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STOCHASTIC BERNOULLI EQUATION
ON THE ALGEBRA OF GENERALIZED FUNCTIONS

CTOXACTHYHE PIBHAHHA BEPHYJIJIT
3 AJITEBPH Y3ATAJIBHEHUX ®YHKIIIA

Based on the topological dual space Fg (S'c) of the space of entire functions with @-exponential growth of finite type,
we introduce the generalized stochastic Bernoulli— Wick differential equation (or the stochastic Bernoulli equation on the
algebra of generalized functions) by using the Wick product of elements in F; (S'c). This equation is an infinite-dimensional
stochastic distributions analog of the classical Bernoulli differential equation. This stochastic differential equation is solved
and exemplified by several examples.

Ha ocHoBi Tononorivnoro npoctopy F4 (S'c), clpsbkeHOTo 10 TPOCTOPY Mimnx GyHKIIH 3 0-eKCTIOHEHITIaTBHAM 3pOCTaH-
HSIM CKIHYEHHOTO THITY, BBEZIEHO y3arajbHeHe cToOXacTH4He audepeHnianbae piBHIHHS Bephymii — Bika (abo croxactudne
piBHsHHES BepHysTi Ha anrebpi ysaransHeHux (QyHKIIi) 32 m0omoMororo 106yTKy Bika exementis mpoctopy Fy (S'c). Ta-
Ke PIBHSHHS € HECKIHYCHHOBHUMIPHHM aHAJIOIOM KJIACHYHOTo Ju(EepeHIialbHOro piBHSIHHS BepHymuti a1 cTOXacTUUHMX
po3moziniB. Mu po3B’s3yeMo 1€ CTOXacTHYHE Au(epeHIlialbHe PiBHAHHS Ta HABOAMMO KiTbKA MPUKITAMIIB.

1. Introduction. In 1695, Jacob Bernoulli proposed a new type of equation (called later Bernoulli
differential equation) which was solved later after one year by Leibniz using a change variable which
brings back to a linear differential equation. More precisely, a Bernoulli differential equation is an
ordinary differential equation of the form

Y + P(z)y = Qz)y", (1)

where P(x) and Q(z) are continuous functions and n is any real number such that n #0 and n # 1.
It is clear that the Bernoulli equations are special case of nonlinear differential equations which are
widely used to depict a large varieties of physical, chemical and biological phenomena. A famous
special case of the Bernoulli equation is the logistic differential equation. Equation (1) is extended in
infinite-dimensional distribution case [1], using a suitable product, called Wick product and denoted
by ¢. The Wick product was introduced by Hida and Ikeda [6] and it has been used extensively in
the study of white noise integral equations (see [1, 7, 11, 12] and references therein).

On the other hand, the mathematical theory of stochastic differential equations was developed
in the 1940s thanks to the important work of the mathematician Kiyosi 1t6, who initiated the study
of nonlinear stochastic differential equations. Many areas of applied mathematics require efficient
computation in infinite dimensions. This is most apparent in quantum physics and in all scientific
disciplines which describe natural phenomena by equations involving stochasticity. In recent years,
there has been an increasing interest in the study of stochastic differential equations on the infinite
dimension which have a great impact on current quantum field theory, hydrodynamics and statistical
mechanics.
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In this paper, we introduce a new class of nonlinear stochastic differential equations in infinite
dimensions which is flexible enough to be applicable in many fields, using the Wick product.

The paper is organized as follows. In Section 2, we briefly recall some basic notations in quantum
white noise calculus. Namely, we give definitions and properties of the test functions space of
entire functions with f-exponential growth condition of minimal type and the associated generalized
functions space. Section 3 is devoted to study the generalized stochastic Bernoulli — Wick differential
equation. In Section 4, we study the important examples of the generalized stochastic Bernoulli — Wick
differential equation.

2. Preliminaries. In this section we shall briefly recall some of the concepts, notations and
known results on nuclear algebras of entire functions and Wick calculus which can be found also in
[1,2,4,5 9-12].

Let S(R) be the Schwartz space which can be reconstructed in a standard way: S(R) =
projlim;,_,~, S, (see [8]) and its topological dual space is given by S’(R) = ind lim,, ,~, S, where,
for p > 0, S, is the completion of S(R) with respect to some norm ||, and S_,, is the topological dual
space of S,. We denote by Sc and Sc,—,, the complexification of S(R) and S_,, respectively. Let §:
R4 — R, be a Young function. The projective system {Exp(Sc,—,,0,m); p € N, m > 0} give the
space

Fo(S¢) = proj lim  Exp(Sc,—p,0,m) ,
p—o0,ml0
where Exp(Sc,—p, 8, m) the space of all entire functions on S¢ ), with §-exponential growth of finite
type m. The space Fy(S¢) is called the space of fest functions on S. Its topological dual space
F;(Se), equipped with the strong topology, is called the space of distributions on Si or nuclear
algebra of generalized functions. It is easy to see that, for each £ € S, the exponential function

ce(z) = eV, ze S,

is a test function in the space Fy(Sg) for any Young function 6. Thus, we can define the Laplace
transform of a distribution ® € F;(S¢.) by

LO(E) = (@,ec), €€ Sc.
The Laplace transform £ realizes a topological isomorphism from F; (S;) onto Gg-(Sc), where

Go+(Sc) = indlim  Exp(Sc,, 8%, m)

p—00,mloo

and 6* is the polar function associated to 6.
For ®, ®y € F;(S(), the Wick product of ®; and @5 denoted by ®; o P is the unique element
of F(Sg) satisfying (see [9])

L(P1 0 Po)(E) = L(P1)(§)L(P2)(E), & € Sc.

Using this definition, one can easily show that the Wick product is associative and commutative.
Moreover, for ® € F;(S¢), we have

(500(13’:‘130(50:(13,
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where Jp denoting the Dirac distribution at 0 (which is also the unique distribution satisfying

L(60)(&) = 1).

Let GJ. be the space of generalized functions g in Gy (Sc) such that g(£) has no zero, i.e.,

G- :=1{g € Go-(Sc) | 9(§) #0 V& € Sc}.

Let ® € F;(Sg). If there exists 1) € F;(S¢:) such that ¢ o ® = dy, then we say that ® is Wick
invertible and its Wick inverse is equal to ¢» which will be denoted by ®°(—1) (see [1]). Let Eg
be the set of all Wick invertible elements on F;(S¢). The Laplace transform realizes a topological
isomorphism from the space &) onto the space Gj. (see [1]).
For n € N, by recurrence one can easily show that the Wick product ® o & ¢ --- o & n-times
(denoted by ®°™) is given via
L(@7) = (L(D))".

By convention we take ®*° = §.
Let r € R% = (0,00) and ® € F;(S;). Then, using Lemma 3.1 in [1], we get that (L(®))" €
Go+(Sc). Therefore, by Definition 3.1 in [1], the element ®°" is defined by
L(97) = (L(2))".
Now, for r € R* = (0,00) and ¢ € Eg, the element ®°(~") (see Lemma 3.2 in [1]) is given by

o(—7) — (@o(_n) o

Recall that (see [2]), for ® € F;(S¢), the Wick exponential is defined by

1 1
=Y T = Y e
n=0 n=1

which is an element of ]-"(29*)* (Se)-

3. Generalized stochastic Bernoulli equation. From [2], a one parameter generalized stochastic
process with values in F; (S¢) (or generalized stochastic F; (S¢)-process) is a family of distributions

{4, t € I} C F5(Se),

where [ is an interval containing zero (0 € I). The process ®; is said to be continuous if the map
t — ®, is continuous.
For a given continuous generalized stochastic process {®; }+cs, the stochastic generalized process

t
St = / ®,ds is defined as the unique element of 7, (S¢) satisfying
0

t

r / Bods | (€) = O/ £(3,)(€)ds Ve € Sc.

0

t 0
Note that the process S; = / ®,ds is differentiable in F;(S;) and &St = O,.
0
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Proposition 1. Let A; and By be two continuous generalized stochastic F; (S()-processes. Then
the solution of

gq)t Ap o @y + By,
ot Q)

is given by

t
P, = (F+ / Bsoe?tl A“d“)ds) o e Jo Asds, 3)

0

Proof. Let U; and V; be two F; (Si)-processes. Applying the Laplace transform, we get

£(gptwiovd)© = { Gt o Vibee ) = 5T o Vivee)

0 0
= 2 LW V)(E) = o (LWNEOLIE)
= L)) 2 LV(E) + LVE) S LWTE)

- g(Ut)(§)£<§tm) &) + £(W)(£)£(;Ut> (©)

0 0
= E(Utoatm +V;<>6tUt> (&)-

Then we obtain 5
7Uta

0
—W+Wom

0
E{UtOW} = UtO ot

from which we deduce that Q is a Wick derivation and from [1] we have

ot
() = S U oe!
Now, denoting by Y; and Z; as follows:
¢
Y, = /Asds,
0

t t
Zy = / By o e®Yo)ds = / Bj 0 e Jo Audw) g
0 0

and let @, satisfies equation (3). Then we get
0 > 0

a( t) = T )

i (200 et +(Zit F)o o (e
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0
= B, o™ o Yt 4 a(Yt) o(Zi+ F)oe™

:Bt+At<>(I)t,

which shows that ®; is the solution of (2). Conversely, suppose that ®; solution of (2). We note that

2 (@0 ) = D@0 D)oo
= (Ao P+ By)o (Y1) 4 D0 (—Ap) o O(=Y2)
0
= Bt 060(_Y2) o a(zt)

Then we have
P00V =7, + F.

Therefore, we obtain
Oy = (Zy+ F)oe™,

which is equivalent to
t
Q= |F+ / By o e Jo Audu) g | o g0 Jo Asds,
0

The proposition is proved.
A one parameter generalized stochastic process with values in Sg is a family of distributions

{®, te I} C&.

Let (®,,)n>0 be a sequence in £. Then (®,,) converges in &) if and only if the following conditions
hold:
there exist p > 0, m > 0 and ¢ > 0 such that, for every integer n,

1L(®,,)(€)] < ce? ME) e € Sg;

the sequence £(®P,,)(£) converges in C for each £ € Sg;

for every integer n, L(®,)(£) has no zero.
Let {®;},cr be a continuous &J-process. Since the map s — L(P,) € Gy, is continuous, {L(P;),
s € [0,t]}, becomes a compact set, in particular it is bounded in Gj., i.e., there exist p € N, m > 0
and C} such that, for every £ € Sc,, we obtain

L(D)(€)] < Cre? ) vis € [0,4]

t

Which shows that the function & — / L(P5)(&)ds belongs to Gp.. Then we define S; = fg D,ds
0

as the unique element of 590 satisfying

t

r / Bods | (€) = 0/ L£(3.)(€)ds Ve € Sc.

0
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¢
Moreover, the process S; = / ®,ds is differentiable in Sg and
0

95,
Ot p,.
ot t

Note that, using the Laplace transform, one can verify that, for (r > 1 and {®:}rer a F;(Se)-
process) or for (r < 1 and {®;};c; a &) -process), we have

0 T 0 r—1
5 (@) =12 (@) 0 2],

We are going to study the differential equation in the form

)
Ao =B+ Bo®; =Gro®k, k>2
ot 4)

(I)OZngg,

where A; is a continuous Eg -process, B; and G; are two continuous JF, (S(’C)—processes and ¢y =
fe Sg. The stochastic Wick differential equation of the form (4) will be called the generalized
stochastic Bernoulli — Wick differential equation or stochastic Bernoulli equation on the algebra of
generalized functions which is the analog of the classical Bernoulli differential equation.

Theorem 1. The equation (4) has a unique solution given by

o(12)

t
By = ¢ S 4 (1) / (G0 gD oo i (mmBaoAi Vi) g
0

o o2 (2 Ji BeoatVas).

Proof. Let T, given by T; = @f(lfk) . Therefore, we get

0, 0 o(—k)
aTt = (1-]43)&((1375)0(1)7& .
This implies that
0 10 ok
a(‘bt) = ﬂa(Tt) o &
Therefore, by using equation (4), we obtain
1 0
mAt o a(Tt) + Bro Ty = G,
which is equivalent to
0
At o a(ﬂ) = (k — ].)Bt OTt + (1 — k)Gt
This gives
;(Tt) = (k’ — I)Bt <o A:(_l) <>Tt =+ (1 — k)A:(_l) o Gt-
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Then, by using Proposition 1, we have
o(1—k)

Tt = (Zt + To) <& GQYt = (Zt + @0 ) < GOYt = (Zt + fo(l_k)) < GOYt,

where Y; and Z; are given by

B, o A% (s

e
|
—~
oy
|
—_
N
O\H‘

and
t
Zy=(1-k) /Ag(_l) oGy o eV s
0
¢
— -k / AN 6 Gy o ¢ k=1) J§ Buodil™Vau g
0
Then we get

oM — (7,4 F)oe™,
where F = f°(=%) which gives
By = ((Zy + F) 0 @) TF) = (7, 1 P00 o (201,

Hence, we obtain
/ (1)
s O(— t o(—1
o, =<{ F+ (1 _ k) /(Gs OAZ(_l) o eofo (1_k)Bu<>Au< 1)du> ds o e<><f Jo BsoA; ds)I
0

The theorem is proved.

4. Examples of the generalized stochastic Bernoulli equation. In this section, we study the
important examples of the generalized stochastic Bernoulli equation.

Example 1. The generalized stochastic Bernoulli— Wick differential equation

9
o, P, =% k>9
815 t+ t t — 4

dy=f € 5(9
admits (by Theorem 1 for A; = d§y, By = dg and G; = Jp) a unique solution given by

1
®, = e—t{fo(l—k) + (4R 1)50}0(1_k)-

Example2 (Generalized stochastic logistic Wick differential equation). We introduce the generali-
zed stochastic logistic Wick differential equation as follows:
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0
&(I)t = (Dt < ((5() — (I)t),
(6))
Py=fec.
This equation is equivalent to
0
— Oy — Py = — P2
815 t t t >
Py = f S 53,

which is a particular case of the generalized stochastic Bernoulli— Wick differential equation (4)
by taking k = 2 and A; = &y, By = —dg, Gt = —dp. Then, by Theorem 1, the solution of the
generalized stochastic logistic Wick differential equation (5) is given by

o(-1)
o, = et{f°<—1) 4 (et — 1)50} -
Example3. Let Ay = ady, By = bdy and G; = ceftgéo such that ab < 0 and ¢ # 0. Then the
1

— 1)\ %
C(kk)> 1 dp is given by

b
() ()
con=s{e () (15 H) )

. : : : e o . bt :
where N_ ,:  is a random variable with Poisson distribution with intensity W and E is the
a(1-k) a(l —

expectation.
Proof. Using Theorem 1, the solution of (4) is given by

solution of (4) with f = <

& =K

or, equivalently,

Oy, = (Z, + F)°1F o (D),

where Y; and Z; are given as follows:

Qo

Sl

>d 0o = f(k — 1)tdo (6)
and

t
/(C =52 50 0 (L 1=R)s%0) g
a
0
t

t
—(1-k)°< /e—sie°<2<1—k>$>50ds —(1-k)S /e_akbsdséo
a a
0 0
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(20 (ot s, ~ (B Ve sk
—(1 k)a<bk><e 1)do = == (e 1)6o. (7)
Then we get
(k—1)c, =k, o(1—k)
Zy+ F = 7 (e« —=1)do + f
(k= 1, -, ck—=1). (k=1 -,
= a — 1 = a .
wo Joo+ == o
Therefore, we obtain
1
(k— 1)c>1k _—kb_, _bys
@t = < e (1-Fk)a 50060( a 0)
kb
1 1
(k* ].)C -k _—kb 4 _by (k* ].)C -k __b 4
— (I—Fk)a @ — a(l—k)
< b (& e (50 b (& 50.

But, we know that (see [3])

for « € R and § > 0. Then we have

gy (s ]
L(®,) = E(e—t<(k ;b1)0> o <a(1b—k)>N<1b—k>t> ,

Exampled. Let Ay = ady, B: = bdg and G = ¢dy such that ab > 0 and ¢ # 0. Then the
solution of (4) with f = 0 is given by

5 = <E

or, equivalently,

¢, =FE

or, equivalently,

1

€ —t(1+22(1-k)) a Nok-1), Ik
b ' <b(k: - 1)) X{A(E (k—1))<t} do

1

C (1422 (1-k)) a O\ Mk, ot
L(®)=(E|—ye : <b(k_ 1)> X{A(E (k-1))<t} ’
. . . . N o . b(k—1)t b
where Nu—1): is a random variable with Poisson distribution with intensity ———, A —(k — 1)
a a a
b(k—1
is a random variable which has an exponential distribution of parameter ( ) and independent
a

of Nyx-1), and I is the expectation.
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Proof. The solution of (4) is given by

o, = (2 + F)O(ﬁ) o eo(ﬁyt) = Z:(l%k) o eo(ﬁyt),
where Y; and Z; are given (similarly to (6) and (7)) as follows:
b
Yy = —(k — 1)tdo
a

and

¢
Zi=(1—k)°< /eZ<1k>Sdsao.
a
0
Similarly to the proof of Example 3, we get

b(p_ _9ob1_ _b(p_
e<>Yz :ea(k 1)t50:€ 22(1 k)te o (k l)t(s

Npk-1)
— [ e—t(t+22(1-k) a ot ) s
(e b(k — 1) %

Now, let A<(k — 1)) be a random variable which has an exponential distribution of parameter
a
b

—(k — 1) and independent of Nyx—1)

—1),- Since we have
a a
/ b
_b(k_1)s
IE<X{/\(§(’f—1))<t}) :/a(k e a*b=Dsgs,
0

then we obtain

Z

(1-k)

k— 1)ea(k=Dsgss,

0“\@

t
0/
C C
*E<X{A<§<kfl>><t})‘50 = E(_ EX{A(§<k71>><t}>50~

1
But, we have ®; = Z:(l"“) =

Y = (7, 0 ¢°Y*)°T=% . Then we get

¢ _t(1+22(1—k‘)) a Nb(k—l)t ﬁ
#= |B(=jXiacamen JE( 0 <b(/c—1)> 5

:(E |

¢ yasaaony (@)D ot
—3° ‘ (b(k _ 1)> X{A(L (k=1))<t} 0o
or, equivalently,

L(®,) = (IE

1

c b a Noe—1) =k
_ G —t+22(1-k)) N :
b b(k —1) {A(G (k=1))<t}
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