definition of this topology ensures that Y is Fréchet—Urysohn at the
unique nonisolated point co of Y.

Let F be the family of closed infinite subsets of Y that do not contain the point co. The definition
of the topology on Y implies that for every F' € F and n € w the intersection ({n} x w) N F is
finite. By the Kuratowski—Zorn lemma, the family F contains a maximal almost disjoint subfamily
A C F. The maximality of 4 guarantees that each set F' € F has infinite intersection with some set
Ac A

Consider the space X = Y U A endowed with the topology consisting of the sets U C X such
that UNY isopenin Y and, forany A € ANU, the set A\ U C w X w is finite.

We claim that the space X has properties (1) —(4). The definition of the topology of X implies that
X is separable, Hausdorff and locally countable, which implies that X has countable pseudocharacter.
Moreover, X is first-countable at all points except for co. At the point co the space X is Fréchet—
Urysohn (because its open subspace Y is Fréchet— Urysohn at o).
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The maximality of the maximal almost disjoint family .4 guarantees that each neighborhood
U CY C X of oo has an infinite intersection with some set A € A, which implies that A € U and
hence U ¢ Y. This means that X is not regular (at co).

In the Wallman extension W (X) of the space X consider the subspace Z = X U W, ,A =
Y UW,.A. We claim that the space Z is Hausdorff and totally countably compact. To prove that Z
is Hausdorff, take two distinct ultrafilters a,b € Z. If the ultrafilters a, b are principal, then since
X is Hausdorff, they have disjoint neighborhoods in W (X') and hence in Z. Now assume that one
of the ultrafilters a or b is principal and the other is not. We lose no generality assuming that a is
principal and b is not. If a # oo, then we can use the regularity of the space X at a and prove
that a and b have disjoint neighborhoods in W (X) D Z. So, assume that a = co. It follows from
be Z=XUW,A that the ultrafilter b contains some countable set { A, } e C A. Consider the set

v=_J ({An}UAn\ U{k}xw>

new k<n

and observe that V' has finite intersection with every set {k} X w, which implies that Y \ V is a
neighborhood of co. Then (Y \ V) and (V') are disjoint open neighborhoods of a = oo and b in
W(X).

Finally, assume that both ultrafilters a, b are not principal. Since a,b € W, A are distinct, there
are disjoint countable sets {A;, }new, {Bnltnew C A such that {A,},cw € a and {B,}nen € 0.
Observe that the sets

V=] ({An}uAn\ UBk) and W= ({Bn}UBn\ UAk)

new k<n new k<n

are disjoint and open in X. Then (V') and (W) are disjoint open neighborhoods of the ultrafilters
a,b in W (X), respectively.

To see that Z is totally countably compact, take any infinite set I C Z. We should find an infinite
set J C I with compact closure J in Z. We lose no generality assume that I is countable and
oo & I.If J = I NW,A is infinite, then .J is compact by the w-boundedness of WA (see [2]). If
INW,A is finite, then INZ\ W, A=1NY =IN(w X w) is infinite. If for some n € w the set
Jn =IN({n} x w) is infinite, then .J,, = J,, U {co} is compact by the definition of the topology of
the space Y. If for every n € w the set I N ({n} x w) is finite, then I N (w X w) € F and by the
maximality of the family A, for some set A € A the intersection J = A N [ is infinite, and then
J = JU{A} is compact.

A topological space X is called locally countably compact if for each x € X there exists an open
neighborhood U of x such that U is countably compact.

Theorem 2. A first-countable topological space X can be embedded as an open subspace into
a Hausdorff countably compact topological space Y if and only if X is locally countably compact.

Proof. Assume that a first-countable topological space X is an open subspace of a countably
compact topological space Y and X is not locally countably compact. Then there exists € X such
that, for each open neighborhood U of x, the closure of U in X is not countably compact. Fix any
countable base {U, }ncw. at the point = such that U,, C U,,, whenever n > m. Then there exists
a family {A,}necw of closed discrete subsets of X such that A, C U, for each n € w. Since Y
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is countably compact for each n € w, the set A, has an accumulation point 3, € Y. Since A, is
closed in X, y, € Y\ X, n € w. Using one more time countably compactness of Y we can find an
accumulation point z of the set {y, }ne,. Since X is openin Y, z € Y \ X. It is easy to see that
z € U, for all n € w which contradicts the Hausdorffness of Y.

Let X be a locally countably compact topological space. Put Y = X U {oco} where oo ¢ X. Let
7 be the topology on Y which satisfies the following conditions:

X is an open subspace of Y;

if oo € U € 7, then X \ U is closed and countably compact.

It is easy to check that the space Y is Hausdorff and countably compact.

The following example shows that Theorem 2 does not hold for topological spaces of character w; .

Example2. By [0,w;] we denote the ordinal w; + 1 endowed with the order topology. By X
we denote the subspace {w;} U {a € wy | « is isolated in [0,w;]} of [0,w;]. Obviously, X is not
locally countably compact (at the point wy) and the character of X is equal w;. Nevertheless, X can
be embedded as an open subspace into a Hausdorff countably compact space Y. Let Y be the set
w1 + 1 endowed with the topology 7 which satisfies the following conditions:

X isopenin Y;

if @ € U € 7, then there exists an ordinal 5 < « such that {v | f <~y <a} CU.

Observe that Y\ {w;} is homeomorphic to w; endowed with the order topology. At this point it is
easy to see that Y is countably compact.

A topological space X is called weakly oo-regular if for any infinite closed subset /' C X and
point x € X \ F' there exist disjoint open sets V, U C X such that x € V and U N F is infinite.

Proposition 1. Each subspace X of a Hausdorff countably compact space Y is weakly oo-
regular.

Proof. Given an infinite closed subset ' C X and a point € X \ F, consider the closure F
of Fin Y and observe that z ¢ F. By the countable compactness of Y, the infinite set F' has an
accumulation point y € F. Since Y is Hausdorf¥, there are two disjoint open sets V, U C Y such that
x €V and y € U. Since y is an accumulation point of the set F, the intersection F' N U is infinite.
Then VN X and U N X are two disjoint open sets in X suchthat x e VN X and FNU N X is
infinite, witnessing that the space X is weakly oco-regular.

A subset D of a topological space X is called:

strictly discrete if each point = € D has a neighborhood O, C X such that the family (O,).ep
is disjoint in the sense that O, N O, = @ for any distinct points x,y € D;

strongly discrete if each point = € D has a neighborhood O, C X such that the family (O, ),ep
is disjoint and locally finite in X.

It is clear that for every subset D C X we have the implications
strongly discrete = strictly discrete = discrete.

Theorem 3. Let X be a subspace of a countably compact Hausdorff space Y. Then each infinite
subset I C X contains an infinite subset D C I which is strictly discrete in X.
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Proof. By the countable compactness of Y, the set I has an accumulation point y € Y. Choose
any point 29 € I \ {y} and using the Hausdorffness of Y, find a disjoint open neighborhoods V}
and Uy of the points z¢ and y, respectively. Choose any point y; € Uy NI \ {y} and using the
Hausdorffness of Y choose open disjoint neighborhoods Vi C Uy and U; C Uy of the points x;
and y, respectively. Proceeding by induction, we can construct a sequence (,)ne, of points of X
and sequences (V,)new and (Up)new of open sets in Y such that for every n € N the following
conditions are satisfied:

1) z, €V, CU,_1;

(2) ye U, CUp-1;

3 V,nU, =2.

The inductive conditions imply that the sets V,,, n € w, are pairwise disjoint, witnessing that the set
D ={zp}new C I is strictly discrete in X.

Theorem 4. Let X be a Lindelof subspace of a countably compact Hausdorff space Y. Then
each infinite closed discrete subset I C X contains an infinite subset D C I which is strongly
discrete in X.

Proof. By the countable compactness of Y, the set I has an accumulation point y € Y. Since
I is closed and discrete in X, the point y does not belong to the space X. Since Y is Hausdorff,
for every x € X, there are disjoint open sets V., W, C Y such that x € V, and y € W,. Since the
space X is Lindelof, the open cover {V,,: © € X} has a countable subcover {V,, }ne.. For every
n € w, consider the open neighborhood W,, = ;.<,, Wa, of y.

Choose any point yg € I\{y} and using the Hausdorffness of Y, find disjoint open neighborhoods
Vo and Uy C Wy of the points yo and y, respectively. Choose any point y; € Uy N Wi NI\ {y} and
using the Hausdorffness of Y choose open disjoint neighborhoods Vi C Uy and U; C Uy N W7 of
the points y; and y, respectively. Proceeding by induction, we can construct a sequence (Y, )ne,, Of
points of X and sequences (V},)ne, and (Up,)new of open sets in Y such that for every n € N the
following conditions are satisfied:

) y, €V, CUp—1 NWhy;

2) yeU, CU,—1 NWy;

3 V,nU, =2.

The inductive conditions imply that the family (V},),e,, are pairwise disjoint, witnessing that the set
D = {yn}new C I is strictly discrete in X. To show that D is strongly discrete, it remains to show
that the family (V},)ne. is locally finite in X. Given any point z € X, find n € w such that z € V,,
and observe that for every ¢ > n we have V; NV, Cc W;nV, CcW,NV, =.

A topological space X is called w-regular if it is F-regular for the family F of countable closed
discrete subsets in X.

Proposition 2. Each countable closed discrete subset D of a (Lindeldf) (-regular T1-space X
is strictly discrete (and strongly discrete) in X.

Proof. The space X is Hausdorff, being a c-regular T} -space. If the subset D C X is finite, then
D is strongly discrete, because X is Hausdorff. So, assume that D is infinite and hence D = {2z, }new
for some pairwise distinct points z,. By the co-regularity there are two disjoint open sets Vo, Wy C X
such that zp € Vp and {z, }n>1 C Wp.
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Proceeding by induction, we can construct sequences of open sets (V},)new and (W, )pew in X
such that for every n € w the following conditions are satisfied:

zn € Vi, C Wiy

{Zk‘}k:>n C W, CWiyoi;

VoW, =o.

These conditions imply that the family (V},)ne, is disjoint, witnessing that the set D is strictly
discrete in X.

Now assume that the space X is Lindeldf and V' = (J, .,
point x € X \ V has a neighborhood O, C X whose closure O, does not intersect the closed
discrete subset D of X. Since X is Lindelof, there exists a countable set {x, }new € X \ V such
that X = V U, c,, Oz, For every n € w, consider the open neighborhood Uy, := Vi, \ U<, Oy,
of z, and observe that the family (U, ), is disjoint and locally finite in X, witnessing that the set

V... By the d&-regularity of X, each

D is strongly discrete in X.

The following proposition shows that the property described in Theorem 3 holds for w-regular
spaces.

Proposition 3. Every infinite subset I of an &-regular Ti-space X contains an infinite subset
D C I, which is strictly discrete in X.

Proof. 1f I has an accumulation point in X, then a strictly discrete infinite subset can be
constructed repeating the argument of the proof of Theorem 3. So, we assume that I has no
accumulation point in X and hence [ is closed and discrete in X. Replacing I by a countable
infinite subset of /, we can assume that [ is countable. By Proposition 2, the set [ is strictly discrete
in X.

A topological space X is called superconnected [3] if for any nonempty open sets Uy, ..., U,
the intersection Uy N --- N U, is not empty. It is clear that a superconnected space containing more
than one point is not regular. An example of a superconnected second-countable Hausdorff space can
be found in [3].

Proposition 4. Any first-countable superconnected Hausdorff space X with |X| > 1 contains
an infinite set I C X such that each infinite subset D C I is not strictly discrete in X.

Proof. For every point € X fix a countable neighborhood base {Uy ,,}new at = such that
Uz nt1 C Uy for every n € w.

Choose any two distinct points g, 1 € X and for every n > 2 choose a point z,, € (., Uy
We claim that the set [ = {x, }ne. is infinite. In the opposite case, we use the Hausdorffness and
find a neighborhood V' of xy such that V NI = {xz0}. Find m € w such that Ugym C V and
w9 & Uy, .m. Observe that

Tm € IﬂUxO,m mle,m =4,

which is a desired contradiction showing that the set I is infinite.

Next, we show that any infinite subset D C I is not strictly discrete in X. To derive a contradic-
tion, assume that D is strictly discrete. Then each point x € D has a neighborhood O, C X
such that the family (O,),ep is disjoint. Choose any point z; € D and find m € w such that
Uzy,m C Og,. Replacing m by a larger number, we can assume that m > k and x,, € D. Since
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Ty € Uzk’m C ark, the intersection O,,, N O, is not empty, which contradicts the choice of the
neighborhoods O,, = € D.

Next, we establish one property of subspaces of functionally Hausdorff countably compact spaces.
We recall that a topological space X is functionally Hausdorff if for any distinct points z,y € X
there exists a continuous function f: X — [0, 1] such that f(xz) = 0 and f(x) = 1.

A subset U of a topological space X is called functionally open it U = f~(V) for some
continuous function f: X — R and some open set V C R.

A subset K of a topological space X is called functionally compact if each open cover of K by
functionally open subsets of X has a finite subcover.

Proposition 5. [If X is a subspace of a functionally Hausdorff countably compact space Y, then
no infinite closed discrete subspace D C X is contained in a functionally compact subset of X.

Proof. To derive a contradiction, assume that D is contained in a functionally compact subset
K of X. By the countable compactness of Y, the set D has an accumulation point y € Y. Since
D is closed and discrete in X, the point y does not belong to X and hence y ¢ K. Since Y is
functionally Hausdorff, for every = € K there exists a continuous function f,:Y — [0,1] such

1
that f,(x) = 0 and f,(y) = 1. By the functional compactness of K, the cover { fr 1<[0, 2)):
1
T € K} contains a finite subcover {fl,l([O, 2>>: T € E} where F is a finite subset of K.

1
Then D C K C f1<[0,2>) for the continuous function f = max,cp f,: Y — [0,1], and

1
f! <<2, 1]) is a neighborhood of ¥, which is disjoint with the set D. But this is not possible as y

is an accumulation point of D.

Finally, we construct an example of a regular separable first-countable scattered space that embeds
into a Hausdorff countably compact space but does not embed into Urysohn countably compact spaces.

Example3. There exists a topological space X such that:

(1) X is regular, separable, and first-countable;

(2) X cannot be embedded as an open subspace into a Hausdorff countably compact space;

(3) X cannot be embedded into a Urysohn countably compact space;

(4) X can be embedded into a Hausdorftf totally countably compact space.

Proof. In the construction of the space X we shall use almost disjoint dominating subsets of
w®. Let us recall [5] that a subset D C w® is called dominating if for any x € w* there exists y € D
such that z <* y, which means that z(n) < y(n) for all but finitely many numbers n € w. By ? we
denote the smallest cardinality of a dominating subset D C w®. It is clear that w; <0 <.

We say that a family of functions D C w® is almost disjoint if for any distinct x,y € D
the intersection z N y is finite. Here we identify a function x € w® with its graph {(n,z(n)):
n € w} and hence identify the set of functions w® with a subset of the family [w x w]* of all infinite
subsets of w X w.

Claim 1. There exists an almost disjoint dominating subset D C w* of cardinality |D| = 0.

Proof. By the definition of 9, there exists a dominating family {4 }aco C w®. It is well-known
that [w]“ contains an almost disjoint family {A,}qe. of cardinality continuum. For every o < 0
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choose a strictly increasing function y, : w — A, such that z, < y,. Then the set D = {yq }aco 18
dominating and almost disjoint.

By Claim 1, there exists an almost disjoint dominating subset D C w* C [w x w]|*. For every
n € w, consider the set A\,, = {n} x w and observe that the family L = {\, },¢,, is disjoint and the
family D U L C [w x w]* is almost disjoint.

Consider the space Y = (D U L) U (w X w) endowed with the topology consisting of the sets
U C Y such that, for every y € (DU L)NU, the set y \ U C w x w is finite. Observe that all points
from w x w are isolated in Y. Using the almost disjointness of the family D U L, it can be shown
that the space Y is regular, separable, locally countable, scattered and locally compact.

Choose any point co ¢ w x Y and consider the space Z = {00} U (w X Y') endowed with the
topology consisting of the sets W C Z such that

for every n € w the set {y € Y: (n,y) € W} is openin Y
and

if co € W, then there exists n € w such that | J,,~,{m} xY C W.
It is easy to see Z = {00} U (w x Y) is first-countable, separable, scattered and regular.

Let ~ be the smallest equivalence relation on Z such that

(2n,A) ~ (2n+ 1, ) and (2n+1,d) ~ (2n+ 2,d)

foranyn € w, A€ Land d € D.

Let X be the quotient space Z/.. of Z by the equivalence relation ~ . It is easy to see that
the equivalence relation ~ has at most two-element equivalence classes and the quotient map ¢ :
Z — X is closed and hence perfect. Applying [6, Theorem 3.7.20], we conclude that the space X
is regular. It is easy to see that X is separable, scattered and first-countable. Observe that X is not
locally countably compact at the point co. Hence Theorem 2 implies that X cannot be embedded
as an open subspace into a Hausdorft countably compact space. It remains to show that X has the
properties (3), (4) of Example 3. This is proved in the following two claims.

Claim?2. The space X does not admit an embedding into a Urysohn countably compact space.

Proof. To derive a contradiction, assume that X = ¢(Z) is a subspace of a Urysohn countably
compact space C. By the countable compactness of C, the set ¢({0} x L) C X C C has an
accumulation point ¢y € C. The point ¢ is distinct from g(c0), as g(oco) is not an accumulation
point of the set ¢({0} x L) in X. Let [ € w be the largest number such that ¢y is an accumulation
point of the set ¢({/} x L) in C.

Let us show that the number [ is well-defined. Indeed, by the Hausdorffness of the space C, there
exists a neighborhood W C C' of q(oo) such that ¢y ¢ W. By the definition of the topology of the
space Z, there exists m € w such that s, {k} X Y C ¢~ (W). Then ¢ is not an accumulation
point of the set J,~,, ¢({k} x L) and hence the number [ is well-defined and I < m.

The definition of the equivalence relation ~ implies that the number [ is odd. By the countable
compactness of C, the infinite set g({{ + 1} x L) has an accumulation point ¢; € C. The maximality
of [ ensures that ¢ # ¢g. Since C is Urysohn, the points cg, ¢; have open neighborhoods Uy, Uy C C
with disjoint closures in C.

For every i € {0, 1}, consider the set J; = {n cw:q(l+i,\y) € Ui}, which is infinite, because
¢; is an accumulation point of the set q({l +i} x L) = {q(I+1,\,) : n € w}. For every n € J;, the
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open set ¢~ (U;) C Z contains the pair (I + 4, \,). By the definition of the topology at (I + i, \,),
the set ({I +i} x A\y) \ ¢ 2 (U;) C {l +i} x {n} x w is finite and hence is contained in the set
{l+i} x {n} x [0, fi(n)] for some number f;(n) € w. Using the dominating property of the family
D, choose a function f € D such that f(n) > f;(n) for any i € {0,1} and n € J;. It follows that,
for every i € {1,2}, the set {{ + i} x f C {l 4+ i} X (w X w) has infinite intersections with the
preimage ¢~ (U;) and hence {(I+1i, f)} € ¢~ 1(U;) € ¢ 1(U;). Taking into account that the number
[ is odd, we conclude that

Q(l’f):(J(l+1’f) Eﬁomﬁlzg,

which is a desired contradiction completing the proof of the claim.

Claim3. The space X admits an embedding into a Hausdorff totally countably compact space.

Proof. Using the Kuratowski—Zorn lemma, enlarge the almost disjoint family DUL to a maximal
almost disjoint family M C [w x w]“. Consider the space Yy; = M U (w X w) endowed with the
topology consisting of the sets U C Y3, such that for every y € M NU the set y \ U C w X w
is finite. It follows that Yj; is a regular locally compact first-countable space, containing Y as
an open dense subspace. The maximality of M implies that each sequence in w X w contains a
subsequence that converges to some point of the space Y;,. This property implies that the subspace
Y := (W,M) U (w x w) of the Wallman extension W (Y}) is totally countably compact. Repeating
the argument from Example 1, one can show that the space Y is Hausdorff.

Let Z = {00} U(wxY) where 0o ¢ wx Y. The space Z is endowed with the topology consisting
of the sets W C Z such that

for every n € w the set {y € Y : (n,y) € W} is open in Y
and

if 0o € W, then there exists n € w such that |J, -, {m} x Y C W.
Taking into account that the space Y is Hausdorff and totally countably compact, we can prove that
so is the the space Z.

Let ~ be the smallest equivalence relation on Z such that

2n,A) ~(@2n+1,0) and  (2n+1,d) ~ (2n+2,d)

forany n € w, A € W,L and d € W, D.

Let X be the quotient space Z /~ of Z by the equivalence relation ~ . It is easy to see that the
space X is Hausdorff, totally countably compact and contains the space X as a dense subspace.

However, we do not know the answer on the following intriguing problem (from Lviv Scottish
Book [4]).

Problem 2. Is it true that each (scattered, functionally Hausdorff) regular topological space
can be embedded into a Hausdorff countably compact topological space?
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