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COHOMOLOGY AND FORMAL DEFORMATIONS
OF n-HOM -LIE COLOR ALGEBRAS

KOI'OMOJIOI'Il TA ®OPMAJIbHI JIE®GOPMAIIIT
AJITEBP KOJIBOPIB nn-XOMA -JI1

The aim of this paper is to provide a cohomology of n-Hom-Lie color algebras, in particular, a cohomology governing
one-parameter formal deformations. Then we also study formal deformations of the n-Hom-Lie color algebras and
introduce the notion of Nijenhuis operator on a n-Hom-Lie color algebra, which may give rise to infinitesimally trivial
(n — 1)-order deformations. Furthermore, in connection with Nijenhuis operators, we introduce and discuss the notion of
product structure on n-Hom-Lie color algebras.

Mera wi€i cTaTTi — BU3HAYUTH KOTOMOJIOTIIO aaredpu koipopiB n-Xoma —Jli Ta, 30Kkpema, KOrOMOJIOTi10, 0 Kepye hopmab-
HHMH OJIHOIIapaMeTpUIHUMH Nedopmanismu. KpiM Toro, BuB4atoThcs opMmaibHi qedopmanii anredpyu konpopiB n-Xoma —
JIi Ta BBeneHo moHATTS oneparopa HoiieHraiica Ha anre0pi koibopiB n-Xoma — JIi, 1110 Moske mpuBecTH A0 iH}IHITE3NMATBHO
TpuBianbHOI Aedopmanii (n — 1)-ro nopszaky. Kpim toro, y 38°s13Ky 3 oneparopamu HoileHraiica BBeeHO Ta 06TOBOPEHO
MOHATTS CTPYKTYpH NOOYTKY Ha anreOpax KoibopiB n-Xoma—JIi.

1. Introduction. The generalization of Lie algebra, which is now known as Lie color algebra
was introduced first by Ree [22]. This class includes Lie superalgebras which are Zs-graded and
play an important role in supersymmetries. More generally, Lie color algebras play an important
role in theoretical physics, see, for example, [26, 27]. Montgomery proved in [21] that simple
Lie color algebras can be obtained from associative graded algebras, while the Ado theorem and
the PBW theorem of Lie color algebras were proven by Scheunert [25]. In the last two decades,
Lie color algebras have been developed as an interesting topic in mathematics and physics (see
[8, 11, 12, 16, 19, 31] for more details).

Ternary Lie algebras and more generally n-ary Lie algebras are natural generalization of binary
Lie algebras, where one considers n-ary operations and a generalization of Jacobi condition. The most
common generalization consists of expressing the adjoint map as a derivation. The corresponding
algebras were called n-Lie algebras and were first introduced and studied by Filippov in [15] and
then completed by Kasymov in [18]. These algebras, in the ternary cas, appeared in the mathematical
algebraic foundations of Nambu mechanics developed by Takhtajan and Daletskii in [14, 28, 29], as
a generalization of Hamiltonian mechanics involving more than one Hamiltonian. Besides Nambu
mechanics, n-Lie algebras revealed to have many applications in physics like string theory. The
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second approach of generalizing Jacobi condition to n-ary case consists of considering a summation
over So,_1 instead of Ss.

Hom-type generalizations of n-ary algebras were considered first in [9], where n-Hom—Lie
algebras and other n-ary Hom-algebras of Lie type and associative type were introduced. The usual
identities are twisted by linear maps. As a particular case one recovers Hom - Lie algebras which
were motivated by quantum deformations of algebras of vector fields like Witt and Virasoro algebras.
Further properties, construction methods, examples, cohomology and central extensions of n-ary
Hom-algebras have been considered in [5—7].

A (co)homology theory with adjoint representation for n-Lie algebras was introduced by Takhtajan
in [14, 29] and by Gautheron in [17] from deformation theory viewpoint. The general cohomology
theory for n-Lie algebras, Leibniz n-algebras were established in [13, 23] and n-Hom - Lie algebras
and superalgebras in [1, 3, 4].

Inspired by these works, we aim to study a cohomology and deformations of graded n-Hom -
Lie algebras. Moreover, we consider a notion of Nijenhuis operator in connection with the study
of (n — 1)-order deformation of graded n-Hom—Lie algebras. In particular, we discuss a notion of
product structure.

This paper is organized as follows. In Section 2, we recall some basic definitions on n-Hom - Lie
color algebras. Section 3 is devoted to various constructions of n-Hom— Lie color algebras and Hom —
Leibniz color algebras. Furthermore, we introduce a notion of representation of a n-Hom - Lie color
algebra and construct the corresponding semidirect product. In Section 4, we study cohomologies with
respect to given representations. In Section 5, we discuss formal and infinitesimal deformations of a
n-Hom - Lie color algebra. Finally, in Section 6, we introduce a notion of Nijenhuis operators, which
is connected to infinitesimally trivial (n — 1)-order deformations. Moreover, we define a product
structure on n-Hom - Lie color algebras using Nijenhuis conditions.

2. Basics on n-Hom - Lie color algebras. This section contains preliminaries and definitions
on graded spaces, algebras and n-Hom - Lie color algebras which correspond to the graded case of
n-Hom - Lie algebras (see [2, 10, 30] for more details).

Throughout this paper K will denote a commutative field of characteristic zero and I" will stand
for an Abelian group. A vector space g is said to be a I'-graded if we are given a family (g) er
of vector subspaces of g such that g = @ver 9. An element = € g, is said to be homogeneous of
degree . The set of homogeneous elements is denoted by H(g). If the base field is considered as a
graded vector space, it is understood that the graduation of K is given by Ko = K and K, = {0}, if
v € '\ {0}. Now, let g and b be two I'-graded vector spaces. A linear map f: g —> b is said to
be homogeneous of degree £ € T, if f(x) is homogeneous of degree v 4+ £ whenever the element
x € gy. The set of all linear maps of degree £ will be denoted by Hom(g, h) ¢- Then the vector space
of all linear maps of g into b is I'-graded and denoted by Hom(g, h) = @ Hom(g, h),.

We mean by algebra (resp., I'-graded algebra) (g, -) a vector space (resp., I'-graded vector space)
with multiplication, which we denote by the concatenation, such that g, g, C g4 forall 7,7 € T.
In a graded case, a map f: g — b, where g and h are ['-graded algebras, is called a I'-graded
algebra homomorphism if it is a degree zero algebra homomorphism.

We mean by Hom-algebra (resp., I'-graded Hom-algebra) a triple (g, -, &) consisting of a vector
space (resp., I'-graded vector space), a multiplication and an endomorphism « (twist map) (resp.,
degree zero endomorphism «).
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For more detail about graded algebraic structures, we refer to [25]. In the following, we recall the
definition of bicharacter on an Abelian group I'.

Definition 2.1. Let I be an Abelian group. A map €: I' x I' — K\ {0} is called a bicharacter
on I if the following identities are satisfied:

e(v1,72)e(v2,m) =1,
(1,72 +73) = €(71,72)e(71,73),
elm +v2,73) = (v1,713)e(V2,73)  Yv,72, 73 €T

In particular, the definition above implies the relations
e(v,0)=¢(0,7) =1, e(v,y) =41 forall ~eT.

Let g = ®7€F g, be a I'-graded vector space. If z and 2’ are two homogeneous elements in g of
degree ~y and +/, respectively, and ¢ is a bicharacter, then we shorten the notation by writing &(z, z’)
instead of £(7,7/). If X = (x1,...,xp) € ®Pg, we set

i—1
ez, X;) = £<x,zgck> for i>1 and e(z,X;) =1 for i=1,
k=1

p
e(z, X") = 5(90, Z Cb“z) for i<p and e(z,X")=1 for i=np,
k=i+1

5($,Xij) = 5<$,Zﬂ?k>-

k=i

Then we define the general linear Lie color algebra gl(g) = €D, cr gl(g), where

gl(g)y = {f: g—9/f(gy) Cgyry and ao f = foa forall 7' € F}.

In the following, we recall the notion of n-Hom-Lie color algebra given by Bakayoko and
Silvestrov in [10], which is a generalization of n-Hom — Lie superalgebra introduced in [1].

Definition 2.2. A4 n-Hom—Lie color algebra is a graded vector space g = @'yeF gy With a
multilinear map |-,...,:]: gXx...xg — g, a bicharacter € : I' xI' — K\ {0} and a linear map o :
g — g of degree zero such that

[a:l, ey Lgy L4 1y - - .,.CCn] = —E(mi,xi+1)[x1,. ey Lg4 1y Ly e v o ,a:n], (2.1)

[(@1), .. a(@n—1), [Y1, 920 - - -, Un)]

n

= e(X,Y)[aln), .. a(yi1), [z1, 72, ., vl aWiga), - (yn)]. (2.2)
i=1
The identity (2.2) is called e-n-Hom —Jacobi identity and Eq. (2.1) is equivalent to
j—1

(@1, Ty Xy, Ty = fs(xi,Xi]H )e(Xj_Fll,mj)s(xi,xj)[xl, e Ly Ty, T (2.3)

K2
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Let (g,[,...,],6,) and (¢, [,...,"],&,a’) be two n-Hom - Lie color algebras. A linear map of degree
zero f: g — ¢ is a n-Hom-Lie color algebra morphism if it satisfies
foa=a'of,
fl1, o za]) = [f(21), -, fzn)]
Definition 2.3. Let (g,[...,],&,«) be a n-Hom - Lie color algebra. It is called
multiplicative n-Hom — Lie color algebra if o[z, ..., x,] = [a(x1), ..., a(z,)],

regular n-Hom — Lie color algebra if o is an automorphism,

involutive n-Hom - Lie color algebra if o* = Id.

Remarks2.1. 1. When I" = {0}, the trivial group, we recover ordinary n-Hom - Lie algebras (see [9]
for more details).

2. When I' = Zy, e(z,y) = (—1)I*!Il we obtain n-Hom - Lie superalgebras defined in [1].

3. If n =2 (resp., n = 3) we recover Hom—Lie color algebras (resp., 3-Hom - Lie color algebras).

4. When a = Id, we get n-Lie color algebras.

Definition 2.4. Let (g,[,...,|,€,a) be a n-Hom— Lie color algebra. Then:
1. A T'-graded subspace Y of g is a color subalgebra of g, if, for all y1,7v2,..., €T,
a(by,) € by and (D715 B52s -+ D7, ] € By

2. A color ideal J of g is a color Hom-subalgebra of g such that, for all y1,v2,...,Yn €T,

a(j’h) g j’Yl and [j"/l »Gyas e 79"/71] g j'y1+..4+'yn-

3. A center of g is the set Z(g) ={x € g | [x,y1,---,Yn—-1] = 0 Yy1,...,yn € g}. It is easy to show
that Z(g) is a color ideal of g.

3. Constructions and representations of n-Hom - Lie color algebras. In this section, we show
some constructions of n-Hom-Lie color algebras and Hom - Leibniz color algebras associated to
n-Hom - Lie color algebras. Moreover, we introduce a notion of representation of n-Hom - Lie color
algebras and construct the corresponding semidirect product.

3.1. Yau twist of n-Hom — Lie color algebras. In the following theorem, starting from a n-Hom -
Lie color algebra and a n-Hom - Lie color algebra endomorphism, we construct a new n-Hom—Lie
color algebra. We say that it is obtained by Yau twist.

Theorem 3.1. Let (g,[,...,|,&,a) be a n-Hom—Lie color algebra and [3: g — g be a n-
Hom— Lie color algebra endomorphism of degre zero. Then (g, |-, .. .,-|3,€, Boa), where [-, ..., ]z =
Bol,...,], is a n-Hom— Lie color algebra.

Moreover, suppose that (¢, [, ..., e, &) is a n-Hom— Lie color algebra and 3’ : ¢/ — ¢’ is
a n-Hom - Lie color algebra endomorphism. If f: g — ¢’ is a n-Hom— Lie color algebra morphism

that satisfies f o 3 = (' o f, then
folo s lge,Boa) — (@[, ]z B od)

is a morphism of n-Hom — Lie color algebras.
Proof. Obviously [-,...,-|s is a e-skew-symmetric. Furthermore, (g, [-, ..., |3, €, Boa) satisfies
the e-n-Hom —Jacobi identity (2.2). Indeed,

Boa(xi),...,Boa(rn-1),[Y1,---,ynlsls = 52([a(m1), e a(mp_), [y, yn]])

n

= ZE(X, Yi)BQ([a(yl), conya(yizr), (21, e, o yila(Yis1), - - ,a(yn)D

i=1
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= Z€(X,}/,L) [6 © a(yl)a s 7ﬁ © a(yifl)a [ZL‘1,$2, s 7y2],3a5 © Oé(yi+1), s 76 © a(yn)}g
i=1

The second assertion follows from
flz1, - malg) = [f o B(x1), ..., foBlan)]
= [8"0 f(z1),..., 8 0 flan)] = [f(z1), .., flzn)]-

Theorem 3.1 is proved.

In particular, we have the following construction of n-Hom - Lie color algebra using n-Lie color
algebras and n-Lie color algebra morphisms.

Corollary 3.1. Let (g,][...,:|,€) be a n-Lie color algebra and o.: ¢ — g be a n-Lie color
algebra endomorphism. Then (g, [, ..., ]a,€, @), where [-,... -|o = ao[...,], is a n-Hom—Lie
color algebra.

Example 3.1 [10]. Let T' = Zo x Zy and &((i1,12), (j1,J2)) = (—1)1727%201 Let L be a I'-
graded vector space

9= 900,00 D 9(0,1) D 9(1,0) D 9(1,1)

with go,0) = (e1,€2), 8(0,1) = (€3), 8(1,0) = (€4), 8(1,1) = (e5)-

The bracket [-,-,-,]: g X g X g X g — g defined with respect to basis {e; | it =1,...,5} by
€2, €3, €4, €5] = e1, [e1, €3, €4, €5] = €2, [e1, €2, €4, €5] = e3,
le1,e2,e3,e4] = 0, [e1,e2,e3,e5] =0

makes g into a five dimensional 4-Lie color algebra.
Now, we define a morphism «: g — g by

aler) =e2,  ale2)=e1,  ale)=¢, i=34,5
Then go = (g, [, ) "|as &, @) is @ 4-Hom—Lie color algebra, where the new brackets are given as
[e2, €3, €4, €5]0 = €2, e1, €3, €4, €5]0 = €1, [e1, €2, €4, €5]a = €3,
e1, €2, €3, e4]a = 0, [e1, €2, €3, €5]a = 0.
Let G = (g,],.-.,],€, ) be a multiplicative n-Hom - Lie color algebra and p > 0. Define the

pth derived G by

gp = (ga ['7 cee .]p = a2p—1 © ['7 sy ']a &, a2p)‘
Note that G = G, G1 = (g,[-,..., ' =ao[,...,],&a?).

Corollary 3.2. With the above notations, the pth derived G, GP, is also a n-Hom—Lie color
algebra for each p > 0.

Lemma 3.1. Let (g, [, ..., ],&, ) be a n-Hom - Lie color algebra and &) be a I'-graded vector
space. If there exists a bijective linear map of degree zero f : b — g, then (b,[-,...,"]",e, fLoaof)
is a n-Hom - Lie color algebra, where the n-ary bracket |-, ... ,-|" is defined by

21, z) = o [f(1), .., fza)] Vai €D,

Moreover, f is an algebra isomorphism.
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Proof. Straightforward.

Proposition 3.1. Let (g,[,...,],e,a) be a regular n-Hom-Lie color algebra. Then
(Vi[5 s lar =a o[, ...,],€) is a n-Lie color algebra.

Corollary 3.3. Let (g,[,...,],€, ) bea n-Hom—Lie color algebra withn > 3. Let a1, . .., ap €
go such that a(a;) = a; forall i € {1,...,p}. Then (g,{-,...,-},&,) is a (n—p)-Hom - Lie color

algebra, where
{z1,...,on—p} =lar,...,ap,21,...,Tp—p| VT1,...,Tp—p €.

3.2. From n-Hom - Lie color algebras to Hom — Leibniz color algebras. In the following, we
recall the definition of Hom — Leibniz color algebra introduced in [10]. We construct a Hom — Leibniz
color algebra starting from a given n-Hom - Lie color algebra.

Definition 3.1. 4 Hom - Leibniz color algebra is a quadruple (L,[-,-],e,a) consisting of a T'-
graded vector space L, a bicharacter e, a bilinear map of degree zero |-,-]: L x L — L and a
homomorphism o : L — L such that, for any homogeneous elements x,y,z € L,

[a(x), [y, 2]] — e(z,y)[a(y), [z, z]] = [[x,y], a(z)] (e-Hom - Leibniz identity). (3.1)

In particular, if o is a morphism of Hom — Leibniz color algebra (i.e., ao|-,-] = [-,-] 0o a®?), we call
(L,[,],e, ) a multiplicative Hom — Leibniz color algebra.

Let (g,[,-.-,],€,«) be a n-Hom-Lie color algebra. We define a I'-graded space £ = L(g) :=

/\"_1 g, which is called fundamental set, and, for a fundamental object X = 1 A ... Azy_1 € L,
an adjoint map adx as a linear map on g by

adx -y =[z1,...,Tn-1,9]. (3.2)
We define a linear map &: L — L by
a(X)=alxi)N...Na(xp—1).

Then the color e-n-Hom —Jacobi identity (2.2) may be written in terms of adjoint maps as

n

adax)[yrs -y = D e(X, V) [a(y), - - o(yio1), adxyi, - .. o(yn)].
=1

Now, we define a bilinear map of degree zero [-,-|o: £ X L — L by

n—1

(X, Yo =) (X, Vi) (a(y1),- -, (yiz1), adxyis -, (yn-1))- (3.3)

i=1

Proposition 3.2. With the above notations, the map ad satisfies, for all XY € H(L(g)) and
z € H(g), the equality

ad[xy),(2) = adg(x)(adyz) — e(X,Y)adgy)(adxz). (3.4)
Moreover, the quadruple (L, |-, |a, €, &) is a Hom— Leibniz color algebra.
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Proof. 1t is easy to show that the identity (2.2) is equivalent to (3.4). Let X,Y, Z € H(L), the
e-Hom - Leibniz identity (3.1) can be written using the bracket [-, -], and the twist & as

[@(X),[Y, Z]ala — (X, Y)[(Y), [X, Z]a]a = [[X, Y]a, &(Z)]a- (3.5)
Then we have

[@(X), Y, Zlola

n—1n—1

=3 ) X, Z)e(Y, Zi) (0P (1), - .., aladx z)), . .., alady 2), . . ., & (20-1))

i=1 j<t

n—1ln—1

=+ Z Z e(X,Y + Z))e(Y, Zi)(az(zl), cooofadxzi), .. aladyzg), .. oz2(zn,1))

i=1 j>i

n—1

+Y (X +Y, Z) (P (21), ..., (adsx)adyz), . . 0 (zn-1)).
=1

Using the e-skew-symmetry in X and Y, we obtain
[@(Y), [X, Z]o]a

n—1n—1

= Z Zs(Y, Z))e(X, Z)(a*(21), - .. alady 2), .. ., aladxzi), . . ., @ (2n-1))

i=1 j<i

n—1n—1

+) ) eV, X)e(Y, Z))e(X, Zi)

i=1 j>i

x (@*(z1),...,aladyz), ..., aladxz),. .., a*(zp-1))

n—1
+) X +Y,Z) (P (=), ..., (adgyyadx zi), . ., 0% (2n-1)).
i=1

So, the right-hand side of Eq. (3.5) is equal to

n—1
Zs (X +Y,7Z) ( 2(zn),..., ((ads(xyadyz) — (X, Y ) (adgyvyadx zi)), . - ,oz2(zn,1)).
=1

The left-hand side of Eq. (3.5) is equal to

[X, Y]a, a(2)]a

n—1n—1
= 3 S (X Y))e(X, Z)e(Y, 2)
i=1 j=1
< (a2(1).....lalyn).. .. adx 2. .. (o). a(z0)]. .02 (zm))
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n—1

=Y X+, Z) (), - 0% (i), adixy,0lz0), 0% (20))
1

7

by Eq. (3.4), the e-Hom - Leibniz identity holds.

Proposition 3.2 is proved.

3.3. Representations of n-Hom - Lie color algebras. In this subsection, we introduce a noti-
on of representation of n-Hom-Lie color algebras, generalizing representations of n-Hom-—Lie
superalgebras (see in [1]) to the I'-graded case. In the sequel, we consider only multiplicative
n-Hom - Lie color algebras.

Definition 3.2. A representation of a n-Hom—Lie color algebra G = (g,[,...,],e,a) on a
I'-graded space M is a e-skew-symmetric linear map of degree zero p: /\"71 g — End(M), and
1 an endomorphism on M satisfying, for X = (x1,...,%n-1), Y = (Y1, yn-1) € H(N" ')
and x,, € H(g),

p(a(X)) o p = pop(X), (3.6)
pla(z1),....a(zn-1)) 0 p(y1;- .., Yn-1)

—e(X,Y)p(a(yr), .-, a(yn—1)) o p(z1, ..., Tp_1)
n—1

= Z €(X7 Y;)p(a(yl), R 7a<yi—1)v adX(yi)7 ey a(yn—l)) o W, (3-7)
=1

p([xl, T, Tn),aly1), a(y2), ... ,a(yn_g)) o

n

= Z(_l)n_is(xia Xl)p(a(qjl)? s 7f’i7 s 7a($n))p($i7ylu Yz, .-, yn—2)' (38)
=1

We denote this representation by a triple (M, p, ).
Remarks3.1. 1. Condition (3.7) can be written in terms of fundamental object on £ defined in
Subsection 3.2 and the bracket of Hom — Leibniz color algebra defined in (3.3) as

p(a(X)) o p(Y) — (X, Y)p(a(Y)) o p(X) = p([X, Y]a) © -

2. Two representations (M, p, 1) and (M’, p’, i1") of a n-Hom - Lie color algebra G are equivalent
if there exists f: M — M’, an isomorphism of I'-graded vector space of degree zero, such that
F(p(X)m) =p(X)f(m)and fou=p o f forall X € H(L), m € M and m' € M.

3. If « = idy and ;v = idys, we recover representations of n-Lie color algebras.

Example 3.2. Let (g,][,...,],&, a) be a multiplicative n-Hom - Lie color algebra. The map ad
defined in Eq. (3.2) is a representation on g where the endomorphism g is the twist map «. The
identity (3.7) is equivalent to n-Hom —Jacobi identity Eq. (2.2). It is called the adjoint representation.

Proposition 3.3. Let (g,[-,...,"|,e,a) be a multiplicative n-Hom—Lie color algebra. Then
(M, p, ) is a representation of g if and only if (g ® M, |-,...,|,,€, ) is a multiplicative n-Hom —
Lie color algebra with the bracket operation |-,...,-],: \" (g@® M) — g @ M defined by

n
[‘Tl + mi, ..., Tn + mn]ﬂ = [xl? e 73:71] + Z(_l)n*lg(x“X’L)p(xh tee 7§ji7 tee ,.’L’n)mi
i=1
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and the linear map of degree zero agg = 9 ® M — g © M given by

agey(z+m) = a(x) + p(m)

Sor all z; € H(g) and m; € M, i € {1,..

.,n}. It is called the semidirect product of the n-Hom—
Lie color algebra (g, |, .

,*],&, @) by the representation (M, p, i) denoted by g x """ M. Note that
g ® M is a I'-graded space, where (g ® M)~ = g, ® M., implying that x +m € H(g ® M)
i +m; = T + ;.

Proof. 1t is easy to show that [-,.
[,...,:] and p. Let z1 41, ...
is given in terms of [-, ...

.+,]p is e-skew-symmetric using the e-skew-symmetry of

 Tp—1+vp—1 and y1 +wi, ..., Yyn+w, € H(g® M), the identity (2.2)
,]p and ogg s by

lagam (1 +v1),. ., 0gam (Tn—1 + vn_1), [y1 + w1, ..., Yn + W)y

= e(X, V) [agam (v +wi), .. ogen (i1 + wis1),
=1

[21 + V1, o, Tt + Vne1, ¥+ Wilp, - - -, et (Yn + wn)]

, (3.9)

The left-hand side of (3.9) is equal to

[a(x1), .. ya(@n—1), [Y1,- -, Yn]]

n—1

+ Z(il)n_ie(aji? Xz + Y)p(O[(SUl), s 7$Ai7 s 704(‘%1171)7 [yla s 7yn])lu’(vl)
i=1

+Z yza )p(a($1),---,Oé(xn))p(yl,---,:lji,---,yn)wz

The right-hand side of (3.9), for a fixed i € {1,...,n}, is equal to

€(X,}/i)[04(y1), e '705(%71)7 [331,. . 'ayi]7‘ : 'aa(yn)]

+Z Yi)e (3/]7X+Y])

Jj<i

X p(a(yl), e Yy 0(Yim1), (X1, T, Vil s oz(yn)),u(wj)
31X, i)y, V)

j>t

x pla(yr), - a(yiz1), [@1, - s T—1, Yils -, Yo - - - () ) p(w;)
n—1

+ ) ()M e(X,Y)e(X + yi, Ye(xy, X7 + i)
j=1

X p(a(yl)u v 7yi)' . aa(yn))ﬁ'(ﬂfl, oo 7fj7 v )xn—layi)vj
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+ (1) (X, YD)e(X 4y Y)p(a(yn), - Gis -+ a(yn))p(21, -y o1 Wi

Then (M, p, 1) is a representation of the multiplicative n-Hom - Lie color algebra (g, [, ..., ], &, @)
ifand only if (g ® M, [-,...,"],, €, gens) is a multiplicative n-Hom —Lie color algebra.
Proposition 3.3 is proved.
Proposition 3.4. Let (g, ..., ],€) be a n-Lie color algebra, (M, p) be a representation of

g, a: g — g be an algebra morphism and p: M — M be a linear map of degree zero such
that p(&(X))op = pop(X) for all X € L. Then (M,p = po p, i) is a representation of the
multiplicative n-Hom — Lie color algebra (g, [-,. .., |a,€,a) given in Corollary 3.1.

Proof. 1t is easy to verify that, for X = (z1,...,2n-1), ¥ = (Y1,...,Yn—1) € H(L) and
Tn,Yn € H(g)a

FE(X)) o = o p(X).

Since (M, p) is a representation of g, then we have

ﬁ([l‘la cee 7$n]a7a(y1)7 cee )a(yn—Q)) ou
= MOﬁ([$1,... 71.71}7y17" . 7yn—2)

n
= Z(_l)nil‘&‘(xlﬁ XZ)IU’Z © p(xh s 7"1?1'7 s 7mn)p(x’i7 Yi,- -, yn)
i=1
n .
= Z(_l)nilg(xzﬁ XZ)M ° P(Oé(xl)y s 7xAZ'7 s 704('%'71))“ © p(l'“ Yty - 7yn)
i=1
n .
= Z(—l)”fla(xi,X’)ﬁ(a(xl), ces Ty ey (@))p(Tis YLy - Yn)-
i=1

Thus, condition (3.8) holds. Similarly, Eq. (3.7) is valid for p. Then (M, p, 1) is a representation
of the multiplicative n-Hom - Lie color algebra (g, [, ..., |a,&, @).

Proposition 3.4 is proved.

4. Cohomology of n-Hom - Lie color algebras. In this section, we study a cohomology of a
multiplicative n-Hom — Lie color algebra with respect to a given representation. Let (g, [, ..., ], &, )
be a n-Hom - Lie color algebra and (M, p, 1) is a £(g)-module. A p-cochain is a e-skew-symmetric
multilinear map ¢: £(g) ® ... ® L(g) Ag —> M such that

p—1
pop(Xi,...,Xp, 2) =p(a(Xy),...,a(Xp), a(z)).

The space of all p-cochains is I'-graded and is denoted by Ch ,,(g, M).
Thus, we can define the coboundary operator of the cohomology of a n-Hom - Lie color algebra
g with coefficients in M by using the structure of its induced Hom — Leibniz color algebra as follows.
Definition 4.1. We call, for p > 1, a p-coboundary operator of a n-Hom—Lie color algebra
(6, [---») 6 ), a linear map & : C% (g, M) — C5%} (g, M) defined by

Po(Xi,..., Xp, 2)

p
= Z (—1)25(Xi,Xi+1 + ...+ Xjfl)
1<i<j
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o —

X gD(d(Xl), N ,d(Xi), ce ,d(Xjfl), [Xian]ou cee ,d(Xp), Oé(Z))

3 (1) (X Xt 4o X (@K1, G (XD, - (X)), ad(X,)(2))
=1

+ Z(—l)i+1€(g0 +Xi+...+ Xi_l,Xi)p(dpil(Xi))((p(Xl, R ,5(:‘, e Xy, Z))
=1

+ (_1)p+1 (gO(Xl, - ,Xp_1>Xp) o, ap(z),
where

(p(X1s- ., Xpo1)Xp) 00 @P(2)

1

(_1)n7i5((‘0+X1+"'+Xp—17$;,+~.-+£;+,,.+$271_|_Z)
1

n

i

i il n—1
X e(xp,x," + ...+ xy +2)

X p(apfl(le)), e ozpfl(x;f*l), P 1 (2)) (X1, ..., Xpo1, x;,)

Jor X; = (xg)lgjgn_l € H(L(g)), 1 <i<p,and z € H(g).

Proposition 4.1. Let ¢ € Ch (g, M) be a p-cochain, then
5 o 6P (ip) = 0.

Proof. Let ¢ be a p-cochain, X; = (.’Eg)lgjgn_l € H(L(g)), 1 <i<p+2 and z € H(g).
We set

4
=0+ +65+06 and  PTosP = Ty,
i,j=1

where T;; = 5;”“ o 55 and

p
No(Xq,...,Xp,2) = Z (=1)'e(Xip1+ ...+ X;-1, X5)

1<i<j

X (@(X1), . E(XD), o [Xi Xl - 8(Xp), a(2)),

P
Bo(Xy,...,Xp,2) = Z(—l)lé(Xi-s-l +...+Xp, Xi)
i=1

X p(@(X1),...,a(X;),...,0(Xp),ad(X;)(2)),
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p

Xp, Z) = Z(—l)i+1€((p +X1+...+ Xi—laXi)
=1

x p(&P~ 1(X))( (Xl,...,E,...,Xp,z)),

(Sg(p(Xl, ..

*

(X1, ..., Xp,2) = (—D)P T (p(Xq, ..., Xpo1)Xp) 0 o (2).

To simplify the notations we replace ad(X)(z) by X-z. Let first prove that Y114+ 12+To1+ Y92 = 0,
(Xi)lgigp S E(g) and z € g.
Let us compute first Y11 (¢)(X1,..., X, 2). We have

Tll(@)(Xla cee ?va Z)

/4

= > (DFe(Xipr 4+ X1, Xi)e(Xegr + -+ X1, X¢)
1<i<k<j

X o(AHX1), s Xy a(Xp),s s [A(XR), (X Xjlalas - -, @2 (X,), 0%(2))

+ Z D) (X 4o+ X4+ X, X)) e(Xpg1 + - + X1, Xp)
1<i<k<y

X o(G2(X1), . A(XD),s s Ko [6(X0), [X ks Xjlalas - - 62(X,), 02(2))

+ Z H—k 1 X+1+ +5{7€+ —|-X] 1,X) (Xk+1+ +Xj—17Xk)
1<i<k<y

X (62(X1), s Xy ooy (X Xnlas o [ X XeJas (X e - - » 32(Xp), 02(2)).

Whence applying the Hom —Leibniz identity (3.1) to X;, X;, Xi € H(L(g)), we find T1; = 0.
On the other hand, we obtain

(Ta1(p) + Tr2(p)) (X1, ..o, Xp, 2)

p

= Z (—1)i+j_1€(Xi+1 + ...+ 5(\] + ...+ Xp,Xi)S(Xj+1 4+ ...+ Xp,X]’)
1<i<j

X p(&2(X1); s Xy oo [ Xy Xjlas -+, 62 Xp), [Xiy Xjla - (2))

p
= Z (—1)Z+J€(XZ'+1 + ...+ Xp,Xi)€(Xj+1 + ...+ Xp,Xj)

x o(&*(X1), .. Xoy oo @(XG), ., &5 (Xp), (A(X5) (X - 2)))

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 9



COHOMOLOGY AND FORMAL DEFORMATIONS OF n-HOM -LIE COLOR ALGEBRAS

1167
+ Z D e (X + o+ X, X))e(Xja + -+ X+ + X, X5)
1<i<y
X o(&*(X1)y e G X0), ey Xy oo &2 X)), (A(X0) (X - 2))).
Then, applying (2.2) to X;, X; € H(L(g)) and z € H(g), we get L1 + Yo + Yoo = 0.
On the other hand, we have
T31¢(X1,...,Xp+1,2)
p+1 '
= Z {(—1)k+l+18(()0—|—X1—l—...—i—Xk,l,Xk)E(Xi_i_l—|—...—|—Xj_1,XZ')
1<i<j<k
X p(dp(Xk))(p(d(Xl)’ s 7)?1" SRR [Xian]ou R a)?ka R ,O[(Z))
F (=) o+ X4+ X, X)X+ X 4+ X1, XG)
x p(@ X)) P(@(X1)s oy Xy ooy Xy ooy [ Xy Xkl - -5 (2))
+ (*1)j+i8(g0 +X1+...+ X, Xi)e(XjJrl + ...+ Xk;—lan)
x p(aP~1 (X)) p(a(X1), )?Z-,...,)?j,...,[Xj,Xk]a,...,oz(z))},
Ti3p( X1, ooy Xpr1,2) = =T310(X1, .+, Xpt1, 2)
p+1
+ Z D)t (o + X1+ ..+ Xio1, X))
1<i<y
6((,0—|—X1—|—...+5(\i+...—|-Xj,1,Xj)
X p(dp_l([Xi,Xj]a))u((p(Xl, oo 7X2'7 NN ,Xj, ey Z))
and
Taz(Xq,. -, Xpy1,2)
p+1 o
= > {(—1)””16(<p+X1+ A Xim1, Xoe(o+ X1+ .+ X, Xp)p(677H (X))
1<i<j

X (p(dp(XJ)) (@(Xl,...,)?i,...,)?j,...,z)»
+(-D)Me(p+ X1+ .o+ Xim, X)e(p+ X1+ o+ X+ o+ X210, X))
% p( (X)) (p (@1 (X0) (p(Xns o, Ky K ,2) ) |

Then, applying (3.7) to & (X;) € L(g), a*(X;) € L(g) and o(X1,...,Xi,..., Xj,...,2) € M,
we have
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Y13+ Y33+ Y31 =0.

By the same calculation, we can prove that
Yoz + T32 =0,
Y14+ Ty + Tog + Ty + T34+ Ty3 + Tyg = 0.

Proposition 4.1 is proved.

Definition 4.2. We define the graded space of

p-cocycles by 25 (g, M) = {¢ € C& (g, M) : 6P =0} and
p-coboundaries by B, (g, M) = {1p = 0"~ Yp: o € Ch,} (g, M)}.
Lemma 4.1. B85 (g, M) C Z8 (g, M).

Definition 4.3. We call the p th-cohomology group the quotient

HE (9, M) =Z8 (9, M)/BE (9, M).

Remarks4.1. Let (g,[..., ],&,«) be a n-Hom-Lie color algebra. Then:
1. A 1-cochain ¢ is called 1-cocycle if and only if

n

¢ oadx(xn) =Y (—1)""e(d, X)e(as, X )p(w1, .., iy 20)d(2:). (4.1)
i=1
In particular, if M = g, Eq. (4.1) can be rewritten as

n

> e(d Xy, (@), ] — ¢([21, 72, .., 20]) = 0.
i=1
2. A 2-cochain v is called 2-cocycle if and only if, for all homogeneous elements X =
(1, Tp-1), Y = (Y1,---,Yn—-1) € L(g) and y, € g,

P X)) (WY1 yn) + P(a(1), ... alen-1), adyyn)
n
= Z E(Xa E)w(a(yl)v v 7a(yi—1)7 [1'1, <oy Tp—1, yl]7 ety a(yn))
i=1
n . .
+ Z(_l)n_zg(¢ + X7 Yn)g(yh Y;)p(a(yl)7 cee 7yia o 7a(yn))¢(xlv ey Tpn—1, yz)
i=1
(4.2)
5. Deformations of n-Hom - Lie color algebras. In this section, we study formal deformations
and discuss equivalent deformations of n-Hom - Lie color algebras.
Definition 5.1. Let (g,[,...,],&,«) be a n-Hom— Lie color algebra and w; : g*™ — g be -

skew-symmetric linear maps of degree zero. Consider a \-parametrized family of n-linear operations
(A e K):

oo
[T1, .., Zply = [T1,. -+, Zn) —i—Z)\iwi(xl,...,xn).
i=1

The tuple gy = (g, [, --,|r €, @) is a one-parameter formal deformation of (g, [, ..., ],&,)
generated by wj if it defines a n-Hom — Lie color algebra.
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Remarks5.1. 1. If A2 =0 (k = 1), the deformation is called infinitesimal.

2. If A™ =0, the deformation is said to be of order n — 1.

Let w and w’ be two 2-cochains on a n-Hom-Lie color algebra (g, [-,...,],&, «) with coeffi-
cients in the adjoint representation. Define the bracket [, ]: C2 ,(g,8) x C2 ,(g.9) — C3 (g, 9) for
X,Y € H(L) and 2z € H(g) by

. J(X, ¥, 2) = w(@(X), (¥, 2)) — (X, ¥)la(¥),o/(X, )
—w(W'(X,8)0a(Y),a(z)) +w'(@(X),w(Y,2))
— (X, V) (a(Y),w(X, 2)) — ' (w(X,e) 0 a(Y),a(z)),

where

wX,e)oaY)=> X, V)a(y1)A... \w(X,yp) A-.. Aa(yp—1)

for all X,Y € H(L(g)) and z € H(g).

Theorem 5.1. With the above notations, the 2-cochains w;, © > 1, generate a one-parameter
formal deformation gy of order k of a n-Hom— Lie color algebra (g, |-, ...,-|,,«) if and only if the
following conditions hold.:

62wy =0, (5.1
) 1 -1
Fuwr+ 5 > fwihwii] =0, 2<1<E, (5.2)
=1
1 k
3 > wiwii] =0, n <1< 2k (5.3)
i=l—k

Proof. Let w;, © > 1, be 2-cochains generating a one-parameter formal deformation g, :=
(g,[,---,]xn &, ) of order k of a n-Hom—Lie color algebra (g, [-,...,],&,a). Then g, is also a
n-Hom - Lie color algebra. According to Proposition 3.2, the e-n-Hom - Jacobi identity (2.2) on gy
is equivalent to

adf\X,Y]gO‘(Z) = adé(X)(adéz) —e(X, Y)adg(y)(adé(z), (5.4)

where
k

(X, Y]) = [X,Y]a+ > Newi(X,0) 0 &(Y)

=1

and the adjoint map on g, is given by

k
adyz = adx z + Z N (X, 2).

=1

The left-hand side of (5.4) is equal to
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k
adly ypa(z) = adix y),0(=) + N (w@i([X,Y]a,a(2))

i=1

k
+ adwi(X,o)od(Y)a(Z» + Z )‘H_Jadwi(wj(X,o)od(Y))O[(Z)'

ij=1
The right-hand side of (5.4) is equal to
k .
ad) xy(ady2) = adz(x) (adyz) + Y N (wi(@&(X), ady 2)
i=1
k . .
+adsxywi(Y,2)) + Y A Hwi(a(X),w;(Y, 2))
ij=1
and
k .
adg(y)(adﬁ('z) = adg(y)(adxz) + Z N (wi(a(Y), adx z)
i=1

k
+ add(y)wi(X, Z)) + Z )\i+jwi(0~é(Y), l.Uj(X, Z))

,j=1

Comparing the coefficients of \!, we obtain conditions (5.1), (5.2) and (5.3), respectively.

Theorem 5.1 is proved.

RemarksS5.2. 1. Equation (5.1) means that w; is always a 2-cocycle on g.

2. If g, is a deformation of order k, then, by Eq. (5.3), we deduce that (g, wy, €, «) is a n-Hom—
Lie color algebra.

3. In particular, consider an infinitesimal deformation of g, generated by w: A™ g — g defined
as

[yeees n =1, oy ] F (. o).

The linear map w generates an infinitesimal deformation of the multiplicative n-Hom-Lie color
algebra g if and only if:

(a) (g,w,e, ) is a multiplicative n-Hom - Lie color algebra,

(b) w is a 2-cocycle of g with coefficients in the adjoint representation, that is, w satisfies
condition (4.2) for p = ad.

Definition 5.2. Two formal deformations gy and gy of a n-Hom — Lie color algebra (g, [+, . . ., -],
g,) are said to be equivalent if there exists a formal isomorphism ¢ : gx — @, where ¢y =
Zi>0 &\ and ¢;: g — g are linear maps of degree zero such that ¢o = idg, ¢; 0 = o ¢; and

dro[xr, ... xp]n = [Oa(21), .- Ox(2n)]n- (5.5

1t is denoted by gy ~ gy. A formal deformation gy is said to be trivial if g ~ go.
Theorem 5.2. Let gy and gy be two equivalent deformations of a n-Hom — Lie color algebra
(g,[-.-,],&,a) generated by w and ', respectively. Then w and w' belong to the same cohomology

class in the cohomology group ng(g? g9).

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 9



COHOMOLOGY AND FORMAL DEFORMATIONS OF n-HOM -LIE COLOR ALGEBRAS 1171

Proof. 1t is enough to prove that w — w’ € B?(g, g).
We have two equivalent deformations gy and g/, then identification of coefficients of A in (5.5)
leads to

W(T1, ..y xn) + G121, 0] = (X1, )+ [D(21), ] e T, ()]
Thus,
W(I‘l,.. . 7xn) —w,(l'l,... >$n)

= —¢[r1, ...,z + [P(1), ..y 2p] + o [T, D (2)]
= —@lw1, ...,z + Y (D) e (@i, Xy, Eiy e T, B)]
i=1

= 0'p(X, xp).

Therefore, w — W' € B?(g, g).

Theorem 5.2 is proved.

6. Nijenhuis operators on n-Hom - Lie color algebras. Motivated by the infinitesimally trivial
deformation introduced in this section, we define the notion of Nijenhuis operator for a multiplicative
n-Hom - Lie color algebras which is a generalization of Nijenhuis operator on n-Lie algebras given in
[20]. Then we define the notion of a product structure on a n-Hom — Lie color algebra using Nijenhuis
operators (see [24] for non-graded case).

6.1. Definitions and constructions. Let (g,[-,...,],¢,a) be a n-Hom-Lie color algebra and
gr = (g, [, &, ) be a deformation of g of order (n — 1).

Definition 6.1. The deformation gy is said to be infinitesimally trivial if there exists a linear
map of degree zero N : g — g such that Ty, = id + AN : g\ — ¢ is an algebra morphism, that is,
forall x1,...,x, € H(g), we have

Taoa=aoTh, 6.1)
Tz, anly = [Ta(@1), - Talen)]- (6.2)
The condition (6.1) is equivalent to
Noa=aoN.

The left-hand side of Eq. (6.2) equals to

(1, .. zn] + AMwi (21, zn) + Nz, 20])

n—2

+ Z)\j+1(/\/wj(x1, e Tn) Wi (@, - ,xn)) + N'Nwp—1(x1, ..., 2p).
j=1

The right-hand side of Eq. (6.2) equals to

[ml,...,xn]+)\Z[x1,...,/\/xi1,...,xn]—}—)\2 Z[931,-~-,N$i1,~--,N$i2,--~,$n]+~--

i1=1 11 <i2
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-1
+ A" Z [z1,. . Nz, o Ny, .. Ny, |, 2]

11 <12<...<tp—1
+ NNy, ..., Nzg, ..., Nay].

Therefore, by identification of coefficients, we have

n

W1 (T1y s Tn) F N1, T = Z[xl,...,j\f:nil,...,:z:n],

i1=1
an—l(xlw"axn) = [Nxb'"?-/\[an"'van]a
Nwi(z1,. . xn) + w1 (21, ..., Tp) = Z @1, .., Nzi, oo JNaxiy, .. Ny, .., 2]

11<12<...<9;
forall 2 <[ <n-—1.
Let (g,[--.,],&, «) be a n-Hom-Lie color algebra, and N : g — g be a linear map of degree

zero. Define a n-ary bracket [-,...,-]},: A" g — g by

n

[xl,...,xn]jl\/:Z[ml,...,/\/xi,...,xn] —Nlzy,29,. .., 2]

i=1

By induction, we define n-ary brackets [, ..., ]j\[ ANg—g,2<j<n-—1,
[:Bl,...,mn]f\/: Z [...,/\/’xil,...,NmiZ,...,N:Uij,...]—./\/'[xl,...,:rn]f\fl.

i1<i2<...<ij
In particular, we have
-1 -2
[21,.. 2]y = Z Wiy, ..., Nz, x0) = Nz1, ..z~
11 <t9<...<ln—1

These observations motivate the following definition.
Definition 6.2. Let (g,[,..., ],&,a) be a n-Hom - Lie color algebra. A linear map of degree
zero N : g — g is called a Nijenhuis operator if it satisfies N o o = oo N and

Nz, ... ,.Nxo,...,Na,] :N[ﬂzl,...,mn]ﬁl.
The above condition can be written as
n . .
Z(—l)nJN’nJ< Z [...,,/\/'acil,...,inQ,...,./\/afij,...]> =0.
7=0 11 <i2<...<ij

We have seen that any trivial deformation produces a Nijenhuis operator. Conversely, any Ni-
jenhuis operator gives a trivial deformation as the following theorem shows.

Theorem 6.1. Let (g,[-,..., ],&,«&) be a n-Hom—Lie color algebra and N be a Nijenhuis
operator on (g, [, ...,|,&,«). Then the bracket
n—1 ‘ '
w1,y = [z, @]+ Y Nzl
i=1

defines a deformation of g which is infinitesimally trivial.
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Proof. Follows from the above characterization of identity (6.2), Theorem 5.1 and Lemma 3.1.
Proposition 6.1. Let N be a bijective Nijenhuis operator on a n-Hom-Lie color algebra

(g,[---,),&,a), a € go such that «(a) = a and N (a) € Z(g). Then N is a Nijenhuis operator
on the (n — 1)-Hom - Lie color algebra (g,{-,...,-},¢,a).

Recall that, if (g, [, -], €, ) is a Hom—Lie color algebra, the Nijenhuis operator condition writes
as

Nz, Ny| = NNz, y] + Nz, Ny] — N[z, ).

Corollary 6.1. Let N be a Nijenhuis operator on a 3-Hom — Lie color algebra (g, [, -, |, &, a). If
N is a bijection, then it is a Nijenhuis operator on the Hom— Lie color algebra (g,{-, },&, ) such
that N(a) € Z(g).

6.2. Product structures on n-Hom — Lie color algebras. In this subsection, we study a notion of
product structure on a n-Hom - Lie color algebra and show that it leads to a special decomposition
of the original n-Hom - Lie color algebra. Moreover, we introduce a notion of strict product structure
on a n-Hom - Lie color algebra and provide example.

Definition 6.3. Let G = (g, [, ..., |,&, ) be a n-Hom— Lie color algebra.
An almost product structure on G is a linear map of degree zero P : g — g, P # £1dg, satisfying
P? = Idy.

An almost product structure is called product stucture on G if it is a Nijenhuis operator.
Remark 6.1. One can understand a product structure on G as a linear map of degree zero P :
g — g satisfying

P2 =1d, Pa=aP,

n—1 n

[Pa1, Pag, ..., Pay] = Y (=1)" TP > L Paiy,.. P, ] (6.3)
7=0 11 <12<...<ij
for x1,...,2, € g and pyp = {1’ if & 1s odd,
0, if k iseven.
Theorem 6.2. Let G = (g,[,..., |,¢,a) be a n-Hom— Lie color algebra. Then G has a product
structure if and only if § = ., cr 9y admits a decomposition g = g4 ® g— with g, = (8v)+ © (84)-
and where the eigenspaces g, = EByeF (9y)+ and g_ = GBWGF(GW)* of g associated to the

eigenvalues 1 and —1 respectively are subalgebras.
Proof. Let P be a product structure on (g, [+, ..., ], &, «). According to Eq. (6.3), for all element
Z; € g+, we have

[T1,...,2n] = [Px1,...,Pxy]

|
—

= (—1)71—]'—17)Nn7j Z [...,Pmil,...,P:UiQ,...,Pxij,...]

11 <12<...<i;

<.
Il
o

—_

n—

J

0(—1)”‘j‘1 (") Ph=i[zy, ..., ).

.
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Then we obtain

[T1,...,2p] = Z <2jrj_1)77[x1,...,mn]—z(;j)[xl,...,xn], if n iseven, (6.4)

2j+1<n 2j<n
[ =5 ()71 - > (L) ], if n isodd. (6.5)
1, s ' 2] 1, s n ‘ 2] +1 1 IR
2j<n 2j+1<n

By the binomial theorem, we get

> n)— > < " )z(—l)”“ (6.6)
25<n <2‘] 2j4+1<n 2‘7 +1
Apply the above condition to Eqs. (6.4) and (6.5), we have, for all z; € gy, Plxi,...,zn] =
[€1,...,zp). Let x € g4, then we obtain P o a(r) = a o P(xr) = a(x), which implies that
a(x) C g4. So, g4+ is subalgebra of g. Similarly, we show that g_ is subalgebra of g.

Conversely, we define a linear map of degree zero P: g — g such that, for all x € g, and

yeg-,
Plx+y)=z—y. (6.7)

We have P?(x +y) = P(xz —y) = x + y, then P2 = Id. Since x € gy, then a(x) € g,. Thus,
Poa(zr)=a(r) = aoP(x). Similarly, P o a(y) = a o P(y).
If n is even, since g is a subalgebra of g, then, for z; € g4, we have

nz_:l(_l)n—j—lpun—j Z [ PTiyy s Py, o, Py
§=0 i1 <ia<...<ij

=3 = ()

= 2j%:<n <2jT_L'_ 1> [T1, ..., 2p] — 2; <273> [X1,. .., 2]

O 1Pry, P, ..., Payl.

Also if n is odd, we have

n—1
> (1)t hpins > L Py, Py, Py,
7=0 i1<i2<...<ij
52 ()
= Z )= . Tly...,Tp)
2j<n <2‘7 2j+1<n 2'] +1
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€0 [Pz1,Pxa, ..., Pxy].

One may check for all x; € g_ similarly. Then P is a product structure on G.

Theorem 6.2 is proved.

Let G = (g,[,...,],&, @) be a n-Hom—-Lie color algebra and ©: g — g be a linear map of
degree «v. Then © is said in the centroid of G if, for all homogeneous elements z; € g, Qoa = a0 ©
and

Olr1,x2, ..., on] = [Ox1,29, ..., Ty (6.8)
The above identity is equivalent to

Olr1,x2, ..., xn] = (v, Xi) |21, . .. T (6.9)

) @$Z ).
~—~
ith place

Definition 6.4. An almost product structure P on G is called a strict product structure if it is an
element of the centroid.
Lemma 6.1. Let P be a strict product structure on G. Then P is a product structure on G such

that [g+,...,g+, g+ ,g,,...,g,] =0 foralll <i<n-—1.
~—

ith place
Proof. The identity (6.3) is equivalent to

n n
> (—1)riphns > [ Paiy, . Py, Py, ] | =0,
7=0 11 <12<...<1;

Then, if P is a strict product structure on G and x; € g, we have

n

(—1)”—]”]3/1”7]' Z [...,’P.ﬁil,...,P$i2,...,Pxij,...]
=0

J 11 <12<...<t;
n ) n
=> (-1 S PPy, ]
7=0 11 <i2<...<ij
n
_ n—j [T Hn _
— (—1) . P [ml,...,xn] =0.
j=0 J

Thus, P is a product structure.
Fix 4 such that 0 < ¢ < n, and let (k,!) suchthat 0 < k <1i <[l <n withz; € g4 and ; € g_.
According to Eq. (6.8), we get

P[$1,...,$i,xi+1,...,l’n] = [le,...,a:i,...,xi] = [xl,...,mi,...,wi].
On the other hand, by Eq. (6.9) we have

P[fbl,. . .,l‘i,fEiJrl,...,ﬂ?i] = [l’l,. . .,l‘i,Pl‘i+1,.. . ,SCZ'}
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Then we obtain

G4soos G4y 04 5, 00005 g =0
—~—
ith place

Lemma 6.1 is proved.

Proposition 6.2. Let G = (g,[,...,],&,«) be a n-Hom - Lie color algebra. Then G has a strict
product structure if and only if g = @veF g~ admits a decomposition § = g4 & g, where g and
g are graded subalgebras of g such that |g+,..., 8+, 9+ , 9—.-., 9-| =0,1<:<n—1.

—~—
ith place

Proof- The first implication is a direct computation from Lemma 6.1. Conversely, on the
basis of Theorem 6.2, the map P, defined in Eq. (6.7), is an almost product structure and, for all
Tp = x;“ +x, € g, where a:ﬁ € g+ and x,, € g_, we have

Plz1,x2,..., 20 = Plaf + 27,258 +25,...,7) +,]
=Plaf, x5, ..., xf |+ Play,25,...,7,]
= [z, 25, .., xf] —[x],25,...,7,]
= [Paf, 2], ....xf] + [Py, 25,...,2,] = [Px1,22,. .., 7).
Then P is a strict product structure on G.
Proposition 6.2 is proved.
Example 6.1. Letg, = (g, [, ", |, &, @) be the 4-Hom — Lie color algebra defined in Example 3.1.

Define a linear map of degree zero P: g — g by

Pler) = e, Ple2) = ea, Ples) = —es, P(esg) = —ey and Ples) = —es.

It easy to prove that P is a strict product structure, therefore it is a product structure. Using
Theorem 6.2, we deduce that the graded subalgebras g, and g_ are generated by (ej,es) and
(es, eq, €5), respectively. Thus,

9+ = 9(0,0) and 9— = 9(0,1) D 91,0 D 9(1,1)-
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