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A CLASS OF FRACTIONAL INTEGRAL OPERATORS INVOLVING
A CERTAIN GENERAL MULTIINDEX MITTAG-LEFFLER FUNCTION

KJIAC IPOBOBHUX IHTEI'PAJIBHUX OIIEPATOPIB,
IO BKVIIOYAIOTDH JESAKY Y3AT'AJIBHEHY BATATOIHAEKCHY
OYHKUIIO MITTAT-JIE®®DJIEPA

This paper is essentially motivated by the demonstrated potential for applications of the presented results in numerous
widespread research areas, such as the mathematical, physical, engineering, and statistical sciences. The main object here is
to introduce and investigate a class of fractional integral operators involving a certain general family of multiindex Mittag-
Leffler functions in their kernel. Among other results obtained in the paper, we establish several interesting expressions for
the composition of well-known fractional integral and fractional derivative operators, such as (e.g.) the Riemann - Liouville
fractional integral and fractional derivative operators, the Hilfer fractional derivative operator, and the above-mentioned
fractional integral operator involving the general family of multiindex Mittag-Leffler functions in its kernel. Our main
result is a generalization of the results obtained in earlier investigations on this subject. We also present some potentially
useful integral representations for the product of two members of the general family of multiindex Mittag-Leffler functions
in terms of the well-known Fox — Wright hypergeometric function ,¥, with p numerator and ¢ denominator parameters.

Llst cTaTTst B OCHOBHOMY MOTHBOBaHa IPOJIEMOHCTPOBAHUM MMOTEHIIIaJIOM JUIsl 3aCTOCYBAaHb OTPUMAHUX Y Hill pe3yJbTaTiB y
6araTbox MOIYISIPHUX Taly3sX JOCIHIIKEHb, TAKHX SIK MaTeMaTH4Hi, (Gi3ndHi, iIlKeHepH] Ta cTaTHCTHYHI Hayku. OCHOBHA
METa MOJIATaE B TOMY, 100 BBECTH Ta JOCIIAUTH Kiac IpoOOBHUX IHTEIPAIIbHUX OIEPATOPiB, 10 BKIIOYAIOTh JICSKY 3arajbHy
cimM’to GararoinnekcHux ¢yHkuiii Mirrar-Jleduepa B cBoemy sapi. Cepern iHIINX pe3yIIbTariB, SKi OTPUMAaHI y LIl CTATTI,
BCTAHOBJICHO KiJIbKa LIKaBHX BUPA3iB U1 KOMIO3HUIIH BiIOMUX OIEpaTopiB ApoOOBUX IHTETpatiB Ta APOOOBHX MOXiTHUX,
TaKuXx sK (Harmpukian) oneparopu Pimana — JliyBimis qpo6oBux iHTerpana ta moxiaHoi, oneparop I'indepa xpobdosoi moxiz-
HOi Ta ormeparop APOOOBOTO iHTErpaia, SKWH, sSIK 3a3HAYCHO BHUIIE, BKIIOYAE 3araibHy CiM’I0 0araroiHAEKCHHX (QYHKIIN
Mirrar-Jleddnepa y cBoemy sizpi. ITokazaHo, 1110 OCHOBHI BUCHOBKH, HaBEJICHI Y CTaTTi, y3arajibHIOIOTh PE3yJIbTaTH J0-
CIIIKEHB, sIKi Oyiu oTprMaHi paHimre. Takok HaBeIEHO JesKi MOTEHNIHHO KOPHUCHI IHTErpaIbHi 300pakeHHs A1 JOOYTKY
JIBOX WICHIB 3arajpHOI ciM’1 OaratoinaexcHux ¢gyskuiit Mirrar-Jleddmnepa B TepMmiHax BigoMoi rimepreoMeTpuaHol GyHKIIT
doxca—Paiita , V¥, 3 p napamerpamMu YHCEIbHUKA Ta ¢ apaMeTpaMH 3HAMEHHUKA.

1. Introduction and motivation. Over one century ago, in the year 1903, it was the Swedish
mathematician, Magnus Gustaf (Gosta) Mittag-Leffler (1846 —1927) [10] (see also [11]) who introduced
and investigated what is popularly known today as the Mittag-Leffler function F,(z) defined by

o0 n

z
Ea(z)znzzjor(omm, zeC, R(a)>0. (1.1)

In a couple of sequels to [10, 11], Wiman (see [36, 37]) presented a generalization E, g(z) of E,(2)
given by
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oo Zn
= S 1.2
z) nEZOF(O”hLﬁ)’ a,€C, R(a) >0, (1.2)
so that, obviously,

Eo1(z) = Eq(2).

Since the publications of the aforementioned classical works by Mittag-Leffler (see [10, 11]) and
Wiman (see [36, 37]), the Mittag-Leffler function E,(z) in (1.1) and its generalization F, g(z)
in (1.2) have been further generalized and extended in a number of different ways and in many
different contexts. Together with its extensions and generalizations, Mittag-Leffler type functions
have been applied in various research areas such as those in mathematical, physical, engineering
and statistical sciences. The Mittag-Leffler type functions and their related distributions were studied
in [12]. Furthermore, connections among various general families of the Mittag-Leffler type functi-
ons, pathway models, Tsallis statistics, superstatistics and power law and the corresponding entropy
measures were established in [8].

Some of the further extensions of the Mittag-Leffler function F,(z) and the general Mittag-
Leffler function E, 5(z) are worthy of note here. Indeed, apart from the extensions considered by
Srivastava [20], Prabhakar [13] introduced the function Eg 5(2) defined by

[e.e] n

(Mn z
Eg7ﬁ(2):;]?(oyn/-}-ﬁ) H, Oé,,B,’YE(C, éR(a) >O, (13)

which reduces immediately to F, 5(2) when we set v = 1. For a useful interpretation of the
additional parameter ~y in the definition (1.3) and for the connection of the function Eg B(Z) with the
above-defined Mittag-Leffler function E, g(z) itself, one may see the recent work by Fernandez et
al. [1].

An interesting further extension of the general Mittag-Leffler function Eg B(z) in (1.3) was given
by Srivastava and Tomovski [33] as follows:

o0

E5(2) = Z 1‘(5.771)115) %7;, 28,7,k €C, R(k)>0, R(a)>max{0,R(x)—1}, (1.4)

which, in the special case when
k=¢q, ¢€(0,1)UN, and min{R(B),R(y)} >0,

was considered by Shukla and Prajapati [19].
We now recall the following two generalizations of the Mittag-Leffler type functions (see [5]):

Mq

150 3 ey

pg R, a,8,n,0€C, R(a)>0
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and

n
o057, <

. - (1) pn (M) gn
a,ﬁ,y,a,é,p(’z> - T;) (V)an((s)pn F(om + 5),

p,g €ERY, g<R()+p, B0 pv,p0eC, {R(),R(p),R()}>D0.

A general family of the multiindex Mittag-Leffler functions E., , 5. [(aj, Bj);.nzl; z], which is
considered in this paper, was defined and studied by Saxena and Nishimoto (see, for details, [16] and
[17] for the case when € = 0) in the following manner (see also [18]):

> J) 2"

BV (o] = By psel(ag, By 2] =D Wen@en 2" (1.5)
(0,537 )m vok,0,e [\ 55 Pj ) j=15 ™ E
ioPj =0 | |j=1 F(ajn—f—ﬁj) n!

aj,B5,7,k,0,e € C, R(ey) >0, j=1,....m, R Zozj > R(k+¢€) — 1.
j=1

Here (and throughout our presentation) (), denotes the general Pochhammer symbol or the shifted
factorial, since

(1), =n!l, neNy:=NU{0}, N:={1,2,3,...},

defined (for A\, v € C and in terms of the familiar Gamma function) by

1, =0, xeC\{0},
)y = (A +v) _ v € C\ {0} 16
I'(A) AMA+1)...(A+n—=1), v=neN, AeC,

where we assume conventionally that (0)y := 1 and facitly that the I'-quotient in (1.6) exists (see,
for details, [29, p. 16; 30, p. 22]; see also [24, p. 2 and 4-6] and [25, p. 2]).

In many of the recent investigations, the interest in the above-mentioned families of Mittag-Leffler
type functions has grown considerably due chiefly to their potential for applications in some reaction-
diffusion problems and their various generalizations appearing in the solutions of fractional-order
differential and integral equations (see, for example, [22], see also [1, 26]).

Finally, we recall the familiar Fox — Wright hypergeometric function ,¥,(z) (with p numerator
and ¢ denominator parameters), which is given by the following series (see [2, 38, 39]; see also
[7, p. 67, Eq. (1.12.68)] and [29, p. 21, Eq. 1.2(38)]):

P
o (abAl)v"'v(ap’Ap); i szl F(aj +A-7n) 2"
p¥q 1= ol
(B, B, (B B ] = [ T8+ Bym) ™
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_ szl [(aj ) i szl(aj)Ajn o
Hj‘:1 I'(85) n=o szl(ﬁj)Bjn n!’

(1.7)

in which we have made use of the general Pochhammer symbol (\),, A\,v € C, defined by (1.6),
the parameters

O‘jvﬁk‘eca jzla"'apa ]{3:1,...,61,
and the coefficients
Ay,...,A, eRT and Bi,...,B, € RT

such that

q p
1+ZBj_ZAj >0,
Jj=1 Jj=1

with the equality for appropriately constrained values of the argument z.
Remark 1. Upon comparing the definition (1.5) of the general multiindex Mittag-Leffler function

E ks [(aj, Bj);”:l; z] with the definition in (1.7), it is easily seen that

5 .
o0, (%), (0, €); 2|, (1.8

Y,5,0,€ _ O
B 2 = By wse[(ay, Bi)jrs 2] = OO Bron).... (B o)
which clearly exhibits the fact that, not only the general multiindex Mittag-Leffler function
E. k5|, Bj);”:l; z] defined by (1.5), but indeed also all of the above-mentioned Mittag-Leffler
type functions and many more, are contained, as special cases, in the the extensively- and widely-
investigated Fox— Wright hypergeometric function ,¥,(z) defined by (1.7) (see also the work of
Srivastava and Tomovski [33, p. 199] for similar remarks about the much more general nature of the
Fox — Wright function ,¥,(z) than any of these Mittag-Leffler type functions).

Our main object in this paper, we make use of the Riemann — Liouville fractional integral operator
P  and the Riemann - Liouville fractional derivative operator DP -+, which are defined by (see, for
details, [7, 9, 15])

xT

W@ = i [ LSt R >0, (19)
and
A\"/ . _
L)@ = (1) (e, RG>0 n=BEl+L w0
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1100 H. M. SRIVASTAVA, MANISH KUMAR BANSAL, PRIYANKA HARJULE

where [¢] denotes the greatest integer in the real number &.
Recently, Hilfer [4] generalized the operator in (1.10) and defined a general fractional derivative
operator Dgf of order u, 0 < o < 1, and type v, 0 < v < 1, with respect to « as follows:

v(l—p) d ) (1—
(DAY f) (@) = <Ia$ W= (1 “)f)>(fc)- (L.11)

The general fractional derivative operator (1.11) yields the classical Riemann-— Liouville fractional
derivative operator D!, when v = 0. Moreover, when v = 1, (1.11) reduces to the fractional
derivative operator introduced essentially by Joseph Liouville (1809 —1882) in the year 1832, which
is often called now-a-days as the Liouville—Caputo fractional derivative operator (see [0, 34], see
also [3, 27]).

2. A family of integral operators associated with the general multiindex Mittag-Leffler type
function. In this section, we investigate the developments of several interesting properties of the
fractional integral operator (2.3) below, which is associated with the general multiindex Mittag-Leffler
function defined by (1.5).

Our first result in this section is the following theorem.

Theorem 1. The general multiindex Mittag-Leffler function E?O’['::g’;)m[z] defined by (1.5) is an
entire (integral) function of order p and of type o in the complex z-plane, which are given by

1 1 R(k) R(e)
L IR (LT
S Ry ko)1 o\ T, (Rl
Furthermore, the infinite series in the definition (1.5) is absolutely convergent also when
i R(a) = R( ) 150 I szl{%(aj)}m(aj) o
aj)=J9(Kk+e)—1> an z| < R AR .
= {R(k) FRE{R(e) RO

Proof. In our demonstration of Theorem 1, we apply the following asymptotic expansions for the
Gamma function [33, p. 4, Egs. (2.3) to (2.7)] (see also [7]):

]I‘(w—i—iy)\:\/ﬂm\x_éexp<—m—ﬂ[l_S§n($)y]> [1—&-0(;)], r,y R, x— oo,

1 1 1
logl'(z +a) = (era 2> logzz+210g(27r)+0(>,
z

|z| = 00, |arg(z)|<m—¢, J|arg(z+a)|<m—¢ 0<e<m,

and

|z| = o0, |arg(z)|<m—¢, J|arg(z+a)|<m—¢ 0<e<m,
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A CLASS OF FRACTIONAL INTEGRAL OPERATORS INVOLVING ... 1101
where a and b are bounded complex numbers.

First of all, we denote by R denote the radius of convergence of the infinite series in (1.5), which
we rewrite as follows:

o
d,€ n
EVR2S 2] =) cpz
ariml2l = 2 ",
n=0
where, for convenience,

(V)rn(8)en

Cn = " , n € Ny, (2.2)
n! Hj:l F(ajn + B])
so that
R = limsup
n—oo | Cn+1

Then, by virtue of the following hypotheses:

m
aj, Bi,7,k,0,6,2€ C, R(ej) >0, j=1,...,m, and R Zaj > R(k+¢€) — 1,

j=1

we can easily see from (2.2) in conjunction with the above asymptotic expansions for the Gamma
function that

. I'(y+ kn)['(§ + en)
n!T(v)T'(0) H;nzl ['(ajn + B;)

— 0, n— oo,

and

cn | _ (n+1) ( I'(y + kn) (0 4+ en) ) H;.nlmf‘(ajn + o+ 55)
Cnt1 I'(kn+v+k) T(en+6+¢€) I_L:1 C(ajn + ;)
H;‘nzl{%(aj)}%(aj) Jg:l R(aj—r—e)+1
RO PO RO | " — A
00, n — 0o, Z;n:l R(aj) > R(k+€) — 1,
=\ II ((ay)ye) i
ReoPaaEe "7 2 e =Rt -1>0

which leads us to the first assertion of Theorem 1 pertaining to the radius R of (absolute) convergence
of the power series in (1.5) involving (2.1) and also to the assertion that the general multiindex Mittag-
Leffler function E?a“ge) [2] defined by (1.5) is an entire function in the complex z-plane.

7:P3)m

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 8



1102 H. M. SRIVASTAVA, MANISH KUMAR BANSAL, PRIYANKA HARJULE
With a view to determining the order p and the type o of the entire function EE”” 556) [z], we
Q5,05
simply apply the following definitions involving similar limits:

1
p = limsup noosn and o = limsup

—7 1\ {n[cn]p/”}.
n—oo n—oo
log< >

|enl

The involved details in each of these limit evaluations are being skipped here.

We now introduce our general fractional integral operator (2.3) defined below. Indeed, in the
existing literature on the subject, various families of operators of fractional integration (involving, for
example, those with such general classes of functions as the Fox —Wright function ,W,(z) in their
kernels) were investigated rather systematically by (for example) Srivastava and Saxena [32]. Here
we consider the following integral operator:

T

(eniss 0) @)= [@— 0P B oo - 0% et o>a @)

a

a,B,a;,B5,7, k.0, 6,w € C, R(a;) >0, j=1,...,m, min{R(B),R(k)} >0,

Zaj > R(k+e€) —1,

j=1

which contains the general multiindex Mittag-Leffler function E?’”ge) [2] defined by (1.5) in
Q5505
its kernel. In the special case when ¢ = 0 in the definition (2.3), we get the integral operator

ZJI’&’;;O‘ B ) , which was studied by Srivastava et al. [23]. Moreover, upon setting m = 1 and € = 0
J2F7
777

in the deﬁn1t10n (2.3), we get the integral operator &£ a3
Tomovski [33].
Theorem 2. Under the various parametric constraints stated already with the definition (2.3),

which was studied by Srivastava and

let the function @ be in the space L(a,b) of Lebesgue measurable functions on a finite interval [a, b],
b > a, of the real line R given by

b
L(a,6) = { §: IIfls ::/|f(:c)]dx<oo . (2.4)

Then the integral operator 8:4’_7%';620)‘ is bounded on L(a,b) and
VRlag)

where the constant M, 0 < M < oo, is given by

W3, K,0,6;Q0
ga+;(0fjﬂj)m;ﬁ (,0”1 < Mlelly,

(bt ()l |(8)enl (b — a)R)|"
e nzo{% n+B}H T(R(a;)n + R(B;)) n! ' 25)
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Proof. Following the arguments used by Srivastava and Tomovski [33], it is sufficient to prove
that

b| =
W3y, K,0,6Q . _ \B—1 ry;k,0,e o\«
et ol = [| =0 et - 0% et do < oc,

a a

a, B,a5, 85,7, k,0,6,w € C, R(Bj) >0, j=1,...,m, min{R(B),R(x)} >0,

Zozj > R(k+¢€) — 1.

Jj=1

We apply the definitions (2.3) and (2.4) in conjunction with the definition (1.5) of the general
multiindex Mittag-Leffler function Ega”ge) [z]. Upon interchanging the order of integration by means
73 )m
of the Dirichlet formula [9, p. 56] (or, alternatively, Fubini’s theorem), we thus find that

b

K,0,€;00 JK,0,€ o
} a.;_’y’(a]ﬁ] W’B(’DH /|(10 /ﬂ&'—t ‘E'y%ﬁj [w(ﬁ—t) ]‘dm dt
a ¢
b—t
- JK,0,€ a
/\80 /T%(B) 1’E?aj,5j)m(WT Ydr | dt
0
b b—a
§/|90(t) /T%(ﬁ)_l’E(WO’:’g:)m(wTa) dr | dt
a 0
= 1l @l
Y)En en wl|™ a\n .
=X - [ e ) e,
n=0 F( (aj)n+R(Bj)) ™ )

=Mllell, R(B) >0,

where, in view of Theorem 1, the constant 971 is finite and is given by (2.5). This completes the proof
of the boundedness property of the integral operator £ J('; 67; C;m 3» Just as asserted by Theorem 2.

Remark?2. Throughout our investigation, it is facitly assumed that, in such situations as those
occurring in the definitions (1.9), (1.10) and (2.3), the number a in the function space L(a,b)
coincides precisely with the lower terminal a in the integrals involved in the definitions (1.9), (1.10)
and (2.3).

Remark 3. The results obtained by Kilbas et al. [6] as well as the results obtained by Srivastava
and Tomovski [33] can be deduced as special cases of Theorem 2.

Theorem 3. Let

r>a ac€R"=[0,00), 0<pu<l, 0<v<I.

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 8
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Suppose also that

aaﬁ7ajaﬁja’y»'l{vwaéyegc) j:]-v"'vmv éR(a])>O’ j:17"'7m? mln{%(ﬁ)a

and

%(iaj) > R(k+e€) —1.

j=1
Then

(240 =y B, ot — o)) ) @)

N B L XL TR
 T(T() sm (Bj» j)m, (B + A, a); ’

(D2t = @) B, w(t = a)°] ) (@)

(a]7ﬁ_] m

_M N (7., (0, €), (B, @); w(z —a)®
TG T (85 a)ms (B — Aa);

and

(o220 3, e ]

7% N (’77”)7(576)7(/8704)5
T T(yr S (B, 0 )ms (B — 1y )

provided that each member of the assertions (2.6), (2.7) and (2.8) exists.

w(x — a)a] ,

R(k)} > 0

(2.6)

2.7)

(2.8)

Proof. Our demonstration of each of the assertions (2.6) and (2.7) runs parallel to those of the
corresponding known results [6, p. 3839, Theorem 3] (see also [33]), so we shall prove here only

the assertion (2.8). To this end, we have

(D[t = )" B, (= a)°]] ) ()

_ (Da+ |:Z (’Y)rm((s)en ) %:L (t _ a)om-i-ﬁl] ) (x)

n=0 ajn—i_ﬁj

B P e G e I8

“ o W T4 B) e
Z:: szlr(aﬂ”b—l— B]) ' T(an + B — ) (r —a)
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(a:—a)ﬁ_“_l LT (’77”)7(676)7(/670‘)3
L)L (9) " B (B — )

w(x —a)*].

This evidently completes the proof of Theorem 3.
Theorem 4. Under the various parametric constraints and conditions, which are listed already
with the definition (2.3), each of the following composition relationships:

A Y, K,0,6;0 _ pwi,K,0,60
Ia+ga+ (aj75j)mvﬁ Y= ga"‘ (aj7/3j)m76Ia+ ¥ (29)

and

A Y, kK,0,6; Wiy, k,0,€; A
Da+€a+ (a,ﬂﬁj)mvﬁ SO gaJr (ajzﬁj)myﬁD (2.10)

holds true for any Lebesgue measurable function ¢ € L(a,b).
Proof. For convenience, we denote by A the first member of the equation (2.9). Then, if we
make use of (1.9) and (2.3), we have

x u

1 _ — Y,K,0,€ «
A= g J@—ur [ B e 07let) drdu.

QjyP5 )m
a a

We now interchange the order of the ¢-integral and the wu-integral, which is permissible under the
conditions stated already. We thus easily arrive at the following equation after a little simplication:

T T

1 - - K,0,€ o
A = F(A)/ /(CB — u)k 1 (u— t)rB 1 E&’vj’gj)m [w(u — )] du| p(t) dt. (2.11)
a t

Making the substitution v — ¢ = 7 in the equation (2.11), we obtain

z [ z—t

_L A1 ﬁ 1 JK,0,€ a
AF()\)/ 0/(3: t—7) E(7 5 Y [wr)dT | @(t) dt. (2.12)

a

Applying the assertion (2.6) to the right-hand side of (2.12), we get

t Fr-1 (7, %), (6, €), (B, @); N
A= / 3\1/m+1[ 5w (34, ST ]@(t)dt. 2.13)

For convenience, let the right-hand side of (2.9) be denoted by (2. Then, by using the definitions (2.3)
and (1.9), we have

u t

Q- / (u— )P ESS (u— )] 1“(1)\) / (t — 2 o(a) da dt.

a a

Further, upon first interchanging the order of the x-integral and the ¢-integral (which is permissible
under the conditions stated already) and then making the substitution u — t = 7, we easily arrive at
the following equation after a little simplification:

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 8
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u u—=I
1

= — oA=L _B—1 prysk,d.e a
Q_F()\)/ /(u Toa) T BT, lertldT | p(z) de. (2.14)

a

In concluding proof of Theorem 4, we apply the assertion (2.6) in the second member of the
equation (2.14). We thus obtain an expression similar to that in the equation (2.13). This implies that

L NB+A—1
A WY, K,0,€;0 = (u—2z)
Ia—i— (gaJr;(ajw@j)m?fB QD) (U) N / W

Y, K), 5a€ s ,8,04 )

‘U (v, K), (d,€), (B, ) ol — 2| (@) do
(Bj,5)ms (B + A, a);

_ W3, k,0,650 A

—*<5;4ﬁa,5ﬂn“5LH-¢)(U)~ (2.15)

This proves the assertion (2.9).
Our demonstration of the assertion (2.10) runs parallel to that of the assertion (2.9), so we choose
omit the details involved. We thus have completed the proof of Theorem 4.
Theorem 5. Under the various parametric constraints and conditions, which are listed already
with the definition (2.3), each of the following composition relationships:
Diy(eammgs se) = LT esEes o 0<p<l, 0<w<1, (216)
holds true for any Lebesgue measurable function ¢ € L(a,b).
Proof. We start with the left-hand side of (2.16). Indeed, if we make use of the definition (1.11),
we get
. . _n d ) (1— . .
DY (S0 ) = 18 o (I8 P 0 0):

Moreover, if we make use of the result (2.15), we obtain

(1-v)(1—p) pwiy,k,0,6a . (1‘ — t)ﬂ+(1_”)(1—#)—1
(Ia+ gaJr;(aj,,Bj)m;g 90)( ) - / F(V)F((S)

('7’ H)a (57 E)v (ﬂva);
(Bjs j)m, (B4 (1 = v)(1 — p), a);

Now, taking the first derivative of each member of the equation (2.17) with respect to x, we find that

w(z — t)a] o(t) dt. (2.17)

X 3Wpni1 [

F(z — 1)fH0-n)(-p)-2
d (I(lfu)(lfu)gw;’y,n,é,e;a )(CC) _ / (17 t)

Iz ot a+3(aj,B;)miB ¥ L(y)T(9)

(77’%)7 ((5, €), (,8,04);
(Bj’aj)mv (6“’ (1 - V)(l - /‘) - 1’05);
u

Next, by applying the operator +1_“ ) to both members of the equation (2.18) with the help of the
definition (1.9), we have

X S\Ilm—s—l

w(z — t)a] ©(t) dt. (2.18)
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v(1—p) 4 [ (1-0)(1-p) pwiymdca
<Ia+ @(Iﬁ Eatilas By)msB ‘P> ($)>(“)

u

S S PP O Tt o i
T(v(1— p)) /( A a/ (7))L (3)

a

(7, k), (6,€), (B, @);
w(s —t)%|e(t) dt. 2.19
(ﬁj’aj)m’(ﬁ+(1*l/)(lfu)f17a); ( ) (P( ) ( )

X S\Ijm—l—l

We first invert the order of the t-integral and the s-integral (which is permissible under already
stated conditions) and then substitute s — ¢ = 7 in the equation (2.19). We thus find that

v(1—p) d (1=v)(1—p) pw;y,k,0,60
<Ia+ %(Ia—i- EaritasBym ‘P> (”3)><“)

1 1 u u—t
— ot)dt | (u—1— 75)1/(1—u)—17.6+(1—1/)(1—/1)—2
L(y)I©) T'(v(1 —p) a/ 0/

u

(v, k), (d,€), (B, a); of gr — 1 v(1—p)
(Bss ) (B+ (1 =) (1 =) = La); ] = R )) /I0+

a

X 3Won41

(77 /1)7 (57 6), (,3, a);

B [e% 3+ w1 2] t)dt.
( R j)ma( (1 u)(l_ N) 1,:); ]) ()
(2.20)

« (Tm(lu)(lu)zﬂ,m "

In concluding our proof of Theorem 5, we apply the result (2.15) to the right-hand side of the
equation (2.20). We thus obtain

v(1—p) & (- (1-0)(1-p) pwiymb6a
<1a+ @(IH Eatilar.8)mif 9") (“’)>(“)

u

_ 1 w — £)BHA—)(1-p)-1
T OT (I — ) / (w=1) '

a

(7 £), (9,€), (8, ),

w(u —t)* | p(t)dt
(B, )m, (B+ (1 —v)(1 — p), @), (u—1)*|p(t)

X 3Wpp1

_ (70=)A—p) pwiy,kb6a
- (I‘H‘ ga-‘r?(aj:ﬁj)mhg SO) (u).

The proof of Theorem 5 is thus completed.
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Remark 4. If, on the left-hand sides of the equations (2.6), (2.7) and (2.8), we reduce the general
multiindex Mittag-Leffler function to the Mittag-Leffler type function EZZ (z) in (1.4), which was
introduced by Srivastava and Tomovski [33], we get the results obtained by Srivastava and Tomovski
et al. [33]. Moreover, if we reduce the general multiindex Mittag-Leffler function to the Mittag-Leffler
type function Egg(z) in (1.4), which was also introduced by Srivastava and Tomovski [33], in the
integral operator on the left-hand sides of the equations (2.9), (2.10) and (2.16), we are led to the
results obtained by Srivastava and Tomovski [33].

3. A set of integral representations for the product of two general multiindex Mittag-Leffler
functions. A number of earlier authors have developed integral representations for the product of
two orthogonal and other related hypergeometric polynomials. For example, Srivastava [21] gave
an integral representation for the product of two generalized Rice polynomials. In a sequel to the
investigation by Srivastava [21], Srivastava and Joshi [28] presented a general integral representation
for the product of two generalized hypergeometric polynomials. More recently, Srivastava and Panda
[31] derived integral representations for the product of two Jacobi polynomials as well as for the
Kampé de Fériet polynomials in two variables.

In our investigation, we make use of each of the following integral formulas for the Gamma
function I'(z) and the Beta function B(«, [3), especially in demonstration of Theorem 6 below:

[e.o]

Fuy:/éJﬁqdﬂ R(z) > 0, 3.0)

0

M) |

— Oéi — a—1 _ \p-1 .

Bled) =1ha+p ~ [eta- 0P tan minRe),R(E) >0 32)

0

and
1 1 0+)
_ C —z

N@_zm,/ec d¢, |arg(Q)] <, (3.3)

where the contour of integration is a Hankel’s loop which starts at —oo on the real axis in the
complex (-plane, encircles the origin (¢ = 0) once in the positive (counter-clockwise) direction, and
then returns to —oo (see, for details, [35, p. 244 —246]).

Theorem 6. Each of the following integral representations holds true:

1
t’yll_to'l/u(sll_u —1
0

Vsky0,€ 0,K,p,€ _
Eaiym &) ER iy (2) = =

O\H

42T ()T (

(0+) (O+)
( o ~TIw -8
X Wi oEt o w =t

—00 —O0
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m

('Y‘FO',KJ),(p‘i‘(S,G); _.ﬁ aj _AH Aj
xoWq t"u‘w 7 (1 —=t)"(1—u)¢ =t | z|dwd( |dtdu,
(3.4)
max{|arg(w)], [arg(()[} <7, min{R(x), R(7), R(o)} > 0,
min<{ § Zaj , R Zx\j > R(k+¢€) —1,
j=1 J=1
where “—— 7 exhibits the fact that there are no denominator parameters in the Fox— Wright

Sfunction oWy
Proof. By using the definition (1.5), the first member of the equation (3.4) can be written as
follows:

> KT 5)57“ z" > (U)/@n(p)en 2"
E'YOLH ,0,€ (Z) Eo-v"f/vpvve (Z) — m(r)/) ( —_—. (35)
(a5,85)m (Njsti)m ; . aﬂa 4 BJ ' =0 H A n 4 u]) n!

Next, in light of a known result [14, p. 56, Eq. (1)], the right-hand side of the equation (3.5)
would lead us to the following equation after a little simplification:

1

Y, K,0,€ P TR () =
E (2) E (2) T'(7)T(o)T ()T (p)

(@j,8)m (Xjbs)m

2" "\ D(y + k)T + er)D(0 4+ k(n — r))T(p+ e(n — 1))
X Z Z <T> H;nzl P(Oéj’l“-i-ﬂj) H;nzl I’()\j(n—r) +Mj)
1 > 2"

~ T(1)T(0)(6)C(p) T;OF(V +o+r)l(p+6+en) —

" /n\ B(y +kr,0 + k(n—1))B(6 +er,p+e(n—r))
+ 1 , (3.6)
X Z (r) Hj:l L(ayr + B34) szl CAj(n—71)+ py)

In order to conclude proof of Theorem 6, we suitably apply the integral formulas (3.2) and (3.3)
in the right-hand side of (3.6). We thus find that

r=0

1 1
v,K,0,€ TR, P, . -1/ 6—=1r9 _ ,\p—1
Bl GV BT ()= — )T /t (1—1t)° /u (1—u)
0 0

(0+) (0+)
C+ HNJ _H/BJ
N

—00 —00
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0 n " 7ﬁa<r 7]@1)\'(7171")
xZF(v%—a—l—mn)F(p%—é%—en)Z'Z<n>w = ¢ =t ’

n=0 T or=0

57 (1 — ) )y (1 — ) ") do d( dt du

1 1
_ 1 v—1 _ p\o—1 u&—l —u —1
= I ()T (o) T )T () 0/ = 0/ (=’

m

(0+) (0+4) m
/ / e SR
X esTY (e =l =t

—00 —00

xZF(v+0+mn)F(p+5+en)%

n=0

X [ truw =+ (1 —=t)"(1—u)¢ = d¢ dw dt du. (3.7)

The second member of this last equation (3.7) can be interpreted in terms of the Fox— Wright
hypergeometric function with the help of the definition (1.7). This evidently completes the proof of
Theorem 6.

4. Conclusion. The main investigation in this paper involves an introduction and a systematic
study of a general fractional integral operator which contains (in its kernel) the general multi-
index Mittag-Leffler type function E?ajg;)m (z) defined by (1.5). Although this general multiindex
Mittag-Leffler function E?&?:gj)m (z) is contained in the familiar Fox — Wright hypergeometric function
»¥q(2) with p numerator and ¢ denominator parameters, as we have clearly mentioned in the
relationship (1.8) (see Remark 1), it is observed to be an elegant unification of various known Mittag-
Leffler type functions. Some of the main results of our present investigation are shown to provide
generalizations and extensions of the results which were derived earlier by Kilbas et al. [6] as well
as by Srivastava and Tomovski [33].

We conclude our investigation by remarking further that the properties and results, which are
systematically presented here, have the potential to motivate interesting further researches on the
subject of this paper.

On behalf of all authors, the corresponding author states that there is no conflict of interest.
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