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SOME TAUBERIAN THEOREMS FOR THE WEIGHTED MEAN METHOD
OF SUMMABILITY OF DOUBLE SEQUENCE

JNESIKI TAYBEPOBI TEOPEMU J1JIS1 METOJY 3BAYKEHOT'O
CEPEJHBOT'O NMIJICYMOBYBAHHS NOABIMHUX MOCJIIOBHOCTEN

Let p = (p;) and g = (qx) be real sequences of nonnegative numbers with the property that P,, = Zm o Pi # 0 and
j=
Qn = Zk_o gr # 0 for all m and n. Let (Py,) and (@~ ) be regulary varying positive indices. Assume that (umn) is a

double sequence of complex (real) numbers, which is (N, p, ¢; a, 3) summable with a finite limit, where (o, 8) = (1,1),

(1,0), or (0,1). We present some conditions imposed on the weights under which (um,») converges in Pringsheim’s sense.

These results generalize and extend the results obtained by authors in [Comput. Math. Appl., 62, Ne 6, 26092615 (2011)].

Hexait p = (pj) 1 ¢ = (qr) — AificHI MOCTIZOBHOCTI HEBiX’€MHHX YHCeN Taki, Wo P, = Zm o Pi #01Qn =
j=

szo qr # 0 ma Beix m i n. Hexait (Pp) 1 (Qn) — perymsipHo 3MiHHI qomarHi iHgexcu. [IpumycTtumo, mwo (Umn) —

no/BiitHa MOCHiIOBHICTH KoMITeKcHUX (260 aiiicaux) uuce, axa € (N, p, ¢; o, 3) CyMOBHOIO 3i CKiHUEHHOIO MPAHHIIEO, JIe
(o, B) = (1,1), (1,0) abo (0, 1). HaeneHo aesiki yMOBH, 0 HAKIAJCHI Ha BATH, 32 SIKUX (Umn ) 30Ira€THCS B PO3yMiHHI
Ipiarcxeiima. Lli pe3ynpraTi y3araisHIOIOTh 1 PO3IIUPIOIOTH Pe3yabTaTH, oTpuMaHi aBTopamu B [Comput. Math. Appl., 62,
Ne 6, 2609-2615 (2011))].

1. Preliminary results for single sequences. Let u = (u,) be a single sequence of real numbers.
Let p = (p;) be a sequence of nonnegative numbers (pg > 0) with the property that

n
P, ::ijﬁoo, n — 00. (D)
§=0

Throughout this paper, [An]| denotes the integer part of the product An.
We say that a positive sequence P = (P,) is regularly varying of index § > 0 if

Pixn
lim —2 — 2 x>0, )
n—oo n

The relation between sequences satisfying conditions

limint 227 5 1 3)
n—oo P, ’
P,
limsup —— < 1 (4)
n—oo [)\n]

and (2) are discussed in [5] and noted that (3) and (4) are clearly satisfied if (P,) is regularly varying
of positive index.
The nth weighted mean of a sequence u = (uy,) is defined [13] by
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1 n
£ (u) == B > pru.
" k=0

For any sequence u = (u,) we use the notation A, u, = u, — u,—1 for n > 0. Note that any
sequence term with negative index is zero.
For a sequence (u,,), the identity

un — t () = Vi, (Au),

n

1
where V,,(Au) = B Z:_l Py, 1 Aguy, is called weighted Kronecker identity.
X -
A sequence (uy,) is called slowly oscillating [20] if

k
lim limsup max g Ajuj| = 0.
A—=1t nooco n+1§k§[z\n} je=ntl

Under some conditions on the sequence p = (p,,), Canak and Totur [7] have proved that (u,,) is
slowly oscillating if and only if (V,,(Auw)) is slowly oscillating and bounded.

A sequence (u,) is said to be summable by the weighted mean method determined by the
sequence p, in short, (N,p) summable to a finite number s if lim, o tg)(u) = s and we write
un, — s (N, p). The (N,p) summability method is regular under the condition (1) (see [13, p. 57]
for more details). Namely, u,, — s implies u,, — s(N,p) as n — oo. The converse implication
is not necessarily true and it might be true under additional conditions called Tauberian conditions.
Any theorem which states that convergence of a sequence follows from the (N, p) summability with
some Tauberian conditions is said to be a Tauberian theorem.

Now, we give some well-known classical type Tauberian theorems for (N, p) summability method.

Theorem 1 [18]. Suppose that the condition (3) is satisfied. If (uy,) is (N,p) summable to s
and
Pnfl

Pn

Apup > —C, n >0,

for some C > 0, then (uy,) is convergent to s.
Theorem 2 [18]. Suppose that the condition (3) is satisfied. If (uy,) is (N,p) summable to s
and (uy) is slowly oscillating, then (uy,) is convergent to s.

Moricz and Rhoades [18] replaced Tauberian conditions in Theorems 1 and 2 to the following
weaker conditions:

[An]
1
sup lim inf ———— pi(s; —sn) >0
A>] Moo P[/\n} - P, jzn;_l ]( J n)
and
1 n
sup liminf ——— pi(sp —s;) > 0.
0erct n—% Py — Py '_Z i(Sn = 85)
j=[An]+1
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Canak and Totur [6] proved that the slow oscillation of (V;,(Aw)) is a Tauberian condition for (IV, p)

_ P,_
summability. Moreover, they presented that if (u,,) is (N, p) summable to s and — ! AV, (Au) >
Pn

—C for some C > 0, then (u,,) is convergent to s under certain conditions on (F,).

In the literature, several Tauberian theorems have been investigated by Canak and Totur [6, 8, 9],
Borwein and Kratz [10], Moéricz and Rhoades [18], Sezer and Canak [21], Tietz and Zeller [23],
Totur and Canak [24] for the weighted mean method of summability. Recently, generalizations of
weighted statistical convergence and equistatistical convergence via weighted lacunary sequence with
associated Korovkin and Voronovskaya type approximation theorems have been studied by Belen and
Mohiuddine [3] and Mohiuddine and Alamri [16], respectively.

2. The (N, p, g; @, 3) summability method for double sequences. Let p = (p;) and ¢ = (qi)
be two sequences of nonnegative numbers (pg, go > 0) with the property that

Pm::ijﬁoo, m — o0, ®)]

and

n
Qn::qu%oo, n — oo. (6)
A double sequence u = (uy,,) is called convergent in Pringsheim’s sense (or P-convergent) if for
a given ¢ > 0, there exists a positive integer Ny such that |u,,, — L| < e for all m,n > Ny (see
[19]). We note that throughout this paper we always mean convergence in Pringsheim’s sense.

A double sequence (u,y,) is bounded if there exists a real number C' > 0 such that |u,,| < C
for all m,n > 0, and is one-sided bounded if there exists a real number C' > 0 such that u,,, > —C
for all m,n > 0.

The symbols tn,, = o(1) and u,, = O(1) represent that (u,,,) is P-convergent to 0 as
m,n — oo and (uy,,) is bounded as m,n — oo, respectively.

For a double sequence (u,y,), we use the notations following notations: Apu, . = Umn — Um -1
and A, u,,,, = Umn —Um—1,, forall m,n > 1. From these, we easily get Ay, pumn = Ay Aptmn =
A (Aptmn) = Ap (A ) forall m,n > 1.

The weighted means of a double sequence u = (umy,) are the sequence ( Gy (u)), which are
defined by

t(ll)

mn an Z Zpnggk

§=0 k=0

for all m, n > 0.

A double sequence (u;,,) is said to be (N, p, g; 1,1) summable to a finite number s if (t%lq) (u))
converges to s; in symbols, Uy, — s (N,p,q;1,1).
The (N, p,*;1,0) and (N, *,q;0,1) means of the sequence (u,,,) are defined respectively by

ton 10) iju]n and t(01 Q Z QkUmk
n

for all m,n > 0.
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A double sequence (u,,) is said to be (N,p,#;1,0) summable to a finite number s if
limyy, 500 (10) n (u) = s. In the light of the discussion above, the (IN,%,¢;0,1) summability is
defined analogously.

Every P-convergent and bounded double sequence is (NN, p, ¢;1,1) summable to its P-conver-
gence, but the converse of this implication is not true in general. Namely, bounded and (N, p, ¢; 1,1)
summable a double sequence may not be P-convergent. We can give an example of a double sequence
which is (N, p,¢;1,1) summable and bounded, but not P-convergent as follows:

Example1. The sequence (umn) = ((—1)™") is bounded and is not P-convergent. But it

is (N,p,q;1,1) summable to 0. Indeed, from the definition of (IN,p,q;1,1) means, if we take
p = q = 1, then we easily get lim;, 00 t(n)( ) =0.

In [5], Chen and Hsu obtained necessary and sufficient conditions under which u,,,, — s follows
from up, — s (N, p, ¢; a, 3), where (o, 8) = (1,1),(1,0), and (0,1).

Several particular cases of the weighted mean methods of double sequences have been investigated
by Moricz [17], Baron and Stadtmiiller [2], and Stadtmiiller [22].

Moricz [17] obtained necessary and sufficient conditions under which convergence of () in
Pringsheim’s sense follows from (C, «, 8) summability of (), where (o, 8) = (1,1), (1,0), and
(0,1).

Baron and Stadtmiiller [2] studied the relations between power series methods, weighted mean
methods and convergence in ordinary sense for double sequences. In particular, they proved that
analogues of Landau’s two-sided conditions for double sequences are Tauberian conditions for the
weighted mean method (N, p, ¢; 1, 1), where P and Q are regularly varying sequences.

In [22], Stadtmiiller established the relations between weighted mean methods and convergence in
ordinary sense for double sequences and he obtained a Tauberian theorem for (C, 1,1) summability
method which includes a classical Tauberian theorem of Knopp [14] as a special case of his results
and generalized theorems due to Moéricz [17].

Moricz [17] introduced the following slow oscillations in different senses with respect to the
indices: A double sequence () is said to be slowly oscillating in sense (1,1) if

j k
i Z Ar,surs

r=m+4+1 s=n+1

lim limsup  max
A—=1t mn—oo m+1<j<[Am]
n+1<j<[An]

A double sequence (uy,,) is said to be slowly oscillating in sense (1,0) if

Z Aptlpy| =

r=m+1

lim limsup  max =0.

A—1+ m,n—00 m+1<y< )\m]

A double sequence () is said to be slowly oscillating in sense (0, 1) if

Z Al

Note that every P-convergent sequence is slowly oscillating in senses (1,1), (1,0), and (0, 1).
However, the converse is not necessarily true. For example, the sequence (um,) = (logmlogn) is
slowly oscillating in sense (1,1) and is not P-convergent. Indeed, we have

lim limsup max
A—1+ m,n—00 n+1<]< )\n]
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k

J
Z Z Ar,surs

k
= |log jlog k —log j log n —log mlog k+log mlogn| = log< >log< >
r=m+41 s=n+1

Hence we get

max Z Z Ay sUrs 10g<[>\m}>10g<[>\n]>.
m+1<]<[>\m] B m n
n+1<k<[An]

It follows from the last line that (logmlogn) is slowly oscillating in sense (1, 1).
We say that (u.,y,) satisfies weighted analogues of Landau’s condition in senses (1,0) and (0, 1)
if there exists mq > 0 such that

P,_
D 1Amumn = 0(1)7 m,n > mi, (7)
Qg_l Aptmn, = O(1), m,n > mq, (8)

respectively. It is clear that if (7) and (8) hold and (P,,,) and (Q,,) are regularly varying of positive
indices, then () is slowly oscillating in senses (1,0) and (0, 1), respectively.
We define the weighted de la Vallée Poussin means of a sequence () as follows: if A > 1,

[Am]  [An]

1
Tmn(u) = )(Q D] — Qn Z Z DjqrUjk,

(P[)\m] o j=m+1k=n+1

and if 0 < A < 1,

1
< =
o (1) (P — Pram)) (Qn — Q[)\n}) Z Z Prdktin

=[Am]+1 k=[An]+1

for sufficiently large m,n > 0.

In this paper, we extend the results obtained by Canak and Totur in [6] to double sequences and
prove that classical type Tauberian theorems are corollaries of our results.

We should mention the following novelties of the present paper. Certain conditions on the sequence
(tumn) or some other sequence related to (u,,,) are sufficient conditions for (N, p, ¢;1,1) summable
of (Umn) to be P-convergent. We prove some classical type Tauberian theorems for the (N, p, ¢; 1,1)
summability method. Therefore, classical type Tauberian theorems such as Hardy — Landau’s theorem
[12, 15] and Schmidt’s theorem [20] for the (N, p, ¢; 1, 1) summability method are corollaries of our
two main theorems.

3. Lemmas. In this section, we present the following lemmas which will be used in the proof of
our main theorems.

The weighted Kronecker identity for single sequences is extended to double sequences in the
following form.

Lemma 1.

i = ting) () = £0,) () + 500 (w) = VD (Aw),

1 o
Pan Zj:l Zk’:l Pj_le_lAj,kujk.
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Note that the sequence (Vn(zlnl)(Au)) is the sequence of (N,p,q;1,1) means of the sequence
P,— _
< m lQn lAm,nUmn )
Pm qn

Proof. By applying the Abel transformation for double sequences (see [1]), we have
Umn — t'grlz?z) (u) - tgg}z) (u) + tq(‘rlnll) (u)

1 m n m n

= W (Panumn —Qn ijujn - Py, Z qkUmk + Z Zu]k)
mn 4=0 k=0 =0 k=0

1

m n
PO, Z ijQk(umn — Ujp — Umk + ujk)

§=0 k=0

Z ij% [(umn — Umk) — (Wjn — “jk)]

§=0 k=0

1
Pan

B Plen D> B 1 au(um — wi)

j=1k=0

1 m n
= Z Z Pj 1Qr 1A g
PmQTL

j=1k=1
Remark 1. Similar to the weighted Kronecker identity, we can obtain

Unnn — toe) (1) = V0O (Au), )
10 1 m
where V#m)(Au) = B ijo P;_1Ajujy, and
U — 109 (u) = VOD(Aw), (10)

1 n
where VW(%I)(AU) = 0. Zk:@ Qr—1Ak U
Proofs of (9) and (10) are similar to that of Lemma 1. We omit it here. See [4] for the different
proof.
Note that the sequences (VT,(JT?) (Au)) and (V&%)(Au)) are the sequence of (NV,p,x*;1,0)

P, _ _
means of the sequence m—1 A umn, | and the sequence of (IV,*,¢; 0, 1) means of the sequence
m
<Qn_1 Anumn) , respectively.
dn
In the next lemma, we give relations between the sequences (V,%l,?)(Au)), (V,%%)(Au)) and
(Vn(zlnl) (Au))

Lemma 2. The following identities are satisfied:
Vi (AVOD(Aw)) = VED (Aw)

and
VIO (AVUIO(Aw)) = VD (Au).
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Proof. From the definition of the sequence ( n%?)(Au)), we have

Ve (AV O (Aw)) = VD (Au) — 50 (VO (Au))
— i — 190 () — 49 () + £11) (w)
= V().

The proof of the second identity is similar to that of the first one. So, we omit the details.
Lemma 3. The following identities are satisfied:
() P A9 () = VA (),

m

(i) 1 A0 () = VD (&),
an
Proof. (i) Taking backward difference of the sequence tﬁ,{%) (u) with respect to m and applying

the Abel transformation for double sequences (see [1]), we have

A t(lo)( Zp]u]n

m—1

1 m
:FZ u]n— PjUjn
§=0

P, =0

1 m—1 m—1 m—1
= ——— P Z Pjljn + P 1PpmUmn — Prn—1 Z PjUjn — Pm Z bjujn
Pumfl =0 j=0 7=0

From this, we obtain

p
AmtGo) (u) = ﬁml ZPJ 18 jujn = PmTian(#))(AU)'
The identity (ii) can be verified in a similar way.
We note that the following lemma is given by Fekete [11]. We give a different proof for it.

Lemma 4. Let (uy,y,) be a double sequence. For sufficiently large m and n,
(1) if A > 1, then

P
i — £1D) (3) = m) @ an) (

mn

(11) (11) (11)
g () =t () = 01 ) + €00 ()

L Q
[)\m] 11) [)\n] (11)
+ Py — Py, (t[(/\m],n(u) - t%rlz) (U)) + m (tm,[)\n] (u) — tg}l) (u))

[Am]  [An]

1
N (P[)\m} )( Qn Z Z quk’ Ujk — umn)

j=m+1k=n+1

ISSN 1027-3190. Vkp. mam. ocypn., 2023, m. 75, Ne 9
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(1) 0 < A <1, then

Pom@
LN [Am] < [An] (1), _ 4(11) _ (1 (11)
P Q
[Am] (1), _ (1) [An] (11) (11)
* Pm - P[)\m] (tmn (U) t[)\m],n(u)) * Qn - Q[)\n] <tmn (U) ' [)\n]( ))

1
+ _ _ Z Z ijk(umn - ujk:)'
(P = Pom)) (Qn — Qpany) D1 k=D 1

Proof. (i) By the definition of the de la Vallée Poussin means of (t,,) for A > 1, we have
[Am] [An]

> () = 1 1

(P m) — B j=m+1 k=n+1

1 Am] m
= (P[)\m] - Pm)(Q[)\n] —Qn) (Z ;}) (% Z)]pj(ﬂfujk

[Am] [An] [Am] n
1
= DD pikug = D D Pidkttik
(P[)\m] - Pm)(Q[)\n] - Qn) =0 k=0 =0 k=0

m [An]
- Z ijqwﬂc + Z ZP;Qk%k)

Jj=0 k=0 j=0 k=0

Therefore, we get

1
) =
(u) (Pom) — Pm)(Qpan) — @n)
x(Ppm]Q[M]t&ii]M(u) —P[Am]Qnt&ii]m(u) ~ PuQput's ’M]( ) 4 PrQntH (u ))
and
P)\m]Q[)\n] (11)
T (u) = [ t
mn (11 (Poxm) = Prm) (Qpan) — Qn) 1) ()
Pim) Q) (11) Pom) a1 }
— t u) — ——t U
_(P[)\m] - Pm)(Q[)\n] - Qn) [)xm},n( ) P[)\m] — Py, [)\m],n( )
P @ Q }
[Am] ¥ [An] (11) [An] (11)
— t u) — —— ¢ U
By — B @pug — @) ) ™ = @ ol ()
N Pom) Q) pan gy Tl an

L (Poam) = Pn)(Qpan) — @n) ™
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940y 4 ) (u)} .

_Q[)\n] —Qn mn
The difference 7,,,, (u) — ¢ (u) can be written as
Pim)Q
> ()N [Am] < [An] (11) _,an ety (11)
Tmn(u) tmn (u) - (P[/\m] — Pm)(Q[)\n] _ Qn) (t[/\m},[)\n] (u) t[)\m],n(u> tm,[)\n] (u) + tm,n (u))
Pom) (1) (11) Qun] (1) (11)
+ m (t[,\m]vn(u) —ton (U)) + m (tm,[m] (u) =t (U)>-
(1)
It follows from the identity
1 Am]  [An]
Umn = Tr?zn(u) - p'Qk(u ik — umn)
(Pom) = Pm) (Qpan) — @n) jzm;m:znjﬂ T
that
Umn =ty (W) = (T (1) = i) (u) — Pk (Ujk — tmn)-
(Piam) — Pm) (Qpan) — Qn)j%l kzn;d T
The proof is completed by using the identity (11).
The formula (ii) can be verified in a similar way.
Remark?2. In analogy to Lemma 4, we have the following identities:
(i) for A > 1,
Pim] (10) 1 <@
U — o) (1) = Pol — P (t[km},n(u) — t{M0) (U)) " P — P Z Pj(Ujn — Umn),
j=m+1
(i) for 0 < A < 1,
e = 1000 = 5 (1000 107 (1)) + 5 3y (a — ).
mn Pm — P[)\m} mn [Am],n Pm o P[/\m} e J J
j=[m

We can show the identities as in the proof of the corresponding lemma for single sequences in [6].
We do not give details. Moreover, we note that we can represent the difference ., — tg,%) (u) in a
similar way above.

Lemma 5. Let (P,,) and (Q.) be regularly varying of index .

() If (umn) is (N, p, *;1,0) summable to s and the condition - Apmn > —C' is satisfied

m

for some C' > 0, then (up,y,) is P-convergent to s.

(i) If (umn) is (N, *,q;0,1) summable to s and the condition @ L Aptimn > —C'is satisfied

an

Sor some C > 0, then (Upy,) is P-convergent to s.
Proof. The proof of Lemma 5 can be done by the similar technique as in the proof of Theorem 3.
So, we omit it.

ISSN 1027-3190. Ykp. mam. ocypn., 2023, m. 75, Ne 9
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Lemma 6. Let (P,,) and (Q,) be regularly varying of index 0.

() If (umn) is (N, p,*;1,0) summable to s and (uny,) is slowly oscillating in sense (1,0), then
(Upp) is P-convergent to s.

(1) If (umn) is (N,*,q;0,1) summable to s and (upy) is slowly oscillating in sense (0,1),
then (Upy,) is P-convergent to s.

Proof. The proof of Lemma 6 can be done by the similar technique as in the proof of Theorem 5.
So, we omit it.

4. A one-sided Tauberian theorem for double sequences. In this section, we extend Hardy —
Landau type Tauberian theorem given for single sequences to double sequences. Moreover, we
establish a one-sided Tauberian theorem under some conditions on the sequence (Vn(fnl) (Au)) for the
(N,p,q;1,1) summability method.

Theorem 3. Let (P,,) and (Qy) be regularly varying sequences of index d, and suppose that
(Umn) is bounded. If (umy) is (N, p,q;1,1) summable to s and the conditions

Pm Qn 1

ANV (A > 0, AL VD (AW > —C (12)
Pm qn

5 LAV (Au) > —C, On-t1 VO (Aw) > —C (13)
Pm Gn

are satisfied for some C > 0, then (up,y) is P-convergent to s.

Proof. Since (umy) is bounded and (N, p, ¢;1,1) summable to s, ( ) (u)) is P-convergent to

s. We know that (N, p,q;1,1), (N, p,*;1,0) and (N, *, ¢; 0, 1) summability methods are regular, so

( an (w)) is (N, p,q;1,1) summable to s, ( (1 (u)) is (N, p,q;1,1) summable to s and (t%?}) (u))

is (N, p,q;1,1) summable to s. It follows from Lemma 1 that
(VTSLlnl)(Au)) is (N,p,q;1,1) summable to 0. (14)
If we replace uyy,, by Vrgnl)(Au) in Lemma 4(i), we have
Vi (Bu) — ) (VD (Au)

_ P[/\m]Q[)\n]

—t00 (v<11>(Au)) + 100 (VI (Auw))

(2 V300 ~ 2, (70

[Am],n

P
_ el (,00) (11) (1) (1 (11)
* P[/\m} — P (t[)\m],n (V (Au)) [N (V (AU)))

Q[/\n] 11
g (S (VO w) D (V0 (a))
 (Pm) — P)(@an) — @n) 2 Zpa% (Vi (aw) = VD (Aw)). (15

j=m+1 k=n-+1

Since (P,,) and (Q,,) are regularly varying of index J, it is plain that for all A > 1 and sufficiently
large m,n > 0,

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 9
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1 P @
A < bl 3\

2()\5 — 1) - P[)\m] — P, — 2()\‘S — 1)’ (16)

N Qo 3N
2()\6 — 1) B Q[/\n] —Qn 2(}\5 - 1)

By (14), (16) and (17), for all A > 1, we obtain

(17

Pom@Q
. am] &[An) (11) (11) _ 1) (11)
o (Pl — Pro) (@ — @) (o (VP A0) = 300 (VD (M)
—t D (VI (Aw)) + tg,?(v(“)(m))) =0, (18)
P

. P an (11) (1) (1(11) _

I ey (t[)\m]’n(v (Aw)) — D (V (M))) =0, (19)
and
Q[,\n (11) (11) (11) (1/(11) _

Taking lim sup of both 51des of the identity (15) as m,n — oo, we get

lim sup (V(H)(Au) ¢(11) (V(H)(Au)))

m,n—0o0
Pom)Q
i [Am] [’\”] (11) (11) () (11)
< lim sup t v (Au " v Ay
(11)
~tin o <v<“><Au>> + tﬁ,w(vmmu»)

Hlimep £ (00 (VO (aa) D (V0D (Aw) )

m,n—00 P[)\m}

L)

+ lim sup Qi) ]

ﬁ( (VD (Aw)) — 1D (V<11>(Au)))
m,n—oo n n

[An]

[Am]
. 1 ) (11) (11)
1 _ E E V. A % A )
H»n Sup( (P[,\m] — Pm)(Q[)\n} - Qn) quk( " (A | U)))

j=m+1k=n+1

Taking (18), (19), and (20) into account, we have

lim sup(V( )(Au) (1}3 (V(H)(Au))>

m,n—o0

Am]  [An]
. 1 (11 11
< limsup ( Pl — Po) (@] — @) Z Z Pjdk V]k (Au) — V(n)(AU))> .

m,M—>00 j=m+1 k=n+1

Hence, we conclude by the condition (12) that

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 9



SOME TAUBERIAN THEOREMS FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY OF ... 1287

lim sup (V(H)(Au) (1£)(V(11)(Au)))

m,n—0o0

[Am]  [An]
1
< limsup| —
= p( (Povn] — Pr) (@) — @) 2 D Pk

=300 j=m+1 k=n+1

(ZAVM ZAV(” Au>>

r=m+1 s=n+1

[Am)] [An] j k
1 Dr qs
< C'lim sup pP;q +
(Pom) — Pm)(Qpan) — @n) 2 2 i k( 2 P 2 Q )

m,m—r00 Jj=m+1k=n+1

for some C > 0. Therefore, we obtain

lim sup (V(H)(Au) (11)(V(11)(Au))>

m,n—0o0
[Am]  [An]
1 Qk - Qn
< C'lim sup Pid ( = )
m,n—00 (P[Am] - m)(Q[An] B Q" j Zm;&—l kzng-l - P @n
[Am]  [An]
. P)\m] Q [An] — @n 1
< Clim sup( ) Pid
m,n—00 Qn (P[)\m] - Pm)(Q[/\n] — Q) j ;&-1 k;—«—l -
P n
= C'lim sup( Am] Q An] 9 >
m,n—o0 Qn

Since (P,,) and (Q,,) are regularly varying sequences of index ¢, we get

lim sup(V( D(Aw) — {1 (V(H)(Au))> <20(X\° —1).

m,n—o0

Taking the limit of both sides as A — 17, we have

lim sup (V(ll)(Au) “Q(V(H)(Au))) <0. (1)

m,n— 00

In a similar way, using Lemma 4(ii), we obtain

lim inf (VﬁTP(Au) — ¢ (V<11>(Au))) > 0. (22)

m,n—o00
By the inequalities (21) and (22), we have
VD (Au) = o(1). (23)

Since (umyn) is (N,p,¢;1,1) summable to s, then (52})@)) is (N,p,*;1,0) summable to s.

Moreover, (tmn (w)) is (N, *,¢;0,1) summable to s. As a result, we get that ( (01)(V(10)(Au))) is
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(N,p,;1,0) summable to 0 by the identity (9) and (tﬁiﬁ) (V(Ol)(Au))> is (N, *,¢;0,1) summable
to 0 by the identity (10).
Using the identity (9), we obtain

Pm—l Pm—l Pm—l

P ARVOD (Au) — At GO (VO (Aw)) = ApVED (Aw).
Pm Pm Pm
By (23) and (12), Lemmas 2 and 3(i), it follows that
mel

Pt v () > —c
Pm

P— .
for some C' > 0. Moreover, . LN (V(Ol)(Au)) > —C for some C' > 0. Since the sequence

<t£231)(v(01)(Au))) is (N, p,*;1,0) summable to 0, then we get that ( oy (V(Ol)(Au))> is P-

convergent to 0 from Lemma 5(i). Therefore, we obtain that (VTSL%) (Au)) is (N, *,¢;0,1) summable

to 0. By condition (13) and Lemma 5(ii), we have
VO (Au) = o(1). (24)
Similarly, from (10), (23), Lemmas 2 and 3(ii), we obtain

Onatn a0 Ay > —¢
dn

Qn—l

for some C' > 0. Moreover,

Antﬁi?(v(m)(m)) > —(C, for some C' > 0. Since the sequence

dn

(%2)(V(10)(Au))) is (N, p,*;1,0) summable to 0, then we have that (tgg)(V(lo)(Au))) is P-
convergent to 0 from Lemma 5(ii). Hence, we obtain that (Vélr?)(Au)) is (N,p,*;1,0) summable
to 0. By condition (13) and Lemma 5(i), we get

V.10 (Au) = o(1). (25)

The proof is completed by using Lemma 1 by (23), (24), and (25).
The following corollary is a version of the Hardy-Landau theorem for the (N,p,q;1,1)
summability method given by Chen and Hsu [5].
Corollary 1. Let (P,,) and (Q,) be regularly varying of index &, and suppose that (uyy) is
bounded. If (upy,) is (N, p,q;1,1) summable to s, the conditions
mel
Pm
Qn—l
an

ApUmpn > -C,

Aptump > —C

are satisfied for some C > 0, then (Up,y,) is P-convergent to s.

Proof. Since (up,y,) is (N,p,q;1,1) summable to s, (tg,lwll)(u)) is P-convergent to s. If we

apply a similar calculation for VW(Llnl)(Au) as in the proof of Theorem 3 to the sequence (), one
can easily obtain that (u,,,) is P-convergent to s.

If we take p,, = ¢, = 1 for all m, n in Corollary 1, we present the following classical Tauberian
result for the (C, 1, 1) summability.
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Corollary2 [17]. Suppose that (Umy,) is bounded. If (umyn) is (C,1,1) summable to s, the
conditions

MApUmpy > — C,

nA\,Umn > —C

are satisfied for some C > 0, then (up,y,) is P-convergent to s.

Finally, the following theorem can be given in this section.

Theorem 4. Let (P,,) and (Q,,) be regularly varying of index §, and suppose that (upy) is
bounded the conditions (12) is satisfied. If (umy) is (N, p, *;1,0) summable to s and (N, *,q;0,1)
summable to s, then (upy,) is P-convergent to s.

Proof. The conditions that () is (N, p, *;1,0) summable to s, and (N, x,q;0,1) summable
to s imply that (u,) is (N,p,q; 1,1) summable to s. We obtain that (V( )(Au)) is P-convergent

to 0 by condition (12) and Lemma 4 as in the proof of Theorem 3. Since the sequences ( 7(7112) (u))

and ( o )(u)) are P-convergent to s, then the proof is completed by Lemma 1.

5. A Schmidt’s type theorem for double sequences. In this section, we obtain some new
Tauberian theorems under some conditions related to the oscillatory behavior of a double sequence
( T,(mlnl)(Au)) or (Umn).

Theorem 5. Let (P,,) and (Q,) be regularly varying of positive index 6, and suppose that
(Umn) is bounded. If (wmy) is (N, p,q;1,1) summable to s and (V&”(Au)) is slowly oscillating
in senses (1,0) and (0,1), then (upy,) is P-convergent to s.

Proof. Since () is bounded and (N, p, q;1,1) summable to s, it can be verified in exactly

the same way as in Theorem 3 that ( #},p(Au)) is (N,p,q;1,1) summable to 0.

If we replace u,, by Vn%l) (Aw) in Lemma 4(i), we obtain

Vi (Au) — ) (VD (Au))

Pim) @
= Am] 2] (11> (11) (1) (y(11)
—t(ll[)m] (V(“)(Au)) + i) (V(11>(Au)))

P
N %(t(n) (V(H)(Au)) _ t%}z) (V(ll)(Au)))

Q] (11) (11) (11) (1,(11)
+ Q[W_Qn(tm’[m (VI (Aw)) =t ) (V (Au)))

Am]  [An]

1
~ E = PG =G 2 2 PV (dw) — VD)

j=m+1 k=n+1

for A > 1. From this, we get
VD (Au) — 1) (VI (Aw)|
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Pinm Qg

N ’ (Piam) = Prm) (Qprn) — @) (t&%’[w (VE(Aw) - t&%’”(v(m(m))
(VI B0) R (VO )|
+ %(f&i’zm(w D(Au)) — <11>(v<11>(Au)))‘
+ Q[S][Af]Qn (tgrlL,l[))\n] (VI (Auw) - t%}l)(v(n)(AU)))‘
R )1(@ —— jglkimk Au) — VD (A 26)

Since the sequence (t%}l)(v(u)(Au)D is P-convergent, (P,,) and (@) are regularly varying of

positive indices, then the terms on the right-hand side of the last inequality vanish.
From the last term on the right-hand side of the inequality (26), we have

[Am)] [An]

S Y vy (A — VD (Aw)

j=m+1k=n+1

1
 (Pon) — Pn)(@Qpy — @n)

ml [wn)

1
= (Pom) — Pm)(Qpan) — @n) 2 2w

j=m+1k=n+1

ZAV},} Au) ZAV” Au)

)

r=m-+1 s=n+1
and then
1 [Am]  [An] (1)
_ Pigr (Vi ' (Au) = V.5 (Au))
(Pom) = Pm)(Qprn) — @n) j ;&—1 kzn;rl ’
(11
= m+1rgja§[xm Z A Vrk n+1rgl?§/\n] Z BeVms (B

=m+1

Taking lim sup of both sides of the inequality (26) as m,n — oo, then we obtain

lim sup| V(D (Aw) — {11 (V(H)(Au))‘
m,n—o0
> Ay

T rk (Au>

m—+1

Z AV11 (Au)

4+ limsup max

<limsup max
m,n—00 n+1<k<[)\n]

™m,n—00 m+1<]<[/\m}

Therefore, taking the limit of both sides as A — 11, we get
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lim sup| V(D (Au) — {11 (V(H)(Au)) ‘

m,n—0o0

< lim limsup max
A—1t m,n— 00 m+1<5< )\m]

Z AV (Bu >|
r=m+1

Z AV (Au)|.

4+ lim limsup max
A—1t m,n— o0 n+1<k<[z\n

Since (V,%lnl)(Au)) is slowly oscillating in sense (1,0) and (0, 1), then

lim sup|V,(11 (Au) — O}Q(V“”(Au))‘ <0.
m n—>00
Hence, we obtain

VD (Au) = o(1). (27)

On the other hand, if (umy) is (N,p,q;1,1) summable to s, then (;g;)(u)) is (N,p,*;1,0)
(10

summable to s. Moreover, (mn) (u)) is (N,*,q;0,1) summable to s. Therefore, we get that
( #l%)(Au)) is (N, p, *;1,0) summable to 0 by the identity (10), and (Vi (10 )(Au)) is (N, *,q;0,1)
summable to 0 by the identity (9).

Since the boundedness of the sequence (uy,,) implies the boundedness of the sequence

( w(llnl)(Au)), it follows from Lemmas 2 and 3 that ( ﬁ,llg)(V(Ol)(Au))) is slowly oscillating in

sense (1,0). Using the identity (9), we have
Vi) (Au) =t (VO (Aw)) = VD ().

Hence, we have the slow oscillation of the sequence (V,%%)(Au)) in sense (1,0). Therefore, we
obtain
Vi (&) = o(1) (28)

by Lemma 6(i). Similarly, since the sequence ( n(m)(Au)) is P-convergent and bounded, then

( n(ll,?)(Au)) is slowly oscillating in sense (0, 1) by Lemmas 2 and 3. Hence, we get

V09 (Au) = o(1) (29)

by Lemma 6(ii).

Lemma 1 completes the proof by (27), (28), and (29).

The following corollary is a version of the generalized Littlewood theorem for the (N, p, ¢; 1,1)
integrability method given by Chen and Hsu [5].

Corollary3. Let (P,,) and (Q.) be regularly varying of index 6, and suppose that (umy,) is
bounded. If (umy) is (N,p,q;1,1) summable to s and (up,y,) is slowly oscillating in senses (1,0)
and (0,1), then (unmy,) is P-convergent to s.

Proof. Since (umy) is (N, p,q;1,1) summable to s, it is clear that (tﬁi}} (u)) is P-convergent

to s. If we apply similar calculation for ( 7&1,% (Au)) as in the proof of Theorem 5 to the sequence

(Umn), we conclude that (u,,,) is P-convergent to s.
If we take p,, = ¢, = 1 for all m,n in Corollary 3, we present the following classical Tauberian
result for the (C, 1, 1) summability.
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Corollary 4 [17]. Suppose that (umy) is bounded. If (umy) is (C,1,1) summable to s and
(umn) is slowly oscillating in senses (1,0) and (0,1), then (umy) is P-convergent to s.

Finally, the following theorem can be given in this section.

Theorem 6. Let (P,,) and (Qy,) be regularly varying of index d, and suppose that (upy) is
bounded. If (upmy,) is (N, p,*;1,0) summable to s, (N, *,q;0,1) summable to s, and ( T,(mlnl)(Au))
is slowly oscillating in senses (1,0) and (0,1), then (Upmy) is P-convergent to s.

Proof. The conditions that (u,,) is (N,p,*;1,0) summable to s, and (N, *,¢;0,1) summable
to s imply that (uy,) is (N,p,q;1,1) summable to s. We obtain that (Vn(llnl)(Au)) is P-convergent
to 0 by the slow oscillation of ( é%)(Au)) in sense (1,0) and (0,1) and Lemma 4 as the proof of

Theorem 5. Since the sequences (tﬁ?}(u)) and (tﬁ,%) (u)) are P-convergent to s, then the proof is
completed by Lemma 1.
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