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ПРО УЗАГАЛЬНЕНI ПОХIДНI, ЩО ВКЛЮЧАЮТЬ ПЕРШI IДЕАЛИ
З IНВОЛЮЦIЄЮ

We study the structure of the quotient A/P , where A is any ring with involution \ast and P is a prime ideal of A. With
an aim to construct a ring with involution of this kind, we study the behavior of generalized derivations satisfying the
algebraic identities involving prime ideals. As a consequence, currently existing results in this field are enhanced.

Основна мета статтi — вивчити структуру фактор-кiльця A/P , де A — будь-яке кiльце з iнволюцiєю \ast , а P —
простий iдеал A. Для побудови кiльця з iнволюцiєю такого типу дослiджено поведiнку узагальнених похiдних,
що задовольняють алгебраїчнi тотожностi з простими iдеалами. Як наслiдок, поточнi результати дослiджень у цiй
областi були покращенi.

Introduction. Throughout this paper, A will represent an associative ring with center Z(A). The
symbol (x\circ y) [x, y], where x, y \in A, stands for the (anti)commutator (xy+yx) xy - yx, respectively.
An ideal P is said to be a prime ideal of A if P \not = A and, for every x, y \in A, whenever xAy \subseteq P

implies x \in P or y \in P and A is a prime ring if (0) is a prime ideal. An additive map \lambda :
A \rightarrow A is called a derivation of A if \lambda (xy) = \lambda (x)y + x\lambda (y) holds for every x, y \in A. A
generalized derivation of A is an additive map \psi : A \rightarrow A associated with a derivation \lambda if
\psi (xy) = \psi (x)y + x\lambda (y) holds for every x, y \in A. An involution is an additive mapping x \mapsto \rightarrow x\ast 

that satisfies (xy)\ast = y\ast x\ast and (x\ast )\ast = x. A ring equipped with an involution is known as ring with
involution or \ast -ring. If x\ast = x, an element x in a ring with involution \ast is Hermitian, and skew-
Hermitian if x\ast =  - x. H(A) and S(A) will represent the sets of all Hermitian and skew-Hermitian
elements of A, respectively.

Over the last two decades, many scholars have investigated the commutativity of prime and
semiprime rings admitting appropriately restricted additive mappings acting on suitable subsets of
the rings. In addition, a number of the obtained findings are superior than those that were established
just for the effect of the considered mapping on the entire ring. In addition, several findings on
commutativity in prime and (semi)prime rings admitting restricted additive mappings, generalized
derivations, and (skew) derivations, as well as automorphisms acting on suitable subsets of the rings,
have been recently published in the field (see [1, 2, 4 – 12]).

In this paper, we will perform an unique research that extends and generalises current results from
the scientific literature. We shall examine differential identities in a prime ideal of an arbitrary ring
with involution \ast using generalized derivation, without supposing the ring’s primeness.
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1. Preliminary.
Definition 1.1. We call the involution is of the D-second kind if S(A) \cap Z(A) \not \subseteq D for some

D \subset A, otherwise it is said to be of the D-first kind. In particular, if D = \{ 0\} , the involution is said
to be of the second kind if S(A) \cap Z(A) \not = \{ 0\} , otherwise it is said to be of the first kind.

S. Khan et al. [5] are the first to use the above condition. Now, we will give some examples.
Example 1.1. Note that every the second kind is the \{ 0\} -second kind, but converse is not true

in general, let A be any ring with involution \ast is of the first kind, a set D \subseteq A\setminus \{ 0\} . Then
S(A) \cap Z(A) = \{ 0\} , therefore S(A) \cap Z(A) \not \subseteq D, that is, the involution is of the D-second kind
but it is not the second kind.

Now we will look at some examples of involutions of the P -second (P -first) kind, where P is a
nonzero ideal of A.

Example 1.2. (1) Let A = \BbbC [x] be a polynomial ring over the complex number \BbbC and P = \langle x\rangle 
a nonzero ideal of A is generated by x. Define \ast : A \rightarrow A such that f(x)\ast =

\sum n

k=0
akx

k \in A,

where ak is a conjugate of ak in \BbbC . Then S(A) = i\BbbR [x] and so \ast is an involution of the P -second
kind.

(2) Let A = M2(\BbbZ ) be a ring and P = 2A a nonzero ideal of A. Define \ast : A \rightarrow A such that\biggl( 
a b

c d

\biggr) \ast 
=

\biggl( 
d  - b
 - c a

\biggr) 
. Then S(A) \cap Z(A) = \{ 0\} and so \ast is an involution of the P -first kind

and so it is not of the P -second kind.
Here, we will start with some auxiliary lemmas.
Lemma 1.1 [3, Lemma 2.1]. Let A be a ring with P a prime ideal of A. If A admits a derivation

\lambda such that [x, \lambda (x)] \in P for every x \in A, then \lambda (A) \subseteq P or A/P is commutative.
Lemma 1.2. Let A be a ring and P a prime ideal. If [x, y] \in P for every x, y \in A or x\circ y \in P

for every x, y \in A, then A/P is commutative.
Proof. Suppose that [x, y] \in P and A = A/P and [x, y] = 0 and hence [x, y] = 0. Thus, A is

commutative.
Now, suppose that x \circ y \in P. Taking y by ys in the previous relation and using it, where s \in A,

we get y[x, s] \in P, and since P \not = A, we obtain [x, s] \in P, the same as in the above, we find that
A/P is commutative.

Lemma 1.3. Let A be a ring and P be a prime ideal with P -second involution \ast . If [x, x\ast ] \in P

or x \circ x\ast \in P for every x \in A, then one of the following holds:
(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

[x, x\ast ] \in P for every x \in A. (1.1)

By linearizing (1.1) and used it, we find that

[x, y\ast ] + [y, x\ast ] \in P for every x, y \in A. (1.2)

Replacing x by xk in (1.2), for every k \in S(A)\cap Z(A)\setminus P, we get that k
\bigl( 
[x, y\ast ] - [y, x\ast ]

\bigr) 
\in P and

so kA
\bigl( 
[x, y\ast ] - [y, x\ast ]

\bigr) 
\subseteq P but k \not \in P. Thus,

[x, y\ast ] - [y, x\ast ] \in P. (1.3)
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Comparing (1.2) and (1.3), we obtain that 2[x, y\ast ] \in P and so k[x, y\ast ] \in P . Putting y by y\ast in
the last relation, we see that [x, y] \in P and, by Lemma 1.2, A/P is commutative. Similarly in case
x \circ x\ast \in P.

2. The main results.
Theorem 2.1. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda ) is

a generalized derivation of A satisfies
\bigl[ 
\psi (x), x\ast 

\bigr] 
\in P for every x \in A, then one of the following

holds:
(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P,

(iii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and\bigl[ 

\psi (x), x\ast 
\bigr] 
\in P for every x \in A. (2.1)

By linearizing (2.1), we have\bigl[ 
\psi (x), y\ast 

\bigr] 
+
\bigl[ 
\psi (y), x\ast 

\bigr] 
\in P for every x, y \in A. (2.2)

In (2.2), replace x with xh and use it, where 0 \not = h \in H(A)\cap Z(A), we get [x, y\ast ]\lambda (h) \in P. When
we use y\ast instead of y in the previous relation, we have [x, y]\lambda (h) \in P, and since \lambda (h) \in Z(A), we
find that [x, y]A\lambda (h) \subseteq P but P is a prime ideal. Thus, [x, y] \in P or \lambda (h) \in P. In case [x, y] \in P

and by Lemma 1.2, we see that A/P is commutative. Now, suppose that \lambda (h) \in P. Substituting k2

for h in the last relation, for every k \in S(A) \cap Z(A)\setminus P (note that S(A) \cap Z(A)\setminus P \not = \varnothing because
S(A) \cap Z(A) \not \subseteq P ), we conclude that 2k\lambda (k) \in P, and since \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2, we get k\lambda (k) \in P,

and since k \in Z(A), we obtain kA\lambda (k) \subseteq P, but k \not \in P and, hence,

\lambda (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.3)

Replacing x by xk in (2.2) and using (2.3), we have k
\bigl( \bigl[ 
\psi (x), y\ast 

\bigr] 
 - 

\bigl[ 
\psi (y), x\ast 

\bigr] \bigr) 
\in P and, hence,

kA
\bigl( \bigl[ 
\psi (x), y\ast 

\bigr] 
 - 
\bigl[ 
\psi (y), x\ast 

\bigr] \bigr) 
\subseteq P and\bigl[ 

\psi (x), y\ast 
\bigr] 
 - 
\bigl[ 
\psi (y), x\ast 

\bigr] 
\in P. (2.4)

Comparing (2.2) and (2.4), we get 2
\bigl[ 
\psi (x), y\ast 

\bigr] 
\in P, that is,

\bigl[ 
\psi (x), y\ast 

\bigr] 
\in P. Thus, [\psi (x), y] \in P.

Writing xy instead of x in the last relation and using it, we obtain [x\lambda (y), y] \in P. We can replace x
by k \in S(A)\cap Z(A)\setminus P to have [\lambda (y), y] \in P for every y \in A. Therefore, the desired result follows
from Lemma 1.1.

Corollary 2.1. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind.
If (\psi , \lambda ) is a generalized derivation of A satisfies

\bigl[ 
\psi (x), x\ast 

\bigr] 
= 0 for every x \in A, then A is

commutative.
Theorem 2.2. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )

and (\phi , \mu ) are generalized derivations of A satisfy
\bigl[ 
\psi (x), \phi (x\ast )

\bigr] 
\pm [x, x\ast ] \in P for every x \in A,

then one of the following holds:
(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P and \mu (A) \subseteq P,

(iii) A/P is commutative.
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Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and\bigl[ 
\psi (x), \phi (x\ast )

\bigr] 
\pm [x, x\ast ] \in P for every x \in A. (2.5)

By linearizing (2.5), we have\bigl[ 
\psi (x), \phi (y\ast )

\bigr] 
+
\bigl[ 
\psi (y), \phi (x\ast )

\bigr] 
\pm [x, y\ast ]\pm [y, x\ast ] \in P for every x, y \in A. (2.6)

Replacing x by xh in (2.6) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)[x, \phi (y\ast )] + \mu (h)
\bigl[ 
\psi (y), x\ast 

\bigr] 
\in P. (2.7)

Substituting xk for x in (2.7), for every k \in S(A) \cap Z(A)\setminus P, we obtain

\lambda (h)[x, \phi (y\ast )] - \mu (h)
\bigl[ 
\psi (y), x\ast 

\bigr] 
\in P. (2.8)

From (2.7) and (2.8), we have \lambda (h)[x, \phi (y)] \in P and \mu (h)
\bigl[ 
\psi (y), x\ast 

\bigr] 
\in P. Thus, A/P is commutati-

ve, or \lambda (A) \subseteq P and \mu (A) \subseteq P, or \lambda (h) and \mu (h) \in P. In the latter case, we get

\lambda (k) and \mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.9)

Writing xk instead of x in (2.6) and using (2.9), for every k \in S(A) \cap Z(A)\setminus P, we see that\bigl[ 
\psi (x), \phi (y\ast )

\bigr] 
 - 
\bigl[ 
\psi (y), \phi (x\ast )

\bigr] 
\pm [x, y\ast ]\mp [y, x\ast ] \in P. (2.10)

Comparing (2.6) and (2.10), we find that\bigl[ 
\psi (x), \phi (y\ast )

\bigr] 
\pm [x, y\ast ] \in P.

Hence,
\bigl[ 
\psi (x), \phi (y)

\bigr] 
\pm [x, y] \in P. Therefore, the result follows by [6, Theorem 1.4].

Corollary 2.2. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy

\bigl[ 
\psi (x), \phi (x\ast )

\bigr] 
= \pm [x, x\ast ] for every x \in A,

then A is commutative.
Theorem 2.3. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )

and (\phi , \mu ) are generalized derivations of A satisfy one of the following holds:
(1) \psi (x) \circ \phi (x\ast )\pm (x \circ x\ast ) \in P,

(2)
\bigl[ 
\psi (x), \phi (x\ast )

\bigr] 
\pm (x \circ x\ast ) \in P,

(3) \psi (x) \circ \phi (x\ast )\pm [x, x\ast ] \in P

for every x \in A, then one of the following holds:
(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P and \mu (A) \subseteq P,

(iii) A/P is commutative.
Proof. The same arguments as used in the proof of Theorem 2.2 and then using [6, Theorems 1.6, 1.8,

and 1.10] for (1), (2) and (3), respectively.
Corollary 2.3. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If

(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy one of the following holds:
(1) \psi (x) \circ \phi (x\ast ) = \pm (x \circ x\ast ),
(2)

\bigl[ 
\psi (x), \phi (x\ast )

\bigr] 
= \pm (x \circ x\ast ),

(3) \psi (x) \circ \phi (x\ast ) = \pm [x, x\ast ]
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for every x \in A, then A is commutative.
Theorem 2.4. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )

and (\phi , \mu ) are generalized derivations of A satisfy
\bigl[ 
\psi (x), x\ast 

\bigr] 
\pm 

\bigl[ 
x, \phi (x\ast )

\bigr] 
\in P for every x \in A,

then one of the following holds:
(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P and \mu (A) \subseteq P,

(iii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and\bigl[ 

\psi (x), x\ast 
\bigr] 
\pm 
\bigl[ 
x, \phi (x\ast )

\bigr] 
\in P for every x \in A. (2.11)

By linearizing (2.11) and using it, we have\bigl[ 
\psi (x), y\ast 

\bigr] 
+
\bigl[ 
\psi (y), x\ast 

\bigr] 
\pm [x, \phi (y\ast )]\pm [y, \phi (x\ast )] \in P for every x, y \in A. (2.12)

Replacing x by xh in (2.12) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)[x, y\ast ]\pm \mu (h)[y, x\ast ] \in P. (2.13)

Writing xk instead of x in (2.13), for every k \in S(A) \cap Z(A)\setminus P, we obtain

\lambda (h)[x, y\ast ]\mp \mu (h)[y, x\ast ] \in P. (2.14)

From (2.13) and (2.14), we see that \lambda (h)[x, y] \in P and \mu (h)[y, x] \in P. Thus, A/P is commutative
or \lambda (h) \in P and \mu (h) \in P. In the latter case, we have

\lambda (k) \in P and \mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.15)

Substituting xk for x in (2.12) and using (2.15), for every k \in S(A) \cap Z(A)\setminus P, we obtain\bigl[ 
\psi (x), y\ast 

\bigr] 
 - 
\bigl[ 
\psi (y), x\ast 

\bigr] 
\pm [x, \phi (y\ast )]\mp [y, \phi (x\ast )] \in P. (2.16)

Comparing (2.12) and (2.16), we conclude that [\psi (x), y] \pm [x, \phi (y)] \in P and so the result follows
by [6, Theorem 1.12].

Corollary 2.4. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind.
If (\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy

\bigl[ 
\psi (x), x\ast 

\bigr] 
= \pm 

\bigl[ 
x, \phi (x\ast )

\bigr] 
for every

x \in A, then A is commutative.
Theorem 2.5. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )

and (\phi , \mu ) are generalized derivations of A satisfy one of the following holds:
(1)

\bigl[ 
\psi (x), x\ast 

\bigr] 
+
\bigl[ 
x, \phi (x\ast )

\bigr] 
\pm [x, x\ast ] \in P,

(2)
\bigl[ 
\psi (x), x\ast 

\bigr] 
+
\bigl[ 
x, \phi (x\ast )

\bigr] 
\pm (x \circ x\ast ) \in P,

(3) \psi (x) \circ x\ast \pm x \circ \phi (x\ast ) \in P

for every x \in A, then one of the following holds:
(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P and \mu (A) \subseteq P,

(iii) A/P is commutative.
Proof. The same arguments as used in the proof of Theorem 2.4 and then using [6, Theorems 1.14,

1.16, and 1.18] for (1), (2) and (3), respectively.
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Corollary 2.5. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy one of the following holds:

(1)
\bigl[ 
\psi (x), x\ast 

\bigr] 
+
\bigl[ 
x, \phi (x\ast )

\bigr] 
= \pm [x, x\ast ],

(2)
\bigl[ 
\psi (x), x\ast 

\bigr] 
+
\bigl[ 
x, \phi (x\ast )

\bigr] 
= \pm (x \circ x\ast ),

(3) \psi (x) \circ x\ast = \pm x \circ \phi (x\ast )
for every x \in A, then A is commutative.

Theorem 2.6. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
and (\phi , \mu ) are generalized derivations of A satisfy [\psi (x), x\ast ]\pm x \circ \phi (x\ast ) \in P for every x \in A, then
one of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P and \mu (A) \subseteq P,

(iii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

[\psi (x), x\ast ]\pm x \circ \phi (x\ast ) \in P for every x \in A. (2.17)

By linearizing (2.17) and using it, we have\bigl[ 
\psi (x), y\ast 

\bigr] 
+
\bigl[ 
\psi (y), x\ast 

\bigr] 
\pm (x \circ \phi (y\ast ))\pm (y \circ \phi (x\ast )) \in P for every x, y \in A. (2.18)

Replacing x by xh in (2.18) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)[x, y\ast ]\pm \mu (h)(y \circ x\ast ) \in P. (2.19)

Writing xk instead of x in (2.19), for every k \in S(A) \cap Z(A)\setminus P, we obtain

\lambda (h)[x, y\ast ]\mp \mu (h)(y \circ x\ast ) \in P. (2.20)

Now, using the same arguments as used in the proof of Theorem 2.4 in (2.13) and (2.14), we have
that A/P is commutative or

\lambda (k) \in P and\mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.21)

Substituting xk for x in (2.18) and using (2.21), for every k \in S(A) \cap Z(A)\setminus P,\bigl[ 
\psi (x), y\ast 

\bigr] 
 - 
\bigl[ 
\psi (y), x\ast 

\bigr] 
\pm (x \circ \phi (y\ast ))\mp (y \circ \phi (x\ast )) \in P. (2.22)

Comparing (2.18) and (2.22), we conclude that [\psi (x), y]\pm (x \circ \phi (y)) \in P and so the result follows
by [6, Theorem 1.20].

Corollary 2.6. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy [\psi (x), x\ast ] = \pm x \circ \phi (x\ast ) for every x \in A,

then A is commutative.
Theorem 2.7. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )

and (\phi , \mu ) are generalized derivations of A satisfy \psi (x)x\ast \pm x\ast \phi (x) \in P for every x \in A, then one
of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P and \mu (A) \subseteq P,

(iii) A/P is commutative.
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Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (x)x\ast \pm x\ast \phi (x) \in P for every x \in A. (2.23)

By linearizing (2.23) and using it, we have

\psi (x)y\ast + \psi (y)x\ast \pm x\ast \phi (y)\pm y\ast \phi (x) \in P for every x, y \in A. (2.24)

Replacing x by xh in (2.24) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)xy \pm \mu (h)yx \in P. (2.25)

Writing k instead of y in (2.25), for every k \in S(A) \cap Z(A)\setminus P, we obtain (\lambda (h) \pm \mu (h))x \in P,

and since P \not = A, we get \lambda (h)\pm \mu (h) \in P. Right multiplying the last relation by yx, we see that

\lambda (h)yx\pm \mu (h)yx \in P for every x, y \in A. (2.26)

From (2.25) and (2.26), we find that \lambda (h)[x, y] \in P and so \lambda (h) \in P or [x, y] \in P. If [x, y] \in P,

then, by Lemma 1.2, we get that A/P is commutative. If

\lambda (h) \in P for every 0 \not = h \in H(A) \cap Z(A), (2.27)

then

\lambda (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.28)

By using (2.27) in (2.25), we have \mu (h)yx \in P and \mu (h) \in P. Hence,

\mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.29)

Substituting xk for x in (2.24) and using (2.28) and (2.29), we get

\psi (x)y\ast  - \psi (y)x\ast \mp x\ast \phi (y)\pm y\ast \phi (x) \in P. (2.30)

From (2.24) and (2.30), we find that \psi (x)y\pm y\phi (x) \in P. Putting y = k in the last relation, for every
k \in S(A) \cap Z(A)\setminus P, we obtain

\psi (x)\pm \phi (x) \in P. (2.31)

Left multiplying (2.31) by x\ast , we conclude that

x\ast \psi (x)\pm x\ast \phi (x) \in P. (2.32)

Comparing (2.23) and (2.32), we have that
\bigl[ 
\psi (x), x\ast 

\bigr] 
\in P and, by Theorem 2.1, \lambda (A) \subseteq P or A/P

is commutative. Right multiplying (2.31) by x\ast , we see that \psi (x)x\ast \pm \phi (x)x\ast \in P and, from the last
relation and (2.23), we get

\bigl[ 
\phi (x), x\ast 

\bigr] 
\in P and, by Theorem 2.1, \mu (A) \subseteq P or A/P is commutative.

Corollary 2.7. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy \psi (x)x\ast \pm x\ast \phi (x) = 0 for every x \in A,

then A is commutative.
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Theorem 2.8. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
and (\phi , \mu ) are generalized derivations of A satisfy \psi (x)x\pm x\ast \phi (x\ast ) \in P for every x \in A, then one
of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P and \mu (A) \subseteq P,

(iii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (x)x\pm x\ast \phi (x\ast ) \in P for every x \in A. (2.33)

By linearizing (2.33) and using it, we have

\psi (x)y + \psi (y)x\pm x\ast \phi (y\ast )\pm y\ast \phi (x\ast ) \in P for every x, y \in A. (2.34)

Replacing x by xh in (2.34) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)xy \pm \mu (h)y\ast x\ast \in P. (2.35)

Writing k instead of xk in (2.35), for every k \in S(A) \cap Z(A)\setminus P, we get

\lambda (h)xy \mp \mu (h)y\ast x\ast \in P. (2.36)

Now, using the same arguments as used in the proof of Theorem 2.4 in (2.13) and (2.14), we get that
A/P is commutative or

\lambda (k) \in P and \mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.37)

Substituting xk for x in (2.34) and using (2.37), we find that

\psi (x)y + \psi (y)x\mp x\ast \phi (y\ast )\mp y\ast \phi (x\ast ) \in P. (2.38)

Comparing (2.34) and (2.38), we see that

\psi (x)y + \psi (y)x \in P. (2.39)

Replacing x by xt in (2.39), where t \in A, we have

\psi (x)ty + x\lambda (t)y + \psi (y)xt \in P. (2.40)

Writing ty instead of y in (2.39), we get

\psi (x)ty + \psi (t)yx+ t\lambda (y)x \in P. (2.41)

From (2.40) and (2.41), we obtain

x\lambda (t)y + \psi (y)xt - \psi (t)yx - t\lambda (y)x \in P. (2.42)

Substituting xt for x in (2.42), we see that

xt\lambda (t)y + \psi (y)xt2  - \psi (t)yxt - t\lambda (y)xt \in P. (2.43)
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Right multiplying (2.42) by t, we find that

x\lambda (t)yt+ \psi (y)xt2  - \psi (t)yxt - t\lambda (y)xt \in P. (2.44)

Comparing (2.43) and (2.44), we conclude that x(t\lambda (t)y - \lambda (t)yt) \in P . Taking x = y = k in the last
relation, for every k \in S(A) \cap Z(A)\setminus P, we have that [t, \lambda (t)] \in P and, by Lemma 1.1, \lambda (A) \subseteq P

or A/P is commutative. Now, by using (2.39) in (2.38), we get

x\phi (y) + y\phi (x) \in P. (2.45)

Replacing y by ty in (2.45), where t \in A, we obtain

x\phi (t)y + xt\mu (y) + ty\phi (x) \in P. (2.46)

Left multiplying (2.45) by t, we see that

tx\phi (y) + ty\phi (x) \in P. (2.47)

From (2.46) and (2.47), we find that

x\phi (t)y + xt\mu (y) - tx\phi (y) \in P. (2.48)

Writing rx instead of x in (2.48), where r \in A, we get

rx\phi (t)y + rxt\mu (y) - trx\phi (y) \in P. (2.49)

Left multiplying (2.48) by r, we have

rx\phi (t)y + rxt\mu (y) - rtx\phi (y) \in P. (2.50)

Comparing (2.49) and (2.50), we get [t, r]x\phi (y) \in P and so [t, r] \in P or \phi (y) \in P. If [t, r] \in P,

then, by Lemma 1.2, A/P is commutative. In case \phi (y) \in P, by the relation (2.46), we obtain
xt\mu (y) \in P and so \mu (y) \in P. Hence, \mu (A) \subseteq P.

Corollary 2.8. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy \psi (x)x \pm x\ast \phi (x\ast ) = 0 for every x \in A,

then A is commutative.
Theorem 2.9. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )

and (\phi , \mu ) are generalized derivations of A satisfy \psi (x)\phi (x\ast )\pm [x, x\ast ] \in P for every x \in A, then
one of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (x)\phi (x\ast )\pm [x, x\ast ] \in P for every x \in A. (2.51)

By linearizing (2.51) and using it, we have

\psi (x)\phi (y\ast ) + \psi (y)\phi (x\ast )\pm [x, y\ast ]\pm [y, x\ast ] \in P for every x, y \in A. (2.52)
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Replacing x by xh in (2.52) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)x\phi (y\ast ) + \mu (h)\psi (y)x\ast \in P. (2.53)

Substitution xk for k in (2.53), for every k \in S(A) \cap Z(A)\setminus P,

\lambda (h)x\phi (y\ast ) - \mu (h)\psi (y)x\ast \in P. (2.54)

From (2.53) and (2.54), we obtain \lambda (h)x\phi (y) \in P and \mu (h)\psi (y)x \in P. Now, in case \phi (y) \in P or
\psi (y) \in P and, by (2.51), we get that [x, x\ast ] \in P and so A/P is commutative. Now, suppose that
\lambda (h) \in P and \mu (h) \in P and so

\lambda (k) \in P and \mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.55)

Substituting xk for x in (2.52) and using (2.55), we find that

\psi (x)\phi (y\ast ) - \psi (y)\phi (x\ast )\pm [x, y\ast ]\mp [y, x\ast ] \in P. (2.56)

Comparing (2.52) and (2.56), we get

\psi (x)\phi (y)\pm [x, y] \in P. (2.57)

Replacing y by yt in (2.57) and using it, where t \in A, we have

\psi (x)y\mu (t)\pm y[x, t] \in P. (2.58)

Taking t = x in (2.58), we get \psi (x)y\mu (x) \in P and so \psi (x) \in P or \mu (x) \in P. Therefore, we have
A = \{ x \in A | \psi (x) \in P\} \cup \{ x \in A | \mu (x) \in P\} . By Brauer’s trick, we get A = \{ x \in A | \psi (x) \in P\} 
or A = \{ x \in A | \mu (x) \in P\} . In both cases, using any one of them in (2.58), we obtain y[x, t] \in P.

Writing k instead of y in the last relation, for every k \in S(A)\cap Z(A)\setminus P, we see that [x, t] \in P and,
by Lemma 1.2, A/P is commutative.

Corollary 2.9. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy \psi (x)\phi (x\ast ) = \pm [x, x\ast ] for every x \in A,

then A is commutative.
Theorem 2.10. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )

and (\phi , \mu ) are generalized derivations of A satisfy \psi (x)\phi (x\ast )\pm (x \circ x\ast ) \in P for every x \in A, then
one of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) A/P is commutative.
Proof. By using the same arguments as used in the proof of Theorem 2.9, we get that A/P is

commutative or \psi (x)\phi (y)\pm (x \circ y) \in P for every x, y \in A. Replacing y by yt in the last relation
and using it, where t \in A, we find that

\psi (x)y\mu (t)\mp y[x, t] \in P. (2.59)

Now, using the same arguments as used in the proof of Theorem 2.9 in (2.58), we get that A/P is
commutative.

Corollary 2.10. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy \psi (x)\phi (x\ast ) = \pm (x \circ x\ast ) for every x \in A,

then A is commutative.
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Theorem 2.11. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
and (\phi , \mu ) are generalized derivations of A satisfy \psi (xx\ast )\pm \psi (x)\phi (x\ast ) \in P for every x \in A, then
one of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P,

(iii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (xx\ast )\pm \psi (x)\phi (x\ast ) \in P for every x \in A. (2.60)

By linearizing (2.60) and using it, we have

\psi (xy\ast ) + \psi (yx\ast )\pm \psi (x)\phi (y\ast )\pm \psi (y)\phi (x\ast ) \in P for every x, y \in A. (2.61)

Replacing x by xh in (2.61) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)xy\ast + \lambda (h)yx\ast \pm \lambda (h)x\phi (y\ast )\pm \mu (h)\psi (y)x\ast \in P. (2.62)

Writing k instead of xk in (2.62), for every k \in S(A) \cap Z(A)\setminus P, we obtain

\lambda (h)xy\ast  - \lambda (h)yx\ast \pm \lambda (h)x\phi (y\ast )\mp \mu (h)\psi (y)x\ast \in P. (2.63)

From (2.62) and (2.63), we obtain \lambda (h)x(y \pm \phi (y)) \in P and so \lambda (h) \in P or y \pm \phi (y) \in P.

Firstly, in case

y \pm \phi (y) \in P, (2.64)

putting y by yx in (2.64) and using it, we have y\mu (x) \in P and so \mu (x) \in P. Hence,

\mu (A) \subseteq P. (2.65)

By using (2.65) in (2.63), we get

\lambda (h)xy\ast  - \lambda (h)yx\ast \pm \lambda (h)x\phi (y\ast ) \in P. (2.66)

Taking y by yk in (2.66) and using it and (2.65), for every k \in S(A) \cap Z(A)\setminus P, we see that

 - \lambda (h)xy\ast  - \lambda (h)yx\ast \mp \lambda (h)x\phi (y\ast ) \in P. (2.67)

From (2.66) and (2.67), we get \lambda (h)yx \in P and so \lambda (h) \in P.

Secondly, suppose that

\lambda (h) \in P for every 0 \not = h \in H(A) \cap Z(A). (2.68)

Hence,

\lambda (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.69)

By using (2.68) in (2.63), we find that \mu (h)\psi (y)x \in P and so \mu (h)\psi (y) \in P. Hence, \mu (h) \in P or
\psi (y) \in P. If \psi (y) \in P, then \psi (A) \subseteq P. Hence, \psi (xy) \in P and so x\lambda (y) \in P. Thus, \lambda (y) \in P,

that is, \lambda (A) \subseteq P, as desired. Now, if \mu (h) \in P, then
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\mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.70)

Substituting xk for x in (2.61) and using (2.69) and (2.70), we find that

\psi (xy\ast ) - \psi (yx\ast )\pm \psi (x)\phi (y\ast )\mp \psi (y)\phi (x\ast ) \in P. (2.71)

Comparing (2.61) and (2.71), we have that \psi (xy)\pm \psi (x)\phi (y) \in P and, by [8, Theorem 1.9], we get
that \lambda (A) \subseteq P or A/P is commutative.

Corollary 2.11. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind.
If (\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy \psi (xx\ast ) \pm \psi (x)\phi (x\ast ) = 0 for every
x \in A, then A is commutative.

Theorem 2.12. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
and (\phi , \mu ) are generalized derivations of A satisfy \psi (xx\ast )\pm \psi (x\ast )\phi (x) \in P for every x \in A, then
one of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P,

(iii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (xx\ast )\pm \psi (x\ast )\phi (x) \in P for every x \in A. (2.72)

By linearizing (2.72) and using it, we have

\psi (xy\ast ) + \psi (yx\ast )\pm \psi (x\ast )\phi (y)\pm \psi (y\ast )\phi (x) \in P for every x, y \in A. (2.73)

Replacing x by xh in (2.73) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)xy\ast + \lambda (h)yx\ast \pm \lambda (h)x\ast \phi (y)\pm \mu (h)\psi (y\ast )x \in P. (2.74)

Writing k instead of xk in (2.74), for every k \in S(A) \cap Z(A)\setminus P, we have

\lambda (h)xy\ast  - \lambda (h)yx\ast \mp \lambda (h)x\ast \phi (y)\pm \mu (h)\psi (y\ast )x \in P. (2.75)

From (2.74) and (2.75), we obtain \lambda (h)(yx \pm x\phi (y)) \in P. Taking x by k in the last relation, for
every k \in S(A) \cap Z(A)\setminus P, we get \lambda (h)(y \pm \phi (y)) \in P and so \lambda (h) \in P or y \pm \phi (y) \in P.

Firstly, in case

y \pm \phi (y) \in P, (2.76)

putting y by yx in (2.76) and using it, we have y\mu (x) \in P and so \mu (x) \in P. Hence,

\mu (A) \subseteq P. (2.77)

By using (2.77) in (2.75), we get

\lambda (h)xy\ast  - \lambda (h)yx\ast \pm \lambda (h)x\ast \phi (y) \in P. (2.78)

Taking x by xk in (2.78) and using it and (2.77), for every k \in S(A) \cap Z(A)\setminus P, we see that

\lambda (h)xy\ast + \lambda (h)yx\ast \mp \lambda (h)x\ast \phi (y) \in P. (2.79)
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From (2.78) and (2.79), we conclude that \lambda (h)xy \in P and so \lambda (h) \in P.

Secondly, in case

\lambda (h) \in P for every 0 \not = h \in H(A) \cap Z(A), (2.80)

we get

\lambda (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.81)

By using (2.80) in (2.75), we find that \mu (h)\psi (y)x \in P and so \mu (h)\psi (y) \in P. Hence, \mu (h) \in P or
\psi (y) \in P. If \psi (y) \in P, then \psi (xy) \in P and so x\lambda (y) \in P. Hence, \lambda (y) \in P, that is, \lambda (A) \subseteq P .
If \mu (h) \in P, then

\mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.82)

Substituting xk for x in (2.73) and using (2.81) and (2.82), we find that

\psi (xy\ast ) - \psi (yx\ast )\mp \psi (x\ast )\phi (y)\pm \psi (y\ast )\phi (x) \in P. (2.83)

Comparing (2.73) and (2.83), we get \psi (xy) \pm \psi (y)\phi (x) \in P and, by [8, Theorem 1.11], we have
that \lambda (A) \subseteq P or A/P is commutative.

Corollary 2.12. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind.
If (\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy \psi (xx\ast ) \pm \psi (x\ast )\phi (x) = 0 for every
x \in A, then A is commutative.

Theorem 2.13. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
and (\phi , \mu ) are generalized derivations of A satisfy \psi (xx\ast )\pm \phi (x)\phi (x\ast ) \in P for every x \in A, then
one of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \lambda (A) \subseteq P and \mu (A) \subseteq P.

Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (xx\ast )\pm \phi (x)\phi (x\ast ) \in P for every x \in A. (2.84)

By linearizing (2.84) and using it, we have

\psi (xy\ast ) + \psi (yx\ast )\pm \phi (x)\phi (y\ast )\pm \phi (y)\phi (x\ast ) \in P for every x, y \in A. (2.85)

Replacing x by xh in (2.85) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)xy\ast + \lambda (h)yx\ast \pm \mu (h)x\phi (y\ast )\pm \mu (h)\phi (y)x\ast \in P. (2.86)

Writing k instead of xk in (2.86), for every k \in S(A) \cap Z(A)\setminus P, we obtain

\lambda (h)xy\ast  - \lambda (h)yx\ast \pm \mu (h)x\phi (y\ast )\mp \mu (h)\phi (y)x\ast \in P. (2.87)

From (2.86) and (2.87), we have \lambda (h)xy \pm \mu (h)x\phi (y) \in P. Taking x by k in the last relation, for
every k \in S(A) \cap Z(A)\setminus P, we get

\lambda (h)y \pm \mu (h)\phi (y) \in P. (2.88)
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Putting y by yx in (2.88) and using it, we obtain \mu (h)y\mu (x) \in P and so \mu (h) \in P or \mu (x) \in P. In
both cases, we have

\mu (h) \in P. (2.89)

Using (2.89) in (2.88), we see that \lambda (h)y \in P and so \lambda (h) \in P. Thus,

\lambda (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.90)

From (2.89), we find that

\mu (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.91)

Substituting xk for x in (2.85) and using (2.90) and (2.91), we conclude that

\psi (xy\ast ) - \psi (yx\ast )\pm \phi (x)\phi (y\ast )\mp \phi (y)\phi (x\ast ) \in P. (2.92)

Comparing (2.85) and (2.92), we see that \psi (xy)\pm \phi (x)\phi (y) \in P and, by [8, Theorem 1.13], we get
\lambda (A) \subseteq P and \mu (A) \subseteq P

Corollary 2.13. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy \psi (xx\ast )\pm \phi (x)\phi (x\ast ) = 0 for every x \in A,

then \lambda = 0 and \mu = 0.

Theorem 2.14. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
and (\phi , \mu ) are generalized derivations of A satisfy \psi (xx\ast )\pm \phi (x\ast )\phi (x) \in P for every x \in A, then
one of the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) \mu (A) \subseteq P,

(iii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (xx\ast )\pm \phi (x\ast )\phi (x) \in P for every x \in A. (2.93)

By linearizing (2.93) and using it, we have

\psi (xy\ast ) + \psi (yx\ast )\pm \phi (x\ast )\phi (y)\pm \phi (y\ast )\phi (x) \in P for every x, y \in A. (2.94)

Replacing x by xh in (2.94) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)xy\ast + \lambda (h)yx\ast \pm \mu (h)x\ast \phi (y)\pm \mu (h)\phi (y\ast )x \in P. (2.95)

Writing k instead of xk in (2.95), for every k \in S(A) \cap Z(A)\setminus P, we obtain

\lambda (h)xy\ast  - \lambda (h)yx\ast \mp \mu (h)x\ast \phi (y)\pm \mu (h)\phi (y\ast )x \in P. (2.96)

From (2.95) and (2.96), we have \lambda (h)xy \pm \mu (h)\phi (y)x \in P. Taking x by k in the last relation,
for every k \in S(A) \cap Z(A)\setminus P, we get \lambda (h)y \pm \mu (h)\phi (y) \in P. Now, using the same arguments
as used in the proof of Theorem 2.13 in (2.88), we obtain that \psi (xy) \pm \phi (y)\phi (x) \in P and, by
[8, Theorem 1.15], we get that \mu (A) \subseteq P or A/P is commutative.
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Corollary 2.14. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) and (\phi , \mu ) are generalized derivations of A satisfy \psi (xx\ast )\pm \phi (x\ast )\phi (x) = 0 for every x \in A,

then A is commutative.
Theorem 2.15. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )

is a generalized derivation of A satisfies \psi (xx\ast ) \pm [x, x\ast ] \in P for every x \in A, then one of the
following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (xx\ast )\pm [x, x\ast ] \in P for every x \in A. (2.97)

By linearizing (2.97) and using it, we have

\psi (xy\ast ) + \psi (yx\ast )\pm [x, y\ast ]\pm [y, x\ast ] \in P for every x, y \in A. (2.98)

Replacing x by xh in (2.98) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)(xy\ast + yx\ast ) \in P. (2.99)

Writing k instead of xk in (2.99), for every k \in S(A) \cap Z(A)\setminus P, we obtain

\lambda (h)(xy\ast  - yx\ast ) \in P. (2.100)

From (2.99) and (2.100), we have \lambda (h)xy \in P and so \lambda (h) \in P. Thus,

\lambda (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.101)

Substituting xk for x in (2.98) and using (2.101), we conclude that

\psi (xy\ast ) - \psi (yx\ast )\pm [x, y\ast ]\mp [y, x\ast ] \in P. (2.102)

Comparing (2.98) and (2.102), we find that \psi (xy)\pm [x, y] \in P for every x, y \in A. Replacing y by
yr in the last relation and using it, where r \in A, we have

xy\lambda (r)\pm y[x, r] \in P. (2.103)

Putting r = x in (2.103), we get xy\lambda (x) \in P and so \lambda (x) \in P. By using the last relation in (2.103),
we see that y[x, r] \in P. So, we have that [x, r] \in P and, by Lemma 1.2, A/P is commutative.

Corollary 2.15. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind.
If (\psi , \lambda ) is a generalized derivation of A satisfies \psi (xx\ast ) = \pm [x, x\ast ] for every x \in A, then A is
commutative.

Theorem 2.16. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
is a generalized derivation of A satisfies \psi (xx\ast ) \pm (x \circ x\ast ) \in P for every x \in A, then one of the
following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) A/P is commutative.
Proof. By using the same arguments as used in the proof of Theorem 2.15, we get \psi (xy) \pm 

(x \circ y) \in P. Replacing y by yr in the last relation and using it, we have
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xy\lambda (r)\pm y[x, r] \in P for every x, y, r \in A. (2.104)

Now, using the same arguments as used in the proof of Theorem 2.15 in (2.103), we have that A/P
is commutative.

Corollary 2.16. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind.
If (\psi , \lambda ) is a generalized derivation of A satisfies \psi (xx\ast ) = \pm (x \circ x\ast ) for every x \in A, then A is
commutative.

Theorem 2.17. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
is a generalized derivation of A satisfies \psi (x)\psi (x\ast )\pm [x, x\ast ] \in P for every x \in A, then one of the
following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) A/P is commutative.
Proof. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) \not = 2 and

\psi (x)\psi (x\ast )\pm [x, x\ast ] \in P for every x \in A. (2.105)

By linearizing (2.105) and using it, we have

\psi (x)\psi (y\ast ) + \psi (y)\psi (x\ast )\pm [x, y\ast ]\pm [y, x\ast ] \in P for every x, y \in A. (2.106)

Replacing x by xh in (2.106) and using it, where 0 \not = h \in H(A) \cap Z(A), we get

\lambda (h)(x\psi (y\ast ) + \psi (y)x\ast ) \in P. (2.107)

Writing k instead of xk in (2.107), for every k \in S(A) \cap Z(A)\setminus P, we obtain

\lambda (h)(x\psi (y\ast ) - \psi (y)x\ast ) \in P. (2.108)

From (2.107) and (2.108), we have \lambda (h)x\psi (y) \in P and so \lambda (h) \in P or \psi (y) \in P. If \psi (y) \in P,

then \psi (xy) \in P. Thus, x\lambda (y) \in P and hence \lambda (y) \in P, that is, \lambda (h) \in P, 0 \not = h \in H(A) \cap Z(A),
and so

\lambda (k) \in P for every k \in S(A) \cap Z(A)\setminus P. (2.109)

Substituting xk for x in (2.106) and using (2.109), we conclude that

\psi (x)\psi (y\ast ) - \psi (y)\psi (x\ast )\pm [x, y\ast ]\mp [y, x\ast ] \in P. (2.110)

Comparing (2.106) and (2.110), we get \psi (x)\psi (y)\pm [x, y] \in P. Replacing y by yr in the last relation
and using it, where r \in A, we have

\psi (x)y\lambda (r) + y[x, r] \in P. (2.111)

So, we get \psi (x)y\lambda (x) \in P and so \lambda (x) \in P or \psi (x) \in P. The same as in the above, if \psi (x) \in P,

then \lambda (x) \in P. Now, by using the last relation in (2.111), we get that y[x, r] \in P. Thus, we find that
[x, r] \in P and, by Lemma 1.2, A/P is commutative.

Corollary 2.17. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If
(\psi , \lambda ) is a generalized derivation of A satisfies \psi (x)\psi (x\ast ) = \pm [x, x\ast ] for every x \in A, then A is
commutative.
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Theorem 2.18. Let A be a ring and P be a prime ideal with P -second involution \ast . If (\psi , \lambda )
is a generalized derivation of A satisfies \psi (x)\psi (x\ast ) \pm (x \circ x\ast ) \in P for every x \in A, then one of
the following holds:

(i) \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A/P ) = 2,

(ii) A/P is commutative.
Proof. By using the same arguments as used in the proof of Theorem 2.17, we get \psi (x)\psi (y)\pm 

(x \circ y) \in P. Replacing y by yr in the last relation and using it, where r \in A, we have

\psi (x)y\lambda (r) - y[x, r] \in P for every x, y, r \in A. (2.112)

Now, using the same as in the proof of Theorem 2.17 in (2.111), we have that A/P is commutative.
Corollary 2.18. Let A be a prime ring and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(A) \not = 2 with involution \ast of the second kind. If

(\psi , \lambda ) is a generalized derivation of A satisfies \psi (x)\psi (x\ast ) = \pm (x \circ x\ast ) for every x \in A, then A is
commutative.
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