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ITPO Y3ATAJIBHEHI ITOXI/JIHI, IO BKIIIOYAIOTH HEPLII ITEAJIN
3 IHBOJIIOIIE€IO

We study the structure of the quotient A/P, where A is any ring with involution * and P is a prime ideal of A. With
an aim to construct a ring with involution of this kind, we study the behavior of generalized derivations satisfying the
algebraic identities involving prime ideals. As a consequence, currently existing results in this field are enhanced.

OcHOBHA MeTa CTarTi — BHBYUTH CTPYKTYpy dakrop-kimeus A/P, ne A — Oyap-sike Kinblie 3 iHBOMIOWiEO *, a P —
npoctuii inean A. Jlns moOyZoBH Kijblisl 3 iHBONIOLIEI TAKOrO THITY JOCTIMKCHO MOBEMIHKY y3aralbHEHHX IMOXiJHHUX,
IO 3aJIOBOJIEHSIOTH anreOpaidHi TOTOXKHOCTI 3 MPOCTUMH ifeanaMu. SIk HacliJOK, IOTOYHI Pe3yIbTaTH JOCITIIKeHb y Ll
obnacTi OyaH MOKpAaIeHi.

Introduction. Throughout this paper, A will represent an associative ring with center Z(A). The
symbol (zoy) [x,y], where x,y € A, stands for the (anti)commutator (zy+yx) xy—yz, respectively.
An ideal P is said to be a prime ideal of A if P # A and, for every x,y € A, whenever xAy C P
implies z € P or y € P and A is a prime ring if (0) is a prime ideal. An additive map A:
A — A is called a derivation of A if A(zy) = A(z)y + zA(y) holds for every z,y € A. A
generalized derivation of A is an additive map ¢ : A — A associated with a derivation \ if
Y(zy) = ¥(x)y + zA(y) holds for every z,y € A. An involution is an additive mapping x — z*
that satisfies (zy)* = y*z* and (2*)* = x. A ring equipped with an involution is known as ring with
involution or *-ring. If 2* = z, an element x in a ring with involution * is Hermitian, and skew-
Hermitian if 2* = —x. H(A) and S(A) will represent the sets of all Hermitian and skew-Hermitian
elements of A, respectively.

Over the last two decades, many scholars have investigated the commutativity of prime and
semiprime rings admitting appropriately restricted additive mappings acting on suitable subsets of
the rings. In addition, a number of the obtained findings are superior than those that were established
just for the effect of the considered mapping on the entire ring. In addition, several findings on
commutativity in prime and (semi)prime rings admitting restricted additive mappings, generalized
derivations, and (skew) derivations, as well as automorphisms acting on suitable subsets of the rings,
have been recently published in the field (see [1, 2, 4—12]).

In this paper, we will perform an unique research that extends and generalises current results from
the scientific literature. We shall examine differential identities in a prime ideal of an arbitrary ring
with involution * using generalized derivation, without supposing the ring’s primeness.
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1. Preliminary.

Definition 1.1. We call the involution is of the D-second kind if S(A) N Z(A) € D for some
D C A, otherwise it is said to be of the Dfirst kind. In particular, if D = {0}, the involution is said
to be of the second kind if S(A) N Z(A) # {0}, otherwise it is said to be of the first kind.

S. Khan et al. [5] are the first to use the above condition. Now, we will give some examples.

Example1.1. Note that every the second kind is the {0}-second kind, but converse is not true
in general, let A be any ring with involution * is of the first kind, a set D C A\{0}. Then
S(A) N Z(A) = {0}, therefore S(A) N Z(A) € D, that is, the involution is of the D-second kind
but it is not the second kind.

Now we will look at some examples of involutions of the P-second (P-first) kind, where P is a
nonzero ideal of A.

Example1.2. (1) Let A = C[z] be a polynomial ring over the complex number C and P = (x)
a nonzero ideal of A is generated by z. Define *: A — A such that f(x)* = Z:_O apa” € A,
where @y, is a conjugate of aj, in C. Then S(A) = iR[xz] and so * is an involution of the P-second
kind.

2) Le;[ A = M(Z) be aring and P = 2A a nonzero ideal of A. Define *: A — A such that
<OCL Z) = (—dc _ab>. Then S(A) N Z(A) = {0} and so * is an involution of the P-first kind
and so it is not of the P-second kind.

Here, we will start with some auxiliary lemmas.

Lemma 1.1 [3, Lemma 2.1]. Let A be a ring with P a prime ideal of A. If A admits a derivation
A such that [z, \(x)] € P for every x € A, then \(A) C P or A/P is commutative.

Lemma 1.2. Let A be a ring and P a prime ideal. If [x,y] € P for every x,y € A or xoy € P
for every x,y € A, then A/P is commutative.

Proof. Suppose that [x,y] € P and A = A/P and [z,y] = 0 and hence [Z,7] = 0. Thus, 4 is
commutative.

Now, suppose that x oy € P. Taking y by ys in the previous relation and using it, where s € A,
we get y[z, s] € P, and since P # A, we obtain [z, s] € P, the same as in the above, we find that
A/P is commutative.

Lemma 1.3. Let A be a ring and P be a prime ideal with P-second involution . If [x,z*] € P
or xox* € P for every x € A, then one of the following holds:

(i) char(A/P) =2,

(i) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

[x,2*] € P for every = € A. (1.1)
By linearizing (1.1) and used it, we find that
[z,y"] + [y, z*] € P for every z,y € A. (1.2)

Replacing z by zk in (1.2), for every k € S(A) N Z(A)\P, we get that k([z,y*] — [y, 2*]) € P and
so kA([z,y*] — [y,2*]) C P but k ¢ P. Thus,

[,y"] = [y,2"] € P. (1.3)
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Comparing (1.2) and (1.3), we obtain that 2[x,y*] € P and so k[x,y*] € P. Putting y by y* in
the last relation, we see that [z,y] € P and, by Lemma 1.2, A/P is commutative. Similarly in case
xox* e P.

2. The main results.

Theorem 2.1. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \) is
a generalized derivation of A satisfies [w(w), :L‘*] € P for every x € A, then one of the following
holds:

(i) char(A/P) =2,

(i)) A(A) C P,

(iii) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

[w(a:), x*] € P for every x € A. (2.1)

By linearizing (2.1), we have

[w(x),y*] + [¢(y),x*] € P forevery z,y € A. (2.2)

In (2.2), replace x with xh and use it, where 0 # h € H(A)N Z(A), we get [z, y*]\(h) € P. When
we use y* instead of y in the previous relation, we have [z, y]A(h) € P, and since A(h) € Z(A), we
find that [z, y]AA(h) C P but P is a prime ideal. Thus, [z,y] € P or A(h) € P. In case [z,y| € P
and by Lemma 1.2, we see that A/P is commutative. Now, suppose that A\(h) € P. Substituting k>
for h in the last relation, for every k € S(A) N Z(A)\P (note that S(A) N Z(A)\P # & because
S(A)N Z(A) € P), we conclude that 2kA(k) € P, and since char(A/P) # 2, we get kA(k) € P,
and since k € Z(A), we obtain kAX(k) C P, but k ¢ P and, hence,

A(k) € P forevery k€ S(A)N Z(A)\P. (2.3)

Replacing = by xk in (2.2) and using (2.3), we have k([w(x),y*] — [w(y), :c*]) € P and, hence,

[V(2),y"] = [¢(y),2"] € P. 24

Comparing (2.2) and (2.4), we get 2[¢(z),y*| € P, that is, [¢(z),y*] € P. Thus, [¢(z),y] € P.
Writing 2y instead of x in the last relation and using it, we obtain [zA(y),y] € P. We can replace x
by k € S(A)NZ(A)\P to have [\(y),y| € P for every y € A. Therefore, the desired result follows
from Lemma 1.1.

Corollary2.1. Let A be a prime ring and char(A) # 2 with involution x of the second kind.
If (¢, \) is a generalized derivation of A satisfies [1#(30),36*] = 0 for every x € A, then A is
commutative.

Theorem 2.2. Let A be a ring and P be a prime ideal with P-second involution *. If (1, \)
and (¢, 1) are generalized derivations of A satisfy [(z),p(z*)] £ [z, 2*] € P for every x € A,
then one of the following holds:

(i) char(A/P) =2,

(i)) A(A) C P and p(A) C P,

(iii) A/P is commutative.
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Proof. Assume that char(A/P) # 2 and
[¥(x), ¢(x*)] £ [z,2%] € P for every z € A. (2.5)

By linearizing (2.5), we have

[(@), o(y)] + [¥(y), d(a™)] £ [z, y"] £ [y, 2] € P forevery =,y € A. (2.6)
Replacing = by 2/ in (2.6) and using it, where 0 # h € H(A) N Z(A), we get
A(h) [z, d(y™)] + p(h) [¢(y),2*] € P. (2.7)
Substituting xk for x in (2.7), for every k € S(A) N Z(A)\ P, we obtain
M)z, d(y)) — u(h) [$(y), 2] € P. (2.8)

From (2.7) and (2.8), we have A(h)[z, ¢(y)] € P and pu(h) [¢(y),z*] € P. Thus, A/P is commutati-
ve, or A(A) C P and p(A) C P, or A(h) and p(h) € P. In the latter case, we get

Ak) and p(k) € P for every k € S(A)NZ(A)\P. (2.9)
Writing zk instead of x in (2.6) and using (2.9), for every k € S(A) N Z(A)\ P, we see that

[(2), 6(y")] = [¥(y), o(z™)] £ [z, y"] F ly,27] € P. (2.10)
Comparing (2.6) and (2.10), we find that

[(2), 6(y")] + [2,y"] € P.

Hence, [¢(z), ¢(y)] £ [z,y] € P. Therefore, the result follows by [6, Theorem 1.4].

Corollary2.2. Let A be a prime ring and char(A) # 2 with involution * of the second kind. If
(1, A) and (¢, p) are generalized derivations of A satisfy [¢(x), ¢(a*)] = +[z, a*] for every x € A,
then A is commutative.

Theorem 2.3. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, 1) are generalized derivations of A satisfy one of the following holds:

(1) (@) 0 ¢la") + (zoa7) € P,

@) [6(@), 6(2%)] + (zoa) € P,

(3) (@) 0 Ba") + [z,07] € P
for every x € A, then one of the following holds:

(i) char(A/P) =2,

(i) A(4) C P and pi(A) C P,

(iii) A/P is commutative.

Proof. The same arguments as used in the proof of Theorem 2.2 and then using [6, Theorems 1.6, 1.8,
and 1.10] for (1), (2) and (3), respectively.

Corollary2.3. Let A be a prime ring and char(A) # 2 with involution x of the second kind. If
(v, A) and (¢, ) are generalized derivations of A satisfy one of the following holds:

(1) (@) 0 Ba") = H(w o),

@) (), 6(2%)] = £(woa®),

(3) ¥() 0 Bla") = *r,a7]
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for every x € A, then A is commutative.

Theorem 2.4. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, 1) are generalized derivations of A satisfy [w(:v),:c*] + [:n, (b(x*)] € P for every x € A,
then one of the following holds:

(i) char(A/P) =2,

(i) A(A) C P and p(A) C P,

(iii) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

[¥(z),2*] £ [z,¢(2z*)] € P forevery z € A. (2.11)
By linearizing (2.11) and using it, we have
(@), y*] + [U(y), a"] £ [, 6(y")] £ [y, 6(a7)] € P forevery w,y € A (2.12)
Replacing = by zh in (2.12) and using it, where 0 # h € H(A) N Z(A), we get
A(B) [z, "] + (k) [y, "] € P. 2.13)
Writing zk instead of x in (2.13), for every k € S(A) N Z(A)\ P, we obtain
A(B) [z, 7] F (k) [y, 2] € P. (2.14)

From (2.13) and (2.14), we see that A(h)[x,y] € P and p(h)[y, x] € P. Thus, A/P is commutative
or A(h) € P and p(h) € P. In the latter case, we have

Ak) € P and pu(k) € P forevery k€ S(A)NZ(A)\P. (2.15)
Substituting xk for x in (2.12) and using (2.15), for every k € S(A) N Z(A)\ P, we obtain

(@), y"] = [Y(), 2"] £ [2,6(")] F [y, 6(27)] € P. (2.16)

Comparing (2.12) and (2.16), we conclude that [¢)(z),y| & [z, ¢(y)] € P and so the result follows
by [6, Theorem 1.12].

Corollary2.4. Let A be a prime ring and char(A) # 2 with involution x of the second kind.
If (¥, \) and (¢, ) are generalized derivations of A satisfy [w(az),x*] = i[z,qﬁ(m*)] for every
x € A, then A is commutative.

Theorem 2.5. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, u) are generalized derivations of A satisfy one of the following holds:

(1) [¢(x), 2] + [z, ¢(z*)] + [z,2%] € P,

@) [$(z),2*] + [z, 6(z")] * (woz") € P,

(3) Y(x)ox*+xop(z*) € P
for every x € A, then one of the following holds:

(i) char(A/P) =2,

(i) A(4) C P and ji(A) C P,

(iii) A/P is commutative.

Proof. The same arguments as used in the proof of Theorem 2.4 and then using [6, Theorems 1.14,
1.16, and 1.18] for (1), (2) and (3), respectively.
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Corollary2.5. Let A be a prime ring and char(A) # 2 with involution * of the second kind. If
(¥, A) and (¢, 1) are generalized derivations of A satisfy one of the following holds:

(M) [v(@),2*] + [z, ¢(z")] = £[z,27],

@) [(x),a*] + [z, ¢(z*)] = £(x 0 2),

(3) Y(z)ox* =tz 0 p(z*)
for every x € A, then A is commutative.

Theorem 2.6. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, p) are generalized derivations of A satisfy [(x),x*| £xop(x*) € P for every x € A, then
one of the following holds:

(i) char(A/P) =2,

(i)) A(4) C P and p(A) C P,

(iii) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

[Y(z),2"] £ x o p(a™) € P for every x € A. (2.17)

By linearizing (2.17) and using it, we have
[¥(2),y*] + [¥(y),2*] £ (o d(y")) £ (yo ¢(z*)) € P for every z,y € A. (2.18)
Replacing = by zh in (2.18) and using it, where 0 # h € H(A) N Z(A), we get
AR) [z, y*] £ u(h)(yozx®) € P. (2.19)
Writing zk instead of x in (2.19), for every k € S(A) N Z(A)\P, we obtain
AR [z, y*] F pu(h)(y o z*) € P. (2.20)

Now, using the same arguments as used in the proof of Theorem 2.4 in (2.13) and (2.14), we have
that A/P is commutative or

Ak) € P andu(k) € P forevery k€ S(A) N Z(A)\P. (2.21)
Substituting xk for x in (2.18) and using (2.21), for every k € S(A) N Z(A)\P,

[W(@),y"] = [¥(y),2"] £ (@0 d(y") F (y o d(27)) € P. (2.22)

Comparing (2.18) and (2.22), we conclude that [¢)(x),y] £ (x o ¢(y)) € P and so the result follows
by [6, Theorem 1.20].

Corollary2.6. Let A be a prime ring and char(A) # 2 with involution * of the second kind. If
(1, X) and (¢, p) are generalized derivations of A satisfy [(x),x*] = £z o ¢p(x*) for every x € A,
then A is commutative.

Theorem 2.7. Let A be a ring and P be a prime ideal with P-second involution *. If (1, \)
and (¢, ) are generalized derivations of A satisfy 1 (x)x* £ x*¢(x) € P for every x € A, then one
of the following holds:

(i) char(A/P) =2,

(i) A(A) C P and p(A) C P,

(iii) A/P is commutative.
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Proof. Assume that char(A/P) # 2 and
Y(x)z® £ax*p(x) € P for every = € A. (2.23)
By linearizing (2.23) and using it, we have
Y(x)y* +(y)x* £ g(y) £y p(x) € P for every x,y € A. (2.24)
Replacing = by zh in (2.24) and using it, where 0 # h € H(A) N Z(A), we get
Ah)zy £ p(h)yx € P. (2.25)

Writing £ instead of y in (2.25), for every k € S(A) N Z(A)\P, we obtain (A(h) £+ p(h))z € P,
and since P # A, we get A(h) = p(h) € P. Right multiplying the last relation by yz, we see that

Ah)yx + p(h)yx € P for every z,y € A. (2.26)

From (2.25) and (2.26), we find that A(h)[z,y] € P and so A(h) € P or [z,y] € P. If [z,y] € P,
then, by Lemma 1.2, we get that A/P is commutative. If

A(h) € P forevery 0 # h € H(A)NZ(A), (2.27)
then
A(k) € P forevery k € S(A)N Z(A)\P. (2.28)
By using (2.27) in (2.25), we have u(h)yxz € P and u(h) € P. Hence,
wu(k) € P forevery k€ S(A)NZ(A)\P. (2.29)
Substituting zk for x in (2.24) and using (2.28) and (2.29), we get
Y(@)y" —Y(y)z* F 2 d(y) £y ¢(z) € P. (2.30)

From (2.24) and (2.30), we find that ¢)(z)y = y¢(x) € P. Putting y = k in the last relation, for every
ke S(A)N Z(A)\P, we obtain

Y(z) £ ¢p(x) € P. (2.31)
Left multiplying (2.31) by «*, we conclude that
¥ Y(x) £ x*p(x) € P. (2.32)

Comparing (2.23) and (2.32), we have that [1/1(x), x*] € P and, by Theorem 2.1, A\(A) C P or A/P
is commutative. Right multiplying (2.31) by z*, we see that ¢(z)z* £ ¢(x)z* € P and, from the last
relation and (2.23), we get [¢(z),2*] € P and, by Theorem 2.1, u(A) C P or A/P is commutative.

Corollary2.7. Let A be a prime ring and char(A) # 2 with involution * of the second kind. If
(v, \) and (P, ) are generalized derivations of A satisfy (x)x* £ x*¢p(x) = 0 for every x € A,
then A is commutative.
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Theorem 2.8. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, ) are generalized derivations of A satisfy ¥ (x)x £ x*¢(z*) € P for every x € A, then one

of the following holds:
(i) char(A/P) =2,
(i) A(A) C P and p(A) C P,
(iii) A/P is commutative.
Proof. Assume that char(A/P) # 2 and

Y(x)r £ x*p(z*) € P for every = € A.

By linearizing (2.33) and using it, we have

Y(@)y +(y)r 2" g(y") Ly ¢(z*) € P for every z,y € A.

Replacing = by zh in (2.34) and using it, where 0 # h € H(A) N Z(A), we get
Ah)zy £ p(h)y*z* € P.
Writing & instead of zk in (2.35), for every k € S(A) N Z(A)\P, we get

A)zy F p(h)y*z™ € P.

(2.33)

(2.34)

(2.35)

(2.36)

Now, using the same arguments as used in the proof of Theorem 2.4 in (2.13) and (2.14), we get that

A/P is commutative or
A(k) € P and p(k) € P forevery k€ S(A) N Z(A)\P.
Substituting xk for x in (2.34) and using (2.37), we find that
@)y +(y)e F 2 o(y") Fy'o(z") € P.
Comparing (2.34) and (2.38), we see that
(z)y +¢(y)z € P.
Replacing x by zt in (2.39), where t € A, we have
Y(x)ty + 2\ (t)y + Y (y)xt € P.
Writing ty instead of y in (2.39), we get
Y(2)ty + Y(t)yr + tA(y)z € P.
From (2.40) and (2.41), we obtain
zA(t)y + Y (y)xt — P(t)yr — tA(y)x € P.
Substituting zt for z in (2.42), we see that

TtA(t)y + p(y)xt? — p(t)yat — tA\(y)at € P.
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Right multiplying (2.42) by ¢, we find that
Ayt + p(y)xt? — p(t)yat — tA\(y)at € P. (2.44)

Comparing (2.43) and (2.44), we conclude that (¢t \(t)y — \(t)yt) € P. Taking x = y = k in the last
relation, for every k € S(A) N Z(A)\P, we have that [t, \(¢)] € P and, by Lemma 1.1, A\(A) C P
or A/P is commutative. Now, by using (2.39) in (2.38), we get

2(y) + yo(x) € P. (2.45)

Replacing y by ty in (2.45), where t € A, we obtain

ro(t)y + xtu(y) + typ(x) € P. (2.46)

Left multiplying (2.45) by ¢, we see that

txd(y) + typ(x) € P. (2.47)

From (2.46) and (2.47), we find that

zd(t)y + xtp(y) — tzg(y) € P. (2.48)

Writing rx instead of x in (2.48), where r € A, we get

reg(t)y + retu(y) — tree(y) € P. (2.49)

Left multiplying (2.48) by 7, we have

red(t)y + rotu(y) — rtxo(y) € P. (2.50)

Comparing (2.49) and (2.50), we get [t,r]zp(y) € P and so [t,r] € P or ¢(y) € P. If [t,r] € P,
then, by Lemma 1.2, A/P is commutative. In case ¢(y) € P, by the relation (2.46), we obtain
xtu(y) € P and so u(y) € P. Hence, u(A) C P.

Corollary2.8. Let A be a prime ring and char(A) # 2 with involution * of the second kind. If
(¥, A) and (p, u) are generalized derivations of A satisfy ¥(x)x + x*p(x*) = 0 for every x € A,
then A is commutative.

Theorem 2.9. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, 1) are generalized derivations of A satisfy V(x)¢p(z*) £ [x,2*] € P for every x € A, then
one of the following holds:

(i) char(A/P) =2,

(i) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

Y(z)p(z*) £ [z,2"] € P for every = € A. (2.51)
By linearizing (2.51) and using it, we have
Y(x)o(y") + ¥(y)o(a™) + [z,y"] £ [y, 2"] € P for every z,y € A. (2.52)
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Replacing = by zh in (2.52) and using it, where 0 # h € H(A) N Z(A), we get

Ah)zg(y™) + p(h)p(y)a” € P. (2.53)
Substitution xk for k in (2.53), for every k € S(A) N Z(A)\P,
Ah)zp(y™) — p(h)p(y)a™ € P. (2.54)

From (2.53) and (2.54), we obtain A(h)x¢(y) € P and p(h)iy(y)z € P. Now, in case ¢(y) € P or
Y (y) € P and, by (2.51), we get that [x,2*] € P and so A/P is commutative. Now, suppose that
A(h) € P and u(h) € P and so

A(k) € P and p(k) € P forevery k€ S(A)NZ(A)\P. (2.55)
Substituting xk for x in (2.52) and using (2.55), we find that

Y(@)o(y") —Y(y)o(2™) = [2,y"] F [y, 2] € P. (2.56)

Comparing (2.52) and (2.56), we get

Y(x)o(y) £ [z,y] € P. (2.57)

Replacing y by yt in (2.57) and using it, where t € A, we have

Y(x)yp(t) £ ylz,t] € P. (2.58)

Taking ¢ = x in (2.58), we get ¥ (z)yu(x) € P and so ¢(z) € P or u(z) € P. Therefore, we have
A={x e A|¢(x) € P}U{z € A| u(x) € P}.ByBrauer’s trick, we get A = {x € A | ¢¥(x) € P}
or A={z € A| pu(x) € P}. In both cases, using any one of them in (2.58), we obtain y[x,t] € P.
Writing k& instead of y in the last relation, for every k € S(A) N Z(A)\P, we see that [z,t] € P and,
by Lemma 1.2, A/P is commutative.

Corollary2.9. Let A be a prime ring and char(A) # 2 with involution * of the second kind. If
(v, \) and (P, ) are generalized derivations of A satisfy (x)p(x*) = [z, z*] for every x € A,
then A is commutative.

Theorem 2.10. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, ) are generalized derivations of A satisfy V(x)p(z*) £ (xoz™) € P for every x € A, then
one of the following holds:

(i) char(A/P) =2,

(i) A/P is commutative.

Proof. By using the same arguments as used in the proof of Theorem 2.9, we get that A/P is
commutative or 1 (z)p(y) = (z oy) € P for every x,y € A. Replacing y by yt in the last relation
and using it, where ¢ € A, we find that

Y(@)yu(t) F ylz.t] € P. (2.59)

Now, using the same arguments as used in the proof of Theorem 2.9 in (2.58), we get that A/P is
commutative.

Corollary2.10. Let A be a prime ring and char(A) # 2 with involution x of the second kind. If
(v, A) and (b, 1) are generalized derivations of A satisfy ¥(x)p(x*) = +(x o x*) for every x € A,
then A is commutative.
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Theorem 2.11. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, p) are generalized derivations of A satisfy V(xx™) £ 1(x)p(x*) € P for every x € A, then
one of the following holds:

(i) char(A/P) =2,

(i) A(4) C P,

(iii) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

Y(zx™) £ (x)p(x™) € P for every = € A. (2.60)
By linearizing (2.60) and using it, we have
U(zy®) +(yz®) £ (2)o(y") £ ¢ (y)o(a”) € P for every x,y € A. (2.61)
Replacing = by zh in (2.61) and using it, where 0 # h € H(A) N Z(A), we get
A(R)zy”™ + A(h)yz™ £ A(h)xd(y*) = p(h)v(y)a™ € P. (2.62)
Writing % instead of xk in (2.62), for every k € S(A) N Z(A)\P, we obtain
AR)zy™ = A(h)yz®™ £ A(h)zo(y") F u(h)v(y)z™ € P. (2.63)

From (2.62) and (2.63), we obtain A(h)x(y + ¢(y)) € P and so A(h) € P or y + ¢(y) € P.
Firstly, in case

y+é(y) € P, (2.64)
putting y by yx in (2.64) and using it, we have yu(x) € P and so u(x) € P. Hence,
u(A) C P. (2.65)
By using (2.65) in (2.63), we get
A(h)zy™ — A(h)yx™ £ A(h)xp(y*) € P. (2.66)
Taking y by yk in (2.66) and using it and (2.65), for every k € S(A) N Z(A)\P, we see that
=A(h)xy* — A(h)yz* F AM(h)zd(y*) € P. (2.67)

From (2.66) and (2.67), we get A(h)yz € P and so A\(h) € P.
Secondly, suppose that

A(h) € P forevery 0#h € H(A)NZ(A). (2.68)
Hence,
A(k) € P forevery ke S(A)NZ(A)\P. (2.69)

By using (2.68) in (2.63), we find that u(h)y(y)x € P and so u(h)y(y) € P. Hence, p(h) € P or
Y(y) € P. If ¢(y) € P, then 1)(A) C P. Hence, ¢)(xy) € P and so z\(y) € P. Thus, \(y) € P,
that is, A(A) C P, as desired. Now, if u(h) € P, then
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wu(k) € P forevery ke S(A)NZ(A)\P. (2.70)

Substituting zk for x in (2.61) and using (2.69) and (2.70), we find that

Y(xy") —P(yx™) £ (x)o(y*) F(y)e(a*) € P. (2.71)

Comparing (2.61) and (2.71), we have that ¥ (xy) £ ¥ (x)¢(y) € P and, by [8, Theorem 1.9], we get
that A(4) C P or A/P is commutative.

Corollary2.11. Let A be a prime ring and char(A) # 2 with involution x of the second kind.
If (W, \) and (¢, ) are generalized derivations of A satisfy ¥(xx*) + (x)d(x*) = 0 for every
x € A, then A is commutative.

Theorem 2.12. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, p) are generalized derivations of A satisfy V(xx™) £ (z*)p(x) € P for every x € A, then
one of the following holds:

(i) char(A/P) =2,

(i) A(4) C P,

(iii) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

P(zx™) £ (x*)p(z) € P for every = € A. (2.72)
By linearizing (2.72) and using it, we have
Y(ry*) + Y(yr*) £ (") d(y) £ Y(y")g(x) € P for every z,y € A. (2.73)
Replacing by zh in (2.73) and using it, where 0 # h € H(A) N Z(A), we get
A(B)ay* + A(R)ya* + A(h)z*6(y) + p(h)i(y" )z € P. (2.74)
Writing £ instead of xk in (2.74), for every k € S(A) N Z(A)\P, we have
A(R)ay* — Ah)ya* F A(R)a"6(y) + p(R)o(y )z € P, (2.75)

From (2.74) and (2.75), we obtain \(h)(yz + x¢(y)) € P. Taking = by k in the last relation, for
every k € S(A) N Z(A)\P, we get A\(h)(y £ ¢(y)) € P and so A(h) € P or y £ ¢(y) € P.
Firstly, in case

y+oy) € P, (2.76)
putting y by yx in (2.76) and using it, we have yu(x) € P and so u(z) € P. Hence,
1(A) C P. 2.77)
By using (2.77) in (2.75), we get
Ah)xy® — A(h)yx™ £ A(h)x*p(y) € P. (2.78)
Taking x by zk in (2.78) and using it and (2.77), for every k € S(A) N Z(A)\ P, we see that
Ah)xy™ + A(h)yx™ F A(h)x*p(y) € P. (2.79)
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From (2.78) and (2.79), we conclude that \(h)xy € P and so A\(h) € P.
Secondly, in case

A(h) € P forevery 0 # h € H(A)NZ(A), (2.80)
we get
A(k) € P forevery ke S(A)NZ(A)\P. (2.81)

By using (2.80) in (2.75), we find that p(h)y(y)x € P and so u(h)y(y) € P. Hence, p(h) € P or
Y(y) € P. If ¥(y) € P, then ¥ (xy) € P and so zA(y) € P. Hence, \(y) € P, thatis, A\(A) C P.
If u(h) € P, then

wu(k) € P forevery k€ S(A)NZ(A)\P. (2.82)
Substituting zk for x in (2.73) and using (2.81) and (2.82), we find that
P(zy™) — ya”) F (@) o(y) £ Py )o(x) € P. (2.83)

Comparing (2.73) and (2.83), we get )(zy) + ¥ (y)p(z) € P and, by [8, Theorem 1.11], we have
that A(4) C P or A/P is commutative.

Corollary2.12. Let A be a prime ring and char(A) # 2 with involution x of the second kind.
If (¥, \) and (¢, ) are generalized derivations of A satisfy ¥(xzx*) + (z*)p(x) = 0 for every
x € A, then A is commutative.

Theorem 2.13. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
and (¢, p) are generalized derivations of A satisfy {(xx*) + ¢(x)p(x*) € P for every x € A, then
one of the following holds:

(i) char(A/P) =2,

(i) AM(A) C P and u(A) C P.

Proof. Assume that char(A/P) # 2 and

Y(za™) £ p(x)p(x*) € P for every = € A. (2.84)
By linearizing (2.84) and using it, we have
Y(ry*) + Y(yz*) £ d(z)o(y") £ ¢(y)¢(z*) € P for every z,y € A. (2.85)
Replacing = by zh in (2.85) and using it, where 0 # h € H(A) N Z(A), we get
A(R)ay" + A(R)ya* + p(h)a(y") + p(h)b(y)a” € P (2.86)
Writing k instead of zk in (2.86), for every k € S(A) N Z(A)\ P, we obtain
A(R)zy™ — A(h)ya™ + p(h)zd(y™) F u(h)o(y)z™ € P. (2.87)

From (2.86) and (2.87), we have A(h)xy £ u(h)zé(y) € P. Taking x by k in the last relation, for
every k € S(A) N Z(A)\P, we get

A(h)y £ u(h)o(y) € P. (2.88)
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Putting y by yx in (2.88) and using it, we obtain p(h)yu(x) € P and so p(h) € P or pu(z) € P. In
both cases, we have

u(h) € P. (2.89)
Using (2.89) in (2.88), we see that A(h)y € P and so A(h) € P. Thus,
A(k) € P forevery ke S(A)NZ(A)\P. (2.90)
From (2.89), we find that
wu(k) € P forevery k€ S(A)NZ(A)\P. (2.91)

Substituting zk for x in (2.85) and using (2.90) and (2.91), we conclude that

Plzy”) —o(ya”) £ o(x)o(y") F o(y)o(z”) € P. (2.92)

Comparing (2.85) and (2.92), we see that 1(zy) £ ¢(x)¢(y) € P and, by [8, Theorem 1.13], we get
AMA)C Pand u(A)C P

Corollary2.13. Let A be a prime ring and char(A) # 2 with involution x of the second kind. If
(1, A\) and (¢, ) are generalized derivations of A satisfy 1 (xx*) + ¢(x)d(x*) = 0 for every x € A,
then A\ =0 and p = 0.

Theorem 2.14. Let A be a ring and P be a prime ideal with P-second involution *. If (1, \)
and (¢, ) are generalized derivations of A satisfy (xx*) + ¢(x*)p(x) € P for every x € A, then
one of the following holds:

(i) char(A/P) =2,

(i) u(A) C P,

(iii) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

Y(za™) £ p(a*)p(z) € P for every = € A. (2.93)
By linearizing (2.93) and using it, we have
Y(ry*) + Y(yz*) £ d(z*)d(y) = ¢(y*)d(z) € P for every z,y € A. (2.94)
Replacing = by xzh in (2.94) and using it, where 0 # h € H(A) N Z(A), we get
A(h)zy"™ + A(h)yz™ £ p(h)z"¢(y) £ p(h)d(y")z € P. (2.95)
Writing £ instead of xk in (2.95), for every k € S(A) N Z(A)\ P, we obtain
A(h)zy™ = A(h)yz" F p(h)z"¢(y) £ u(h)d(y")x € P. (2.96)

From (2.95) and (2.96), we have \(h)xy + u(h)¢(y)x € P. Taking x by k in the last relation,
for every k € S(A) N Z(A)\P, we get A(h)y + u(h)o(y) € P. Now, using the same arguments
as used in the proof of Theorem 2.13 in (2.88), we obtain that ¢(xy) + ¢(y)¢(x) € P and, by
[8, Theorem 1.15], we get that u(A) C P or A/P is commutative.
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Corollary2.14. Let A be a prime ring and char(A) # 2 with involution x of the second kind. If
(1, A) and (¢, 1) are generalized derivations of A satisfy 1 (xx*) £ ¢(x*)p(x) = 0 for every x € A,
then A is commutative.

Theorem 2.15. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
is a generalized derivation of A satisfies (xx*) £ [x,x*] € P for every x € A, then one of the
following holds:

(i) char(A/P) =2,

(i) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

Y(zaz™) £ [z,2%] € P for every = € A. (2.97)
By linearizing (2.97) and using it, we have
Y(xy*) +Y(yx*) £ [z,y*] £ [y,2*] € P forevery z,y € A. (2.98)
Replacing = by zh in (2.98) and using it, where 0 # h € H(A) N Z(A), we get
Ah)(zxy® + yz*) € P. (2.99)
Writing & instead of xk in (2.99), for every k € S(A) N Z(A)\ P, we obtain
Ah)(zy® — yz*) € P. (2.100)
From (2.99) and (2.100), we have A\(h)xy € P and so A(h) € P. Thus,
A(k) € P forevery k€ S(A)N Z(A)\P. (2.101)
Substituting zk for x in (2.98) and using (2.101), we conclude that
Y(zy®) —d(ya®) £ [z, y"] F [y, 2"] € P. (2.102)

Comparing (2.98) and (2.102), we find that ¢ (zy) £ [z,y] € P for every z,y € A. Replacing y by
yr in the last relation and using it, where r € A, we have

zyA(r) £ylz,r] € P. (2.103)

Putting = z in (2.103), we get zyA(z) € P and so A\(z) € P. By using the last relation in (2.103),
we see that y[z,r] € P. So, we have that [z, 7] € P and, by Lemma 1.2, A/P is commutative.

Corollary2.15. Let A be a prime ring and char(A) # 2 with involution * of the second kind.
If (¢, \) is a generalized derivation of A satisfies (xx*) = L[z, x*| for every x € A, then A is
commutative.

Theorem 2.16. Let A be a ring and P be a prime ideal with P-second involution *. If (1, \)
is a generalized derivation of A satisfies (xx*) £+ (z o x*) € P for every x € A, then one of the
following holds:

(i) char(A/P) =2,

(i) A/P is commutative.

Proof. By using the same arguments as used in the proof of Theorem 2.15, we get 1 (zy) +
(r oy) € P. Replacing y by yr in the last relation and using it, we have
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xy\(r) £ ylx,r] € P for every x,y,r € A. (2.104)

Now, using the same arguments as used in the proof of Theorem 2.15 in (2.103), we have that A/P
is commutative.

Corollary2.16. Let A be a prime ring and char(A) # 2 with involution * of the second kind.
If (1, \) is a generalized derivation of A satisfies 1 (xx*) = +(x o x*) for every x € A, then A is
commutative.

Theorem 2.17. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
is a generalized derivation of A satisfies (x)(x*) & [x,2*] € P for every x € A, then one of the
following holds:

(i) char(A/P) =2,

(i) A/P is commutative.

Proof. Assume that char(A/P) # 2 and

Y(x)(x*) £ [x,2*] € P for every = € A. (2.105)
By linearizing (2.105) and using it, we have

V(@) P(y*) +v(y)p(z") £ [z,y"] £ [y,2*] € P for every x,y € A. (2.106)

Replacing z by zh in (2.106) and using it, where 0 # h € H(A) N Z(A), we get

A(R) (@Y (y") +d(y)a™) € P. (2.107)
Writing k instead of zk in (2.107), for every k € S(A) N Z(A)\ P, we obtain
AR) (@Y (y") — P(y)z*) € P. (2.108)

From (2.107) and (2.108), we have A(h)xy(y) € P and so A(h) € P or ¢(y) € P. If ¢(y) € P,
then ¢ (xy) € P. Thus, zA(y) € P and hence \(y) € P, thatis, A(h) € P, 0 h € H(A) N Z(A),
and so

A(k) € P forevery k€ S(A)N Z(A)\P. (2.109)
Substituting zk for x in (2.106) and using (2.109), we conclude that

P(@)Y(y*) — )y (") £ [z,y7] F [y, 27] € P. (2.110)

Comparing (2.106) and (2.110), we get ¢ (x)¥(y) + [z,y] € P. Replacing y by yr in the last relation
and using it, where r € A, we have

P(x)yA(r) + ylz,r] € P. (2.111)

So, we get ¥ (z)yA(z) € P and so A(z) € P or ¢(x) € P. The same as in the above, if ¢ (z) € P,
then A(z) € P. Now, by using the last relation in (2.111), we get that y[x, | € P. Thus, we find that
[z,7] € P and, by Lemma 1.2, A/P is commutative.

Corollary2.17. Let A be a prime ring and char(A) # 2 with involution x of the second kind. If
(1, \) is a generalized derivation of A satisfies 1(x)p(x*) = L[z, x*] for every x € A, then A is
commutative.
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Theorem 2.18. Let A be a ring and P be a prime ideal with P-second involution x. If (1, \)
is a generalized derivation of A satisfies (x)(z*) £+ (x o x*) € P for every x € A, then one of
the following holds:

(i) char(A/P) =2,

(i) A/P is commutative.

Proof. By using the same arguments as used in the proof of Theorem 2.17, we get ¥ (x)y(y) +
(z oy) € P. Replacing y by yr in the last relation and using it, where r € A, we have

W(x)yA(r) — y[z,r] € P for every z,y,r € A. (2.112)

Now, using the same as in the proof of Theorem 2.17 in (2.111), we have that A/P is commutative.

Corollary2.18. Let A be a prime ring and char(A) # 2 with involution * of the second kind. If
(1, A) is a generalized derivation of A satisfies 1 (x)(z*) = £(x o x*) for every x € A, then A is
commutative.
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