DOI: 10.3842/umzh.v75i9.7238

UDC 512.5

K. Abdaoui (University of Sfax, Faculty of Sciences Sfax, Tunisia),

R. Gharbi (University of Sfax, Faculty of Sciences Sfax, Tunisia, Université de Haute Alsace,

IRIMAS — Département de Mathématiques, Mulhouse, France),

S. Mabrouk (University of Gafsa, Faculty of Sciences Gafsa, Tunisia),

A. Makhlouf¹ (Université de Haute Alsace, IRIMAS – Département de Mathématiques, Mulhouse, France)

COHOMOLOGY AND FORMAL DEFORMATIONS OF n-HOM—LIE COLOR ALGEBRAS КОГОМОЛОГІЇ ТА ФОРМАЛЬНІ ДЕФОРМАЦІЇ АЛГЕБР КОЛЬОРІВ n-ХОМА—ЛІ

The aim of this paper is to provide a cohomology of n-Hom-Lie color algebras, in particular, a cohomology governing one-parameter formal deformations. Then we also study formal deformations of the n-Hom-Lie color algebras and introduce the notion of Nijenhuis operator on a n-Hom-Lie color algebra, which may give rise to infinitesimally trivial (n-1)-order deformations. Furthermore, in connection with Nijenhuis operators, we introduce and discuss the notion of product structure on n-Hom-Lie color algebras.

Мета цієї статті — визначити когомологію алгебри кольорів n-Хома — Лі та, зокрема, когомологію, що керує формальними однопараметричними деформаціями. Крім того, вивчаються формальні деформації алгебри кольорів n-Хома — Лі та введено поняття оператора Нойєнгайса на алгебрі кольорів n-Хома — Лі, що може привести до інфінітезимально тривіальної деформації (n-1)-го порядку. Крім того, у зв'язку з операторами Нойєнгайса введено та обговорено поняття структури добутку на алгебрах кольорів n-Хома — Лі.

1. Introduction. The generalization of Lie algebra, which is now known as Lie color algebra was introduced first by Ree [22]. This class includes Lie superalgebras which are \mathbb{Z}_2 -graded and play an important role in supersymmetries. More generally, Lie color algebras play an important role in theoretical physics, see, for example, [26, 27]. Montgomery proved in [21] that simple Lie color algebras can be obtained from associative graded algebras, while the Ado theorem and the PBW theorem of Lie color algebras were proven by Scheunert [25]. In the last two decades, Lie color algebras have been developed as an interesting topic in mathematics and physics (see [8, 11, 12, 16, 19, 31] for more details).

Ternary Lie algebras and more generally n-ary Lie algebras are natural generalization of binary Lie algebras, where one considers n-ary operations and a generalization of Jacobi condition. The most common generalization consists of expressing the adjoint map as a derivation. The corresponding algebras were called n-Lie algebras and were first introduced and studied by Filippov in [15] and then completed by Kasymov in [18]. These algebras, in the ternary cas, appeared in the mathematical algebraic foundations of Nambu mechanics developed by Takhtajan and Daletskii in [14, 28, 29], as a generalization of Hamiltonian mechanics involving more than one Hamiltonian. Besides Nambu mechanics, n-Lie algebras revealed to have many applications in physics like string theory. The

¹ Corresponding author, e-mail: abdenacer.makhlouf@uha.fr.

second approach of generalizing Jacobi condition to n-ary case consists of considering a summation over S_{2n-1} instead of S_3 .

Hom-type generalizations of n-ary algebras were considered first in [9], where n-Hom-Lie algebras and other n-ary Hom-algebras of Lie type and associative type were introduced. The usual identities are twisted by linear maps. As a particular case one recovers Hom-Lie algebras which were motivated by quantum deformations of algebras of vector fields like Witt and Virasoro algebras. Further properties, construction methods, examples, cohomology and central extensions of n-ary Hom-algebras have been considered in [5-7].

A (co)homology theory with adjoint representation for n-Lie algebras was introduced by Takhtajan in [14, 29] and by Gautheron in [17] from deformation theory viewpoint. The general cohomology theory for n-Lie algebras, Leibniz n-algebras were established in [13, 23] and n-Hom-Lie algebras and superalgebras in [1, 3, 4].

Inspired by these works, we aim to study a cohomology and deformations of graded n-Hom-Lie algebras. Moreover, we consider a notion of Nijenhuis operator in connection with the study of (n-1)-order deformation of graded n-Hom-Lie algebras. In particular, we discuss a notion of product structure.

This paper is organized as follows. In Section 2, we recall some basic definitions on n-Hom-Lie color algebras. Section 3 is devoted to various constructions of n-Hom-Lie color algebras and Hom-Leibniz color algebras. Furthermore, we introduce a notion of representation of a n-Hom-Lie color algebra and construct the corresponding semidirect product. In Section 4, we study cohomologies with respect to given representations. In Section 5, we discuss formal and infinitesimal deformations of a n-Hom-Lie color algebra. Finally, in Section 6, we introduce a notion of Nijenhuis operators, which is connected to infinitesimally trivial (n-1)-order deformations. Moreover, we define a product structure on n-Hom-Lie color algebras using Nijenhuis conditions.

2. Basics on n-Hom-Lie color algebras. This section contains preliminaries and definitions on graded spaces, algebras and n-Hom-Lie color algebras which correspond to the graded case of n-Hom-Lie algebras (see [2, 10, 30] for more details).

Throughout this paper $\mathbb K$ will denote a commutative field of characteristic zero and Γ will stand for an Abelian group. A vector space $\mathfrak g$ is said to be a Γ -graded if we are given a family $(\mathfrak g_\gamma)_{\gamma\in\Gamma}$ of vector subspaces of $\mathfrak g$ such that $\mathfrak g=\bigoplus_{\gamma\in\Gamma}\mathfrak g_\gamma$. An element $x\in\mathfrak g_\gamma$ is said to be homogeneous of degree γ . The set of homogeneous elements is denoted by $\mathcal H(\mathfrak g)$. If the base field is considered as a graded vector space, it is understood that the graduation of $\mathbb K$ is given by $\mathbb K_0=\mathbb K$ and $\mathbb K_\gamma=\{0\}$, if $\gamma\in\Gamma\setminus\{0\}$. Now, let $\mathfrak g$ and $\mathfrak h$ be two Γ -graded vector spaces. A linear map $f:\mathfrak g\longrightarrow\mathfrak h$ is said to be homogeneous of degree $\xi\in\Gamma$, if f(x) is homogeneous of degree $\gamma+\xi$ whenever the element $x\in\mathfrak g_\gamma$. The set of all linear maps of degree ξ will be denoted by $\mathrm{Hom}(\mathfrak g,\mathfrak h)_\xi$. Then the vector space of all linear maps of $\mathfrak g$ into $\mathfrak h$ is Γ -graded and denoted by $\mathrm{Hom}(\mathfrak g,\mathfrak h)=\bigoplus_{\xi\in\Gamma}\mathrm{Hom}(\mathfrak g,\mathfrak h)_\xi$.

We mean by algebra (resp., Γ -graded algebra) (\mathfrak{g},\cdot) a vector space (resp., Γ -graded vector space) with multiplication, which we denote by the concatenation, such that $\mathfrak{g}_{\gamma}\mathfrak{g}_{\gamma'}\subseteq\mathfrak{g}_{\gamma+\gamma'}$ for all $\gamma,\gamma'\in\Gamma$. In a graded case, a map $f:\mathfrak{g}\longrightarrow\mathfrak{h}$, where \mathfrak{g} and \mathfrak{h} are Γ -graded algebras, is called a Γ -graded algebra homomorphism if it is a degree zero algebra homomorphism.

We mean by Hom-algebra (resp., Γ -graded Hom-algebra) a triple $(\mathfrak{g}, \cdot, \alpha)$ consisting of a vector space (resp., Γ -graded vector space), a multiplication and an endomorphism α (twist map) (resp., degree zero endomorphism α).

For more detail about graded algebraic structures, we refer to [25]. In the following, we recall the definition of bicharacter on an Abelian group Γ .

Definition 2.1. Let Γ be an Abelian group. A map $\varepsilon : \Gamma \times \Gamma \to \mathbb{K} \setminus \{0\}$ is called a bicharacter on Γ if the following identities are satisfied:

$$\begin{split} &\varepsilon(\gamma_1,\gamma_2)\varepsilon(\gamma_2,\gamma_1)=1,\\ &\varepsilon(\gamma_1,\gamma_2+\gamma_3)=\varepsilon(\gamma_1,\gamma_2)\varepsilon(\gamma_1,\gamma_3),\\ &\varepsilon(\gamma_1+\gamma_2,\gamma_3)=\varepsilon(\gamma_1,\gamma_3)\varepsilon(\gamma_2,\gamma_3)\quad \forall \gamma_1,\gamma_2,\gamma_3\in\Gamma. \end{split}$$

In particular, the definition above implies the relations

$$\varepsilon(\gamma,0)=\varepsilon(0,\gamma)=1,\quad \varepsilon(\gamma,\gamma)=\pm 1\quad \text{for all}\quad \gamma\in\Gamma.$$

Let $\mathfrak{g}=\bigoplus_{\gamma\in\Gamma}\mathfrak{g}_{\gamma}$ be a Γ -graded vector space. If x and x' are two homogeneous elements in \mathfrak{g} of degree γ and γ' , respectively, and ε is a bicharacter, then we shorten the notation by writing $\varepsilon(x,x')$ instead of $\varepsilon(\gamma,\gamma')$. If $X=(x_1,\ldots,x_p)\in\otimes^p\mathfrak{g}$, we set

$$\begin{split} \varepsilon(x,X_i) &= \varepsilon \bigg(x, \sum_{k=1}^{i-1} x_k \bigg) \quad \text{for} \quad i > 1 \qquad \text{and} \qquad \varepsilon(x,X_i) = 1 \quad \text{for} \quad i = 1, \\ \varepsilon(x,X^i) &= \varepsilon \bigg(x, \sum_{k=i+1}^p x_i \bigg) \quad \text{for} \quad i$$

Then we define the general linear Lie color algebra $gl(\mathfrak{g}) = \bigoplus_{\gamma \in \Gamma} gl(\mathfrak{g})_{\gamma}$, where

$$gl(\mathfrak{g})_{\gamma} = \{f : \mathfrak{g} \to \mathfrak{g}/f(\mathfrak{g}_{\gamma'}) \subset \mathfrak{g}_{\gamma+\gamma'} \text{ and } \alpha \circ f = f \circ \alpha \text{ for all } \gamma' \in \Gamma\}.$$

In the following, we recall the notion of n-Hom-Lie color algebra given by Bakayoko and Silvestrov in [10], which is a generalization of n-Hom-Lie superalgebra introduced in [1].

Definition 2.2. A n-Hom-Lie color algebra is a graded vector space $\mathfrak{g} = \bigoplus_{\gamma \in \Gamma} \mathfrak{g}_{\gamma}$ with a multilinear map $[\cdot, \ldots, \cdot] : \mathfrak{g} \times \ldots \times \mathfrak{g} \longrightarrow \mathfrak{g}$, a bicharacter $\varepsilon : \Gamma \times \Gamma \to \mathbb{K} \setminus \{0\}$ and a linear map $\alpha : \mathfrak{g} \longrightarrow \mathfrak{g}$ of degree zero such that

$$[x_1, \dots, x_i, x_{i+1}, \dots, x_n] = -\varepsilon(x_i, x_{i+1})[x_1, \dots, x_{i+1}, x_i, \dots, x_n],$$

$$[\alpha(x_1), \dots, \alpha(x_{n-1}), [y_1, y_2, \dots, y_n]]$$
(2.1)

$$= \sum_{i=1}^{n} \varepsilon(X, Y_i) [\alpha(y_1), \dots, \alpha(y_{i-1}), [x_1, x_2, \dots, y_i], \alpha(y_{i+1}), \dots, \alpha(y_n)].$$
 (2.2)

The identity (2.2) is called ε -n-Hom-Jacobi identity and Eq. (2.1) is equivalent to

$$[x_1, \dots, x_i, \dots, x_j, \dots, x_n] = -\varepsilon(x_i, X_{i+1}^{j-1})\varepsilon(X_{i+1}^{j-1}, x_j)\varepsilon(x_i, x_j)[x_1, \dots, x_j, \dots, x_i, \dots, x_n].$$
 (2.3)

Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ and $(\mathfrak{g}', [\cdot, \dots, \cdot]', \varepsilon, \alpha')$ be two n-Hom-Lie color algebras. A linear map of degree zero $f : \mathfrak{g} \to \mathfrak{g}'$ is a n-Hom-Lie color algebra *morphism* if it satisfies

$$f \circ \alpha = \alpha' \circ f,$$

$$f([x_1, \dots, x_n]) = [f(x_1), \dots, f(x_n)]'.$$

Definition 2.3. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra. It is called multiplicative n-Hom-Lie color algebra if $\alpha[x_1, \dots, x_n] = [\alpha(x_1), \dots, \alpha(x_n)]$, regular n-Hom-Lie color algebra if α is an automorphism, involutive n-Hom-Lie color algebra if $\alpha^2 = Id$.

Remarks 2.1. 1. When $\Gamma = \{0\}$, the trivial group, we recover ordinary n-Hom-Lie algebras (see [9] for more details).

- 2. When $\Gamma = \mathbb{Z}_2$, $\varepsilon(x,y) = (-1)^{|x||y|}$, we obtain n-Hom-Lie superalgebras defined in [1].
- 3. If n=2 (resp., n=3) we recover Hom-Lie color algebras (resp., 3-Hom-Lie color algebras).
- 4. When $\alpha = Id$, we get n-Lie color algebras.

Definition 2.4. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra. Then:

1. A Γ -graded subspace \mathfrak{h} of \mathfrak{g} is a color subalgebra of \mathfrak{g} , if, for all $\gamma_1, \gamma_2, \ldots, \gamma_n \in \Gamma$,

$$\alpha(\mathfrak{h}_{\gamma_1}) \subseteq \mathfrak{h}_{\gamma_1}$$
 and $[\mathfrak{h}_{\gamma_1}, \mathfrak{h}_{\gamma_2}, \dots, \mathfrak{h}_{\gamma_n}] \subseteq \mathfrak{h}_{\gamma_1 + \dots + \gamma_n}.$

2. A color ideal \mathfrak{I} of \mathfrak{g} is a color Hom-subalgebra of \mathfrak{g} such that, for all $\gamma_1, \gamma_2, \ldots, \gamma_n \in \Gamma$,

$$\alpha(\mathfrak{I}_{\gamma_1}) \subseteq \mathfrak{I}_{\gamma_1}$$
 and $[\mathfrak{I}_{\gamma_1}, \mathfrak{g}_{\gamma_2}, \dots, \mathfrak{g}_{\gamma_n}] \subseteq \mathfrak{I}_{\gamma_1 + \dots + \gamma_n}$.

- 3. A center of $\mathfrak g$ is the set $Z(\mathfrak g)=\{x\in\mathfrak g\mid [x,y_1,\ldots,y_{n-1}]=0\ \forall y_1,\ldots,y_n\in\mathfrak g\}$. It is easy to show that $Z(\mathfrak g)$ is a color ideal of $\mathfrak g$.
- 3. Constructions and representations of n-Hom-Lie color algebras. In this section, we show some constructions of n-Hom-Lie color algebras and Hom-Leibniz color algebras associated to n-Hom-Lie color algebras. Moreover, we introduce a notion of representation of n-Hom-Lie color algebras and construct the corresponding semidirect product.
- 3.1. Yau twist of n-Hom Lie color algebras. In the following theorem, starting from a n-Hom Lie color algebra and a n-Hom Lie color algebra endomorphism, we construct a new n-Hom Lie color algebra. We say that it is obtained by Yau twist.

Theorem 3.1. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra and $\beta : \mathfrak{g} \longrightarrow \mathfrak{g}$ be a n-Hom-Lie color algebra endomorphism of degre zero. Then $(\mathfrak{g}, [\cdot, \dots, \cdot]_{\beta}, \varepsilon, \beta \circ \alpha)$, where $[\cdot, \dots, \cdot]_{\beta} = \beta \circ [\cdot, \dots, \cdot]$, is a n-Hom-Lie color algebra.

Moreover, suppose that $(\mathfrak{g}', [\cdot, \dots, \cdot]', \varepsilon, \alpha')$ is a n-Hom-Lie color algebra and $\beta' : \mathfrak{g}' \longrightarrow \mathfrak{g}'$ is a n-Hom-Lie color algebra endomorphism. If $f : \mathfrak{g} \longrightarrow \mathfrak{g}'$ is a n-Hom-Lie color algebra morphism that satisfies $f \circ \beta = \beta' \circ f$, then

$$f: (\mathfrak{g}, [\cdot, \dots, \cdot]_{\beta}, \varepsilon, \beta \circ \alpha) \longrightarrow (\mathfrak{g}', [\cdot, \dots, \cdot]'_{\beta'}, \varepsilon, \beta' \circ \alpha')$$

is a morphism of n-Hom-Lie color algebras.

Proof. Obviously $[\cdot, \dots, \cdot]_{\beta}$ is a ε -skew-symmetric. Furthermore, $(\mathfrak{g}, [\cdot, \dots, \cdot]_{\beta}, \varepsilon, \beta \circ \alpha)$ satisfies the ε -n-Hom-Jacobi identity (2.2). Indeed,

$$[\beta \circ \alpha(x_1), \dots, \beta \circ \alpha(x_{n-1}), [y_1, \dots, y_n]_{\beta}]_{\beta} = \beta^2([\alpha(x_1), \dots, \alpha(x_{n-1}), [y_1, \dots, y_n]])$$

$$= \sum_{i=1}^{n} \varepsilon(X, Y_i) \beta^2 \Big(\big[\alpha(y_1), \dots, \alpha(y_{i-1}), [x_1, x_2, \dots, y_i] \alpha(y_{i+1}), \dots, \alpha(y_n) \big] \Big)$$

$$=\sum_{i=1}^n \varepsilon(X,Y_i) \left[\beta \circ \alpha(y_1), \dots, \beta \circ \alpha(y_{i-1}), [x_1,x_2,\dots,y_i]_\beta, \beta \circ \alpha(y_{i+1}), \dots, \beta \circ \alpha(y_n)\right]_\beta.$$

The second assertion follows from

$$f([x_1, ..., x_n]_{\beta}) = [f \circ \beta(x_1), ..., f \circ \beta(x_n)]'$$

= $[\beta' \circ f(x_1), ..., \beta' \circ f(x_n)]' = [f(x_1), ..., f(x_n)]'_{\beta'}.$

Theorem 3.1 is proved.

In particular, we have the following construction of n-Hom-Lie color algebra using n-Lie color algebras and n-Lie color algebra morphisms.

Corollary 3.1. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon)$ be a n-Lie color algebra and $\alpha : \mathfrak{g} \longrightarrow \mathfrak{g}$ be a n-Lie color algebra endomorphism. Then $(\mathfrak{g}, [\cdot, \dots, \cdot]_{\alpha}, \varepsilon, \alpha)$, where $[\cdot, \dots, \cdot]_{\alpha} = \alpha \circ [\cdot, \dots, \cdot]$, is a n-Hom-Lie color algebra.

Example 3.1 [10]. Let $\Gamma = \mathbb{Z}_2 \times \mathbb{Z}_2$ and $\varepsilon((i_1, i_2), (j_1, j_2)) = (-1)^{i_1 j_2 - i_2 j_1}$. Let L be a Γ -graded vector space

$$\mathfrak{g} = \mathfrak{g}_{(0,0)} \oplus \mathfrak{g}_{(0,1)} \oplus \mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(1,1)}$$

with $\mathfrak{g}_{(0,0)}=\langle e_1,e_2\rangle,\ \mathfrak{g}_{(0,1)}=\langle e_3\rangle,\ \mathfrak{g}_{(1,0)}=\langle e_4\rangle,\ \mathfrak{g}_{(1,1)}=\langle e_5\rangle.$

The bracket $[\cdot, \cdot, \cdot, \cdot]$: $\mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ defined with respect to basis $\{e_i \mid i = 1, \dots, 5\}$ by

$$[e_2, e_3, e_4, e_5] = e_1,$$
 $[e_1, e_3, e_4, e_5] = e_2,$ $[e_1, e_2, e_4, e_5] = e_3,$
$$[e_1, e_2, e_3, e_4] = 0,$$
 $[e_1, e_2, e_3, e_5] = 0$

makes g into a five dimensional 4-Lie color algebra.

Now, we define a morphism $\alpha: \mathfrak{g} \to \mathfrak{g}$ by

$$\alpha(e_1) = e_2, \qquad \alpha(e_2) = e_1, \qquad \alpha(e_i) = e_i, \quad i = 3, 4, 5.$$

Then $\mathfrak{g}_{\alpha}=(\mathfrak{g},[\cdot,\cdot,\cdot,\cdot]_{\alpha},\varepsilon,\alpha)$ is a 4-Hom-Lie color algebra, where the new brackets are given as

$$[e_2, e_3, e_4, e_5]_{\alpha} = e_2,$$
 $[e_1, e_3, e_4, e_5]_{\alpha} = e_1,$ $[e_1, e_2, e_4, e_5]_{\alpha} = e_3,$ $[e_1, e_2, e_3, e_4]_{\alpha} = 0,$ $[e_1, e_2, e_3, e_5]_{\alpha} = 0.$

Let $\mathcal{G}=(\mathfrak{g},[\cdot,\ldots,\cdot],\varepsilon,\alpha)$ be a multiplicative n-Hom-Lie color algebra and $p\geq 0$. Define the pth derived \mathcal{G} by

$$\mathcal{G}^p = (\mathfrak{g}, [\cdot, \dots, \cdot]^p = \alpha^{2p-1} \circ [\cdot, \dots, \cdot], \varepsilon, \alpha^{2p}).$$

Note that $\mathcal{G}^0 = \mathcal{G}, \ \mathcal{G}^1 = (\mathfrak{g}, [\cdot, \dots, \cdot]^1 = \alpha \circ [\cdot, \dots, \cdot], \varepsilon, \alpha^2).$

Corollary 3.2. With the above notations, the pth derived \mathcal{G} , \mathcal{G}^p , is also a n-Hom-Lie color algebra for each $p \geq 0$.

Lemma 3.1. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra and \mathfrak{h} be a Γ -graded vector space. If there exists a bijective linear map of degree zero $f: \mathfrak{h} \to \mathfrak{g}$, then $(\mathfrak{h}, [\cdot, \dots, \cdot]', \varepsilon, f^{-1} \circ \alpha \circ f)$ is a n-Hom-Lie color algebra, where the n-ary bracket $[\cdot, \dots, \cdot]'$ is defined by

$$[x_1,\ldots,x_n]'=f^{-1}\circ[f(x_1),\ldots,f(x_n)]\quad\forall x_i\in\mathfrak{h}.$$

Moreover, f is an algebra isomorphism.

Proof. Straightforward.

Proposition 3.1. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a regular n-Hom-Lie color algebra. Then $(V, [\cdot, \dots, \cdot]_{\alpha^{-1}} = \alpha^{-1} \circ [\cdot, \dots, \cdot], \varepsilon)$ is a n-Lie color algebra.

Corollary 3.3. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra with $n \geq 3$. Let $a_1, \dots, a_p \in \mathfrak{g}_0$ such that $\alpha(a_i) = a_i$ for all $i \in \{1, \dots, p\}$. Then $(\mathfrak{g}, \{\cdot, \dots, \cdot\}, \varepsilon, \alpha)$ is a (n-p)-Hom-Lie color algebra, where

$$\{x_1, \dots, x_{n-p}\} = [a_1, \dots, a_p, x_1, \dots, x_{n-p}] \quad \forall x_1, \dots, x_{n-p} \in \mathfrak{g}.$$

3.2. From n-Hom-Lie color algebras to Hom-Leibniz color algebras. In the following, we recall the definition of Hom-Leibniz color algebra introduced in [10]. We construct a Hom-Leibniz color algebra starting from a given n-Hom-Lie color algebra.

Definition 3.1. A Hom-Leibniz color algebra is a quadruple $(\mathcal{L}, [\cdot, \cdot], \varepsilon, \alpha)$ consisting of a Γ -graded vector space \mathcal{L} , a bicharacter ε , a bilinear map of degree zero $[\cdot, \cdot] : \mathcal{L} \times \mathcal{L} \to \mathcal{L}$ and a homomorphism $\alpha : \mathcal{L} \to \mathcal{L}$ such that, for any homogeneous elements $x, y, z \in \mathcal{L}$,

$$[\alpha(x),[y,z]] - \varepsilon(x,y)[\alpha(y),[x,z]] = [[x,y],\alpha(z)] \quad (\varepsilon\text{-Hom-Leibniz identity}). \tag{3.1}$$

In particular, if α is a morphism of Hom-Leibniz color algebra (i.e., $\alpha \circ [\cdot, \cdot] = [\cdot, \cdot] \circ \alpha^{\otimes 2}$), we call $(\mathcal{L}, [\cdot, \cdot], \varepsilon, \alpha)$ a multiplicative Hom-Leibniz color algebra.

Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra. We define a Γ -graded space $\mathcal{L} = \mathcal{L}(\mathfrak{g}) := \bigwedge^{n-1} \mathfrak{g}$, which is called fundamental set, and, for a fundamental object $X = x_1 \wedge \ldots \wedge x_{n-1} \in \mathcal{L}$, an adjoint map ad_X as a linear map on \mathfrak{g} by

$$ad_X \cdot y = [x_1, \dots, x_{n-1}, y].$$
 (3.2)

We define a linear map $\tilde{\alpha}: \mathcal{L} \longrightarrow \mathcal{L}$ by

$$\tilde{\alpha}(X) = \alpha(x_1) \wedge \ldots \wedge \alpha(x_{n-1}).$$

Then the color ε -n-Hom-Jacobi identity (2.2) may be written in terms of adjoint maps as

$$ad_{\tilde{\alpha}(X)}[y_1,\ldots,y_n] = \sum_{i=1}^n \varepsilon(X,Y_i)[\alpha(y_1),\ldots,\alpha(y_{i-1}),ad_Xy_i,\ldots,\alpha(y_n)].$$

Now, we define a bilinear map of degree zero $[\cdot,\cdot]_{\alpha}:\mathcal{L}\times\mathcal{L}\longrightarrow\mathcal{L}$ by

$$[X,Y]_{\alpha} = \sum_{i=1}^{n-1} \varepsilon(X,Y_i) (\alpha(y_1),\dots,\alpha(y_{i-1}), ad_X y_i,\dots,\alpha(y_{n-1})).$$
(3.3)

Proposition 3.2. With the above notations, the map ad satisfies, for all $X, Y \in \mathcal{H}(\mathcal{L}(\mathfrak{g}))$ and $z \in \mathcal{H}(\mathfrak{g})$, the equality

$$ad_{[X,Y]_{\alpha}}\alpha(z) = ad_{\tilde{\alpha}(X)}(ad_{Y}z) - \varepsilon(X,Y)ad_{\tilde{\alpha}(Y)}(ad_{X}z). \tag{3.4}$$

Moreover, the quadruple $(\mathcal{L}, [\cdot, \cdot]_{\alpha}, \varepsilon, \tilde{\alpha})$ is a Hom-Leibniz color algebra.

Proof. It is easy to show that the identity (2.2) is equivalent to (3.4). Let $X, Y, Z \in \mathcal{H}(\mathcal{L})$, the ε -Hom-Leibniz identity (3.1) can be written using the bracket $[\cdot, \cdot]_{\alpha}$ and the twist $\tilde{\alpha}$ as

$$[\tilde{\alpha}(X), [Y, Z]_{\alpha}]_{\alpha} - \varepsilon(X, Y)[\tilde{\alpha}(Y), [X, Z]_{\alpha}]_{\alpha} = [[X, Y]_{\alpha}, \tilde{\alpha}(Z)]_{\alpha}. \tag{3.5}$$

Then we have

$$[\tilde{\alpha}(X), [Y, Z]_{\alpha}]_{\alpha}$$

$$= \sum_{i=1}^{n-1} \sum_{j>i}^{n-1} \varepsilon(X, Z_{j}) \varepsilon(Y, Z_{i}) (\alpha^{2}(z_{1}), \dots, \alpha(ad_{X}z_{j}), \dots, \alpha(ad_{Y}z_{i}), \dots, \alpha^{2}(z_{n-1}))$$

$$+ \sum_{i=1}^{n-1} \sum_{j>i}^{n-1} \varepsilon(X, Y + Z_{j}) \varepsilon(Y, Z_{i}) (\alpha^{2}(z_{1}), \dots, \alpha(ad_{X}z_{i}), \dots, \alpha(ad_{Y}z_{j}), \dots, \alpha^{2}(z_{n-1}))$$

$$+ \sum_{i=1}^{n-1} \varepsilon(X + Y, Z_{i}) (\alpha^{2}(z_{1}), \dots, (ad_{\tilde{\alpha}(X)}ad_{Y}z_{i}), \dots, \alpha^{2}(z_{n-1})).$$

Using the ε -skew-symmetry in X and Y, we obtain

$$\begin{split} &[\tilde{\alpha}(Y),[X,Z]_{\alpha}]_{\alpha} \\ &= \sum_{i=1}^{n-1} \sum_{ji}^{n-1} \varepsilon(Y,X)\varepsilon(Y,Z_{j})\varepsilon(X,Z_{i}) \\ &\times (\alpha^{2}(z_{1}),\ldots,\alpha(ad_{Y}z_{i}),\ldots,\alpha(ad_{X}z_{j}),\ldots,\alpha^{2}(z_{n-1})) \\ &+ \sum_{i=1}^{n-1} \varepsilon(X+Y,Z_{i})(\alpha^{2}(z_{1}),\ldots,(ad_{\tilde{\alpha}(Y)}ad_{X}z_{i}),\ldots,\alpha^{2}(z_{n-1})). \end{split}$$

So, the right-hand side of Eq. (3.5) is equal to

$$\sum_{i=1}^{n-1} \varepsilon(X+Y,Z_i) \Big(\alpha^2(z_1),\ldots, \Big((ad_{\tilde{\alpha}(X)}ad_yz_i)-\varepsilon(X,Y)(ad_{\tilde{\alpha}(Y)}ad_Xz_i)\Big),\ldots,\alpha^2(z_{n-1})\Big).$$

The left-hand side of Eq. (3.5) is equal to

$$[[X,Y]_{\alpha},\tilde{\alpha}(Z)]_{\alpha}$$

$$= \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \varepsilon(X,Y_{j})\varepsilon(X,Z_{i})\varepsilon(Y,Z_{i})$$

$$\times \left(\alpha^{2}(z_{1}),\ldots,[\alpha(y_{1}),\ldots,ad_{X}z_{j},\ldots,\alpha(y_{n-1}),\alpha(z_{i})],\ldots,\alpha^{2}(z_{n-1})\right)$$

$$= \sum_{i=1}^{n-1} \varepsilon(X+Y, Z_i) \Big(\alpha^2(z_1), \dots, \alpha^2(z_{i-1}), ad_{[X,Y]_{\alpha}} \alpha(z_i), \dots, \alpha^2(z_{n-1}) \Big)$$

by Eq. (3.4), the ε -Hom–Leibniz identity holds.

Proposition 3.2 is proved.

3.3. Representations of n-Hom-Lie color algebras. In this subsection, we introduce a notion of representation of n-Hom-Lie color algebras, generalizing representations of n-Hom-Lie superalgebras (see in [1]) to the Γ -graded case. In the sequel, we consider only multiplicative n-Hom-Lie color algebras.

Definition 3.2. A representation of a n-Hom-Lie color algebra $\mathcal{G} = (\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ on a Γ -graded space M is a ε -skew-symmetric linear map of degree zero $\rho \colon \bigwedge^{n-1} \mathfrak{g} \longrightarrow \operatorname{End}(M)$, and μ an endomorphism on M satisfying, for $X = (x_1, \dots, x_{n-1}), Y = (y_1, \dots, y_{n-1}) \in \mathcal{H}(\bigwedge^{n-1} \mathfrak{g})$ and $x_n \in \mathcal{H}(\mathfrak{g})$,

$$\rho(\tilde{\alpha}(X)) \circ \mu = \mu \circ \rho(X), \tag{3.6}$$

$$\rho(\alpha(x_1),\ldots,\alpha(x_{n-1}))\circ\rho(y_1,\ldots,y_{n-1})$$

$$-\varepsilon(X,Y)\rho(\alpha(y_1),\ldots,\alpha(y_{n-1}))\circ\rho(x_1,\ldots,x_{n-1})$$

$$= \sum_{i=1}^{n-1} \varepsilon(X, Y_i) \rho(\alpha(y_1), \dots, \alpha(y_{i-1}), ad_X(y_i), \dots, \alpha(y_{n-1})) \circ \mu, \tag{3.7}$$

$$\rho([x_1, x_2, \dots, x_n], \alpha(y_1), \alpha(y_2), \dots, \alpha(y_{n-2})) \circ \mu$$

$$= \sum_{i=1}^{n} (-1)^{n-i} \varepsilon(x_i, X^i) \rho(\alpha(x_1), \dots, \hat{x_i}, \dots, \alpha(x_n)) \rho(x_i, y_1, y_2, \dots, y_{n-2}).$$
 (3.8)

We denote this representation by a triple (M, ρ, μ) .

Remarks 3.1. 1. Condition (3.7) can be written in terms of fundamental object on \mathcal{L} defined in Subsection 3.2 and the bracket of Hom-Leibniz color algebra defined in (3.3) as

$$\rho(\tilde{\alpha}(X)) \circ \rho(Y) - \varepsilon(X, Y) \rho(\tilde{\alpha}(Y)) \circ \rho(X) = \rho([X, Y]_{\alpha}) \circ \mu.$$

- 2. Two representations (M, ρ, μ) and (M', ρ', μ') of a n-Hom-Lie color algebra $\mathcal G$ are equivalent if there exists $f: M \to M'$, an isomorphism of Γ -graded vector space of degree zero, such that $f(\rho(X)m) = \rho'(X)f(m)$ and $f \circ \mu = \mu' \circ f$ for all $X \in \mathcal H(\mathcal L)$, $m \in M$ and $m' \in M'$.
 - 3. If $\alpha = id_{\mathfrak{g}}$ and $\mu = id_{M}$, we recover representations of n-Lie color algebras.

Example 3.2. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a multiplicative n-Hom-Lie color algebra. The map ad defined in Eq. (3.2) is a representation on \mathfrak{g} where the endomorphism μ is the twist map α . The identity (3.7) is equivalent to n-Hom-Jacobi identity Eq. (2.2). It is called the adjoint representation.

Proposition 3.3. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a multiplicative n-Hom-Lie color algebra. Then (M, ρ, μ) is a representation of \mathfrak{g} if and only if $(\mathfrak{g} \oplus M, [\cdot, \dots, \cdot]_{\rho}, \varepsilon, \tilde{\alpha})$ is a multiplicative n-Hom-Lie color algebra with the bracket operation $[\cdot, \dots, \cdot]_{\rho} \colon \wedge^n (\mathfrak{g} \oplus M) \longrightarrow \mathfrak{g} \oplus M$ defined by

$$[x_1 + m_1, \dots, x_n + m_n]_{\rho} = [x_1, \dots, x_n] + \sum_{i=1}^n (-1)^{n-i} \varepsilon(x_i, X^i) \rho(x_1, \dots, \hat{x}_i, \dots, x_n) m_i$$

and the linear map of degree zero $\alpha_{\mathfrak{g}\oplus M}:\mathfrak{g}\oplus M\longrightarrow \mathfrak{g}\oplus M$ given by

$$\alpha_{\mathfrak{g} \oplus M}(x+m) = \alpha(x) + \mu(m)$$

for all $x_i \in \mathcal{H}(\mathfrak{g})$ and $m_i \in M$, $i \in \{1, ..., n\}$. It is called the semidirect product of the n-Hom–Lie color algebra $(\mathfrak{g}, [\cdot, ..., \cdot], \varepsilon, \alpha)$ by the representation (M, ρ, μ) denoted by $\mathfrak{g} \ltimes_{\rho}^{\alpha, \mu} M$. Note that $\mathfrak{g} \oplus M$ is a Γ -graded space, where $(\mathfrak{g} \oplus M)_{\gamma} = \mathfrak{g}_{\gamma} \oplus M_{\gamma}$, implying that $x + m \in \mathcal{H}(\mathfrak{g} \oplus M)$, so $\overline{x_i + m_i} = \overline{x_i} + \overline{m_i}$.

Proof. It is easy to show that $[\cdot, \dots, \cdot]_{\rho}$ is ε -skew-symmetric using the ε -skew-symmetry of $[\cdot, \dots, \cdot]$ and ρ . Let $x_1 + v_1, \dots, x_{n-1} + v_{n-1}$ and $y_1 + w_1, \dots, y_n + w_n \in \mathcal{H}(\mathfrak{g} \oplus M)$, the identity (2.2) is given in terms of $[\cdot, \dots, \cdot]_{\rho}$ and $\alpha_{\mathfrak{g} \oplus M}$ by

$$[\alpha_{\mathfrak{g} \oplus M}(x_1 + v_1), \dots, \alpha_{\mathfrak{g} \oplus M}(x_{n-1} + v_{n-1}), [y_1 + w_1, \dots, y_n + w_n]_{\rho}]_{\rho}$$

$$= \sum_{i=1}^{n} \varepsilon(X, Y_i) [\alpha_{\mathfrak{g} \oplus M}(y_1 + w_1), \dots, \alpha_{\mathfrak{g} \oplus M}(y_{i-1} + w_{i-1}),$$

$$[x_1 + v_1, \dots, x_{n-1} + v_{n-1}, y_i + w_i]_{\rho}, \dots, \alpha_{\mathfrak{g} \oplus M}(y_n + w_n)]_{\rho}. \tag{3.9}$$

The left-hand side of (3.9) is equal to

$$[\alpha(x_1), \dots, \alpha(x_{n-1}), [y_1, \dots, y_n]]$$

$$+ \sum_{i=1}^{n-1} (-1)^{n-i} \varepsilon(x_i, X^i + Y) \rho(\alpha(x_1), \dots, \hat{x_i}, \dots, \alpha(x_{n-1}), [y_1, \dots, y_n]) \mu(v_i)$$

$$+ \sum_{i=1}^{n} (-1)^{n-i} \varepsilon(y_i, Y^i) \rho(\alpha(x_1), \dots, \alpha(x_n)) \rho(y_1, \dots, \hat{y_i}, \dots, y_n) w_i.$$

The right-hand side of (3.9), for a fixed $i \in \{1, ..., n\}$, is equal to

$$\varepsilon(X, Y_i)[\alpha(y_1), \dots, \alpha(y_{i-1}), [x_1, \dots, y_i], \dots, \alpha(y_n)]
+ \sum_{j < i} (-1)^{n-j} \varepsilon(X, Y_i) \varepsilon(y_j, X + Y^j)
\times \rho\Big(\alpha(y_1), \dots, \hat{y_j}, \dots, \alpha(y_{i-1}), [x_1, \dots, x_{n-1}, y_i], \dots, \alpha(y_n)\Big) \mu(w_j)
+ \sum_{j > i} (-1)^{n-j} \varepsilon(X, Y_i) \varepsilon(y_j, Y^j)
\times \rho\Big(\alpha(y_1), \dots, \alpha(y_{i-1}), [x_1, \dots, x_{n-1}, y_i], \dots, \hat{y_j}, \dots, \alpha(y_n)\Big) \mu(w_j)
+ \sum_{j=1}^{n-1} (-1)^{i+j} \varepsilon(X, Y_i) \varepsilon(X + y_i, Y^i) \varepsilon(x_j, X^j + y_i)
\times \rho\Big(\alpha(y_1), \dots, \hat{y_i}, \dots, \alpha(y_n)\Big) \rho(x_1, \dots, \hat{x_j}, \dots, x_{n-1}, y_i) v_j$$

$$+(-1)^{n-i}\varepsilon(X,Y_i)\varepsilon(X+y_i,Y^i)\rho(\alpha(y_1),\ldots,\hat{y_i},\ldots,\alpha(y_n))\rho(x_1,\ldots,x_{n-1})w_i.$$

Then (M, ρ, μ) is a representation of the multiplicative n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ if and only if $(\mathfrak{g} \oplus M, [\cdot, \dots, \cdot]_{\rho}, \varepsilon, \alpha_{\mathfrak{g} \oplus M})$ is a multiplicative n-Hom-Lie color algebra.

Proposition 3.3 is proved.

Proposition 3.4. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon)$ be a n-Lie color algebra, (M, ρ) be a representation of $\mathfrak{g}, \alpha : \mathfrak{g} \to \mathfrak{g}$ be an algebra morphism and $\mu : M \to M$ be a linear map of degree zero such that $\rho(\tilde{\alpha}(X)) \circ \mu = \mu \circ \rho(X)$ for all $X \in \mathcal{L}$. Then $(M, \tilde{\rho} = \mu \circ \rho, \mu)$ is a representation of the multiplicative n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \dots, \cdot]_{\alpha}, \varepsilon, \alpha)$ given in Corollary 3.1.

Proof. It is easy to verify that, for $X=(x_1,\ldots,x_{n-1}),\ Y=(y_1,\ldots,y_{n-1})\in\mathcal{H}(\mathcal{L})$ and $x_n,y_n\in\mathcal{H}(\mathfrak{g}),$

$$\tilde{\rho}(\tilde{\alpha}(X)) \circ \mu = \mu \circ \tilde{\rho}(X).$$

Since (M, ρ) is a representation of \mathfrak{g} , then we have

$$\tilde{\rho}([x_1, \dots, x_n]_{\alpha}, \alpha(y_1), \dots, \alpha(y_{n-2})) \circ \mu$$

$$= \mu \circ \tilde{\rho}([x_1, \dots, x_n], y_1, \dots, y_{n-2})$$

$$= \sum_{i=1}^n (-1)^{n-1} \varepsilon(x_i, X^i) \mu^2 \circ \rho(x_1, \dots, \hat{x_i}, \dots, x_n) \rho(x_i, y_1, \dots, y_n)$$

$$= \sum_{i=1}^n (-1)^{n-1} \varepsilon(x_i, X^i) \mu \circ \rho(\alpha(x_1), \dots, \hat{x_i}, \dots, \alpha(x_n)) \mu \circ \rho(x_i, y_1, \dots, y_n)$$

$$= \sum_{i=1}^n (-1)^{n-1} \varepsilon(x_i, X^i) \tilde{\rho}(\alpha(x_1), \dots, \hat{x_i}, \dots, \alpha(x_n)) \tilde{\rho}(x_i, y_1, \dots, y_n).$$

Thus, condition (3.8) holds. Similarly, Eq. (3.7) is valid for $\tilde{\rho}$. Then $(M, \tilde{\rho}, \mu)$ is a representation of the multiplicative n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \dots, \cdot]_{\alpha}, \varepsilon, \alpha)$.

Proposition 3.4 is proved.

4. Cohomology of n**-Hom** – **Lie color algebras.** In this section, we study a cohomology of a multiplicative n-Hom – Lie color algebra with respect to a given representation. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom – Lie color algebra and (M, ρ, μ) is a $\mathcal{L}(\mathfrak{g})$ -module. A p-cochain is a ε -skew-symmetric multilinear map $\varphi \colon \underbrace{\mathcal{L}(\mathfrak{g}) \otimes \ldots \otimes \mathcal{L}(\mathfrak{g})}_{n-1} \wedge \mathfrak{g} \longrightarrow M$ such that

$$\mu \circ \varphi(X_1, \dots, X_p, z) = \varphi(\tilde{\alpha}(X_1), \dots, \tilde{\alpha}(X_p), \alpha(z)).$$

The space of all p-cochains is Γ -graded and is denoted by $\mathcal{C}^p_{\alpha,\mu}(\mathfrak{g},M)$.

Thus, we can define the coboundary operator of the cohomology of a n-Hom-Lie color algebra \mathfrak{g} with coefficients in M by using the structure of its induced Hom-Leibniz color algebra as follows.

Definition 4.1. We call, for $p \ge 1$, a p-coboundary operator of a n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$, a linear map $\delta^p : \mathcal{C}^p_{\alpha,\mu}(\mathfrak{g}, M) \to \mathcal{C}^{p+1}_{\alpha,\mu}(\mathfrak{g}, M)$ defined by

$$\delta^{p} \varphi(X_{1}, \dots, X_{p}, z)$$

$$= \sum_{1 \leq i \leq j}^{p} (-1)^{i} \varepsilon(X_{i}, X_{i+1} + \dots + X_{j-1})$$

$$\times \varphi(\tilde{\alpha}(X_{1}), \dots, \widehat{\alpha}(X_{i}), \dots, \tilde{\alpha}(X_{j-1}), [X_{i}, X_{j}]_{\alpha}, \dots, \tilde{\alpha}(X_{p}), \alpha(z))$$

$$+ \sum_{i=1}^{p} (-1)^{i} \varepsilon(X_{i}, X_{i+1} + \dots + X_{p}) \varphi(\tilde{\alpha}(X_{1}), \dots, \widehat{\alpha}(X_{i}), \dots, \tilde{\alpha}(X_{p}), ad(X_{i})(z))$$

$$+ \sum_{i=1}^{p} (-1)^{i+1} \varepsilon(\varphi + X_{1} + \dots + X_{i-1}, X_{i}) \rho(\tilde{\alpha}^{p-1}(X_{i})) \Big(\varphi(X_{1}, \dots, \widehat{X_{i}}, \dots, X_{p}, z) \Big)$$

$$+ (-1)^{p+1} \Big(\varphi(X_{1}, \dots, X_{p-1}) X_{p} \Big) \bullet_{\alpha} \alpha^{p}(z),$$

where

$$(\varphi(X_1, \dots, X_{p-1})X_p) \bullet_{\alpha} \alpha^p(z)$$

$$= \sum_{i=1}^{n-1} (-1)^{n-i} \varepsilon (\varphi + X_1 + \dots + X_{p-1}, x_p^1 + \dots + \hat{x}_p^i + \dots + x_p^{n-1} + z)$$

$$\times \varepsilon (x_p^i, x_p^{i+1} + \dots + x_p^{n-1} + z)$$

$$\times \rho(\alpha^{p-1}(x_p^1), \dots, \alpha^{p-1}(x_p^{n-1}), \alpha^{p-1}(z)) \varphi(X_1, \dots, X_{p-1}, x_p^i)$$

for $X_i = (x_i^j)_{1 \le j \le n-1} \in \mathcal{H}(\mathcal{L}(\mathfrak{g})), \ 1 \le i \le p, \ and \ z \in \mathcal{H}(\mathfrak{g}).$

Proposition 4.1. Let $\varphi \in \mathcal{C}^p_{\alpha,\mu}(\mathfrak{g},M)$ be a p-cochain, then

$$\delta^{p+1} \circ \delta^p(\varphi) = 0.$$

Proof. Let φ be a p-cochain, $X_i=(x_i^j)_{1\leq j\leq n-1}\in \mathcal{H}(\mathcal{L}(\mathfrak{g})),\ 1\leq i\leq p+2,$ and $z\in \mathcal{H}(\mathfrak{g}).$ We set

$$\delta^p = \delta_1^p + \delta_2^p + \delta_3^p + \delta_4^p$$
 and $\delta^{p+1} \circ \delta^p = \sum_{i,j=1}^4 \Upsilon_{ij}$,

where $\Upsilon_{ij} = \delta_i^{p+1} \circ \delta_j^p$ and

$$\delta_1^p \varphi(X_1, \dots, X_p, z) = \sum_{1 \le i < j}^p (-1)^i \varepsilon(X_{i+1} + \dots + X_{j-1}, X_i)$$

$$\times \varphi(\tilde{\alpha}(X_1), \dots, \widehat{\tilde{\alpha}(X_i)}, \dots, [X_i, X_j]_\alpha, \dots, \tilde{\alpha}(X_p), \alpha(z)),$$

$$\delta_2^p \varphi(X_1, \dots, X_p, z) = \sum_{i=1}^p (-1)^i \varepsilon(X_{i+1} + \dots + X_p, X_i)$$

$$\times \varphi(\tilde{\alpha}(X_1), \dots, \widehat{\tilde{\alpha}(X_i)}, \dots, \tilde{\alpha}(X_p), ad(X_i)(z)),$$

$$\delta_3^p \varphi(X_1, \dots, X_p, z) = \sum_{i=1}^p (-1)^{i+1} \varepsilon(\varphi + X_1 + \dots + X_{i-1}, X_i)$$

$$\times \rho(\tilde{\alpha}^{p-1}(X_i)) \Big(\varphi(X_1, \dots, \widehat{X_i}, \dots, X_p, z) \Big),$$

$$\delta_4^p \varphi(X_1, \dots, X_p, z) = (-1)^{p+1} \big(\varphi(X_1, \dots, X_{p-1}) X_p \big) \bullet_{\alpha} \alpha^p(z).$$

To simplify the notations we replace ad(X)(z) by $X \cdot z$. Let first prove that $\Upsilon_{11} + \Upsilon_{12} + \Upsilon_{21} + \Upsilon_{22} = 0$, $(X_i)_{1 \le i \le p} \in \mathcal{L}(\mathfrak{g})$ and $z \in \mathfrak{g}$.

Let us compute first $\Upsilon_{11}(\varphi)(X_1,\ldots,X_p,z)$. We have

$$\Upsilon_{11}(\varphi)(X_1,\ldots,X_p,z)$$

$$= \sum_{1 \leq i < k < j}^{p} (-1)^{i+k} \varepsilon(X_{i+1} + \dots + X_{j-1}, X_i) \varepsilon(X_{k+1} + \dots + X_{j-1}, X_k)$$

$$\times \varphi(\tilde{\alpha}^2(X_1), \dots, \widehat{X}_i, \dots, \tilde{\alpha}(\widehat{X}_k), \dots, [\tilde{\alpha}(X_k), [X_i, X_j]_{\alpha}]_{\alpha}, \dots, \tilde{\alpha}^2(X_p), \alpha^2(z))$$

$$+ \sum_{1 \leq i < k < j}^{p} (-1)^{i+k-1} \varepsilon(X_{i+1} + \dots + \widehat{X}_k + \dots + X_{j-1}, X_i) \varepsilon(X_{k+1} + \dots + X_{j-1}, X_k)$$

$$\times \varphi(\tilde{\alpha}^2(X_1), \dots, \widehat{\alpha}(\widehat{X}_i), \dots, \widehat{X}_k, \dots, [\tilde{\alpha}(X_i), [X_k, X_j]_{\alpha}]_{\alpha}, \dots, \tilde{\alpha}^2(X_p), \alpha^2(z))$$

$$+ \sum_{1 \leq i < k < j}^{p} (-1)^{i+k-1} \varepsilon(X_{i+1} + \dots + \widehat{X}_k + \dots + X_{j-1}, X_i) \varepsilon(X_{k+1} + \dots + X_{j-1}, X_k)$$

$$\times \varphi(\tilde{\alpha}^2(X_1), \dots, \widehat{X}_i, \dots, [\widehat{X}_i, \widehat{X}_k]_{\alpha}, \dots, [[X_i, X_k]_{\alpha}, \widetilde{\alpha}(X_j)]_{\alpha}, \dots, \tilde{\alpha}^2(X_p), \alpha^2(z)).$$

Whence applying the Hom-Leibniz identity (3.1) to X_i , X_j , $X_k \in \mathcal{H}(\mathcal{L}(\mathfrak{g}))$, we find $\Upsilon_{11} = 0$. On the other hand, we obtain

$$(\Upsilon_{21}(\varphi) + \Upsilon_{12}(\varphi))(X_1, \dots, X_p, z)$$

$$= \sum_{1 \le i < j}^p (-1)^{i+j-1} \varepsilon(X_{i+1} + \dots + \widehat{X}_j + \dots + X_p, X_i) \varepsilon(X_{j+1} + \dots + X_p, X_j)$$

$$\times \varphi(\tilde{\alpha}^2(X_1), \dots, \widehat{X}_i, \dots, [\widehat{X}_i, \widehat{X}_i]_{\alpha}, \dots, \tilde{\alpha}^2(X_p), [X_i, X_i]_{\alpha} \cdot \alpha(z))$$

and

$$\Upsilon_{22}(\varphi)(X_1, \dots, X_p, z)$$

$$= \sum_{1 \le i < j}^{p} (-1)^{i+j} \varepsilon(X_{i+1} + \dots + X_p, X_i) \varepsilon(X_{j+1} + \dots + X_p, X_j)$$

$$\times \varphi(\tilde{\alpha}^2(X_1), \dots, \widehat{X}_i, \dots, \widehat{\alpha}(\widehat{X}_j), \dots, \tilde{\alpha}^2(X_p), (\tilde{\alpha}(X_j)(X_i \cdot z)))$$

$$+ \sum_{1 \leq i < j}^{p} (-1)^{i+j-1} \varepsilon(X_{j+1} + \dots + X_{p+1}, X_j) \varepsilon(X_{j+1} + \dots + \widehat{X_j} + \dots + X_p, X_i)$$
$$\times \varphi(\tilde{\alpha}^2(X_1), \dots, \widehat{\tilde{\alpha}(X_i)}, \dots, \widehat{X_j}, \dots, \tilde{\alpha}^2(X_p), (\tilde{\alpha}(X_i)(X_j \cdot z))).$$

Then, applying (2.2) to X_i , $X_j \in \mathcal{H}(\mathcal{L}(\mathfrak{g}))$ and $z \in \mathcal{H}(\mathfrak{g})$, we get $\Upsilon_{12} + \Upsilon_{21} + \Upsilon_{22} = 0$. On the other hand, we have

$$\Upsilon_{31}\varphi(X_{1},...,X_{p+1},z)$$

$$= \sum_{1\leq i< j< k}^{p+1} \left\{ (-1)^{k+i+1} \varepsilon(\varphi + X_{1} + ... + X_{k-1}, X_{k}) \varepsilon(X_{i+1} + ... + X_{j-1}, X_{i}) \right.$$

$$\times \rho(\tilde{\alpha}^{p}(X_{k})) \varphi(\tilde{\alpha}(X_{1}),...,\hat{X}_{i},...,[X_{i},X_{j}]_{\alpha},...,\hat{X}_{k},...,\alpha(z))$$

$$+ (-1)^{j+i+1} \varepsilon(\varphi + X_{1} + ... + X_{j-1}, X_{j}) \varepsilon(X_{i+1} + ... + \hat{X}_{j} + ... + X_{k-1}, X_{i})$$

$$\times \rho(\tilde{\alpha}^{p-1}(X_{j})) \varphi(\tilde{\alpha}(X_{1}),...,\hat{X}_{i},...,\hat{X}_{j},...,[X_{i},X_{k}]_{\alpha},...,\alpha(z))$$

$$+ (-1)^{j+i} \varepsilon(\varphi + X_{1} + ... + X_{i-1}, X_{i}) \varepsilon(X_{j+1} + ... + X_{k-1}, X_{j})$$

$$\times \rho(\tilde{\alpha}^{p-1}(X_{i})) \varphi(\tilde{\alpha}(X_{1}),...,\hat{X}_{i},...,\hat{X}_{j},...,[X_{j},X_{k}]_{\alpha},...,\alpha(z)) \right\},$$

$$\Upsilon_{13}\varphi(X_{1},...,X_{p+1},z) = -\Upsilon_{31}\varphi(X_{1},...,X_{p+1},z)$$

$$+ \sum_{1\leq i< j}^{p+1} (-1)^{i+j+1} \varepsilon(\varphi + X_{1} + ... + X_{i-1}, X_{i})$$

$$\times \varepsilon(\varphi + X_{1} + ... + \hat{X}_{i} + ... + X_{j-1}, X_{j})$$

and

$$\Upsilon_{33}\varphi(X_1,\ldots,X_{p+1},z)$$

$$= \sum_{1 \leq i < j}^{p+1} \left\{ (-1)^{i+j+1} \varepsilon(\varphi + X_1 + \dots + X_{i-1}, X_i) \varepsilon(\varphi + X_1 + \dots + X_{j-1}, X_j) \rho(\tilde{\alpha}^{p-1}(X_i)) \right.$$

$$\times \left(\rho(\tilde{\alpha}^p(X_j)) \left(\varphi(X_1, \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots, z) \right) \right)$$

$$+ (-1)^{i+j} \varepsilon(\varphi + X_1 + \dots + X_{i-1}, X_i) \varepsilon(\varphi + X_1 + \dots + \widehat{X}_i + \dots + X_{j-1}, X_j)$$

$$\times \rho(\tilde{\alpha}^{p-1}(X_j)) \left(\rho(\tilde{\alpha}^{p-1}(X_i)) \left(\varphi(X_1, \dots, \widehat{X}_j, \dots, \widehat{X}_i, \dots, z) \right) \right) \right\}.$$

 $\times \rho(\tilde{\alpha}^{p-1}([X_i, X_i]_{\alpha})) \mu(\varphi(X_1, \dots, \hat{X}_i, \dots, \hat{X}_i, \dots, z))$

Then, applying (3.7) to $\tilde{\alpha}^p(X_i) \in \mathcal{L}(\mathfrak{g}), \ \tilde{\alpha}^p(X_j) \in \mathcal{L}(\mathfrak{g}) \ \text{and} \ \varphi(X_1, \dots, \widehat{X}_i, \dots, \widehat{X}_j, \dots, z) \in M$, we have

$$\Upsilon_{13} + \Upsilon_{33} + \Upsilon_{31} = 0.$$

By the same calculation, we can prove that

$$\Upsilon_{23} + \Upsilon_{32} = 0,$$

$$\Upsilon_{14} + \Upsilon_{41} + \Upsilon_{24} + \Upsilon_{42} + \Upsilon_{34} + \Upsilon_{43} + \Upsilon_{44} = 0.$$

Proposition 4.1 is proved.

Definition 4.2. We define the graded space of

p-cocycles by $\mathcal{Z}^p_{\alpha,\mu}(\mathfrak{g},M) = \{ \varphi \in \mathcal{C}^p_{\alpha,\mu}(\mathfrak{g},M) : \delta^p \varphi = 0 \}$ and p-coboundaries by $\mathcal{B}^p_{\alpha,\mu}(\mathfrak{g},M) = \{ \psi = \delta^{p-1} \varphi : \varphi \in \mathcal{C}^{p-1}_{\alpha,\mu}(\mathfrak{g},M) \}.$

Lemma 4.1. $\mathcal{B}^p_{\alpha,\mu}(\mathfrak{g},M) \subset \mathcal{Z}^p_{\alpha,\mu}(\mathfrak{g},M)$.

Definition 4.3. We call the p th-cohomology group the quotient

$$\mathcal{H}^p_{\alpha,\mu}(\mathfrak{g},M) = \mathcal{Z}^p_{\alpha,\mu}(\mathfrak{g},M)/\mathcal{B}^p_{\alpha,\mu}(\mathfrak{g},M).$$

Remarks 4.1. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra. Then:

1. A 1-cochain ϕ is called 1-cocycle if and only if

$$\phi \circ ad_X(x_n) = \sum_{i=1}^n (-1)^{n-i} \varepsilon(\phi, \hat{X}) \varepsilon(x_i, X^i) \rho(x_1, \dots, \hat{x_i}, \dots, x_n) \phi(x_i). \tag{4.1}$$

In particular, if $M = \mathfrak{g}$, Eq. (4.1) can be rewritten as

$$\sum_{i=1}^{n} \varepsilon(\phi, X_i)[x_1, \dots, \phi(x_i), \dots, x_n] - \phi([x_1, x_2, \dots, x_n]) = 0.$$

2. A 2-cochain ψ is called 2-cocycle if and only if, for all homogeneous elements $X=(x_1,\ldots,x_{n-1}),\ Y=(y_1,\ldots,y_{n-1})\in\mathcal{L}(\mathfrak{g})$ and $y_n\in\mathfrak{g}$,

$$\rho(\tilde{\alpha}(X))\psi(y_1,\ldots,y_n) + \psi(\alpha(x_1),\ldots,\alpha(x_{n-1}),ad_Yy_n)$$

$$= \sum_{i=1}^{n} \varepsilon(X, Y_i) \psi(\alpha(y_1), \dots, \alpha(y_{i-1}), [x_1, \dots, x_{n-1}, y_i], \dots, \alpha(y_n))$$

$$+\sum_{i=1}^{n}(-1)^{n-i}\varepsilon(\psi+X,\hat{Y}_n)\varepsilon(y_i,Y_n^i)\rho(\alpha(y_1),\ldots,\hat{y}_i,\ldots,\alpha(y_n))\psi(x_1,\ldots,x_{n-1},y_i).$$
(4.2)

5. Deformations of n-Hom – Lie color algebras. In this section, we study formal deformations and discuss equivalent deformations of n-Hom – Lie color algebras.

Definition 5.1. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom – Lie color algebra and $\omega_i : \mathfrak{g}^{\otimes n} \to \mathfrak{g}$ be ε -skew-symmetric linear maps of degree zero. Consider a λ -parametrized family of n-linear operations $(\lambda \in \mathbb{K})$:

$$[x_1,\ldots,x_n]_{\lambda}=[x_1,\ldots,x_n]+\sum_{i=1}^{\infty}\lambda^i\omega_i(x_1,\ldots,x_n).$$

The tuple $\mathfrak{g}_{\lambda} := (\mathfrak{g}, [\cdot, \dots, \cdot]_{\lambda}, \varepsilon, \alpha)$ is a one-parameter formal deformation of $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ generated by ω_i if it defines a n-Hom-Lie color algebra.

Remarks 5.1. 1. If $\lambda^2 = 0$ (k = 1), the deformation is called infinitesimal.

2. If $\lambda^n = 0$, the deformation is said to be of order n - 1.

Let ω and ω' be two 2-cochains on a n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ with coefficients in the adjoint representation. Define the bracket $[\,,\,]:\mathcal{C}^2_{\alpha,\alpha}(\mathfrak{g},\mathfrak{g})\times\mathcal{C}^2_{\alpha,\alpha}(\mathfrak{g},\mathfrak{g})\to\mathcal{C}^3_{\alpha,\alpha}(\mathfrak{g},\mathfrak{g})$ for $X,Y\in\mathcal{H}(\mathcal{L})$ and $z\in\mathcal{H}(\mathfrak{g})$ by

$$[\omega, \omega'](X, Y, z) = \omega(\tilde{\alpha}(X), \omega'(Y, z)) - \varepsilon(X, Y)\omega(\tilde{\alpha}(Y), \omega'(X, z))$$
$$-\omega(\omega'(X, \bullet) \circ \tilde{\alpha}(Y), \alpha(z)) + \omega'(\tilde{\alpha}(X), \omega(Y, z))$$
$$-\varepsilon(X, Y)\omega'(\tilde{\alpha}(Y), \omega(X, z)) - \omega'(\omega(X, \bullet) \circ \tilde{\alpha}(Y), \alpha(z)),$$

where

$$\omega(X, \bullet) \circ \tilde{\alpha}(Y) = \sum_{k=1}^{n-1} \varepsilon(X, Y_i) \alpha(y_1) \wedge \ldots \wedge \omega(X, y_k) \wedge \ldots \wedge \alpha(y_{n-1})$$

for all $X, Y \in \mathcal{H}(\mathcal{L}(\mathfrak{g}))$ and $z \in \mathcal{H}(\mathfrak{g})$.

Theorem 5.1. With the above notations, the 2-cochains ω_i , $i \geq 1$, generate a one-parameter formal deformation \mathfrak{g}_{λ} of order k of a n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ if and only if the following conditions hold:

$$\delta^2 \omega_1 = 0, \tag{5.1}$$

$$\delta^2 \omega_l + \frac{1}{2} \quad \sum_{i=1}^{l-1} \quad [\omega_i, \omega_{l-i}] = 0, \quad 2 \le l \le k, \tag{5.2}$$

$$\frac{1}{2} \sum_{i=l-k}^{k} [\omega_i, \omega_{l-i}] = 0, \quad n \le l \le 2k.$$
 (5.3)

Proof. Let ω_i , $i \geq 1$, be 2-cochains generating a one-parameter formal deformation $\mathfrak{g}_{\lambda} := (\mathfrak{g}, [\cdot, \dots, \cdot]_{\lambda}, \varepsilon, \alpha)$ of order k of a n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$. Then \mathfrak{g}_{λ} is also a n-Hom-Lie color algebra. According to Proposition 3.2, the ε -n-Hom-Jacobi identity (2.2) on \mathfrak{g}_{λ} is equivalent to

$$ad_{[X,Y]_{\alpha}^{\lambda}}^{\lambda}\alpha(z) = ad_{\tilde{\alpha}(X)}^{\lambda}(ad_{Y}^{\lambda}z) - \varepsilon(X,Y)ad_{\tilde{\alpha}(Y)}^{\lambda}(ad_{X}^{\lambda}z), \tag{5.4}$$

where

$$[X,Y]^{\lambda}_{\alpha} = [X,Y]_{\alpha} + \sum_{i=1}^{k} \lambda^{i} \omega_{i}(X, \bullet) \circ \tilde{\alpha}(Y)$$

and the adjoint map on \mathfrak{g}_{λ} is given by

$$ad_X^{\lambda}z = ad_Xz + \sum_{i=1}^k \lambda^i \omega_i(X, z).$$

The left-hand side of (5.4) is equal to

$$ad_{[X,Y]_{\alpha}}^{\lambda}\alpha(z) = ad_{[X,Y]_{\alpha}}\alpha(z) + \sum_{i=1}^{k} \lambda^{i} \left(\omega_{i}([X,Y]_{\alpha},\alpha(z))\right) + ad_{\omega_{i}(X,\bullet)\circ\tilde{\alpha}(Y)}\alpha(z) + \sum_{i,j=1}^{k} \lambda^{i+j} ad_{\omega_{i}(\omega_{j}(X,\bullet)\circ\tilde{\alpha}(Y))}\alpha(z).$$

The right-hand side of (5.4) is equal to

$$ad_{\tilde{\alpha}(X)}^{\lambda}(ad_{Y}^{\lambda}z) = ad_{\tilde{\alpha}(X)}(ad_{Y}z) + \sum_{i=1}^{k} \lambda^{i}(\omega_{i}(\tilde{\alpha}(X), ad_{Y}z) + ad_{\tilde{\alpha}(X)}\omega_{i}(Y, z)) + \sum_{i,j=1}^{k} \lambda^{i+j}\omega_{i}(\tilde{\alpha}(X), \omega_{j}(Y, z))$$

and

$$ad_{\tilde{\alpha}(Y)}^{\lambda}(ad_{X}^{\lambda}z) = ad_{\tilde{\alpha}(Y)}(ad_{X}z) + \sum_{i=1}^{k} \lambda^{i}(\omega_{i}(\tilde{\alpha}(Y), ad_{X}z) + ad_{\tilde{\alpha}(Y)}\omega_{i}(X, z)) + \sum_{i,j=1}^{k} \lambda^{i+j}\omega_{i}(\tilde{\alpha}(Y), \omega_{j}(X, z)).$$

Comparing the coefficients of λ^l , we obtain conditions (5.1), (5.2) and (5.3), respectively. Theorem 5.1 is proved.

Remarks 5.2. 1. Equation (5.1) means that ω_1 is always a 2-cocycle on \mathfrak{g} .

- 2. If \mathfrak{g}_{λ} is a deformation of order k, then, by Eq. (5.3), we deduce that $(\mathfrak{g}, \omega_k, \varepsilon, \alpha)$ is a n-Hom–Lie color algebra.
- 3. In particular, consider an infinitesimal deformation of \mathfrak{g}_{λ} generated by $\omega \colon \wedge^n \mathfrak{g} \to \mathfrak{g}$ defined as

$$[\cdot, \ldots, \cdot]_{\lambda} = [\cdot, \ldots, \cdot] + \lambda \omega(\cdot, \ldots, \cdot).$$

The linear map ω generates an infinitesimal deformation of the multiplicative n-Hom-Lie color algebra $\mathfrak g$ if and only if:

- (a) $(\mathfrak{g}, \omega, \varepsilon, \alpha)$ is a multiplicative *n*-Hom-Lie color algebra,
- (b) ω is a 2-cocycle of $\mathfrak g$ with coefficients in the adjoint representation, that is, ω satisfies condition (4.2) for $\rho = ad$.

Definition 5.2. Two formal deformations \mathfrak{g}_{λ} and $\mathfrak{g}_{\lambda'}$ of a n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ are said to be equivalent if there exists a formal isomorphism $\phi_{\lambda} : \mathfrak{g}_{\lambda} \to \mathfrak{g}_{\lambda'}$, where $\phi_{\lambda} = \sum_{i>0} \phi_i \lambda^i$ and $\phi_i : \mathfrak{g} \to \mathfrak{g}$ are linear maps of degree zero such that $\phi_0 = id_{\mathfrak{g}}$, $\phi_i \circ \alpha = \alpha \circ \phi_i$ and

$$\phi_{\lambda} \circ [x_1, \dots, x_n]_{\lambda} = [\phi_{\lambda}(x_1), \dots, \phi_{\lambda}(x_n)]_{\lambda'}. \tag{5.5}$$

It is denoted by $\mathfrak{g}_{\lambda} \sim \mathfrak{g}_{\lambda'}$. A formal deformation \mathfrak{g}_{λ} is said to be trivial if $\mathfrak{g}_{\lambda} \sim \mathfrak{g}_0$.

Theorem 5.2. Let \mathfrak{g}_{λ} and $\mathfrak{g}_{\lambda'}$ be two equivalent deformations of a n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \ldots, \cdot], \varepsilon, \alpha)$ generated by ω and ω' , respectively. Then ω and ω' belong to the same cohomology class in the cohomology group $\mathcal{H}^2_{\alpha,\mu}(\mathfrak{g},\mathfrak{g})$.

Proof. It is enough to prove that $\omega - \omega' \in B^2(\mathfrak{g}, \mathfrak{g})$.

We have two equivalent deformations \mathfrak{g}_{λ} and $\mathfrak{g}_{\lambda'}$, then identification of coefficients of λ in (5.5) leads to

$$\omega(x_1, \dots, x_n) + \phi_1[x_1, \dots, x_n] = \omega'(x_1, \dots, x_n) + [\phi(x_1), \dots, x_n] + \dots + [x_1, \dots, \phi(x_n)].$$

Thus,

$$\omega(x_1, \dots, x_n) - \omega'(x_1, \dots, x_n)$$

$$= -\phi[x_1, \dots, x_n] + [\phi(x_1), \dots, x_n] + \dots + [x_1, \dots, \phi(x_n)]$$

$$= -\phi[x_1, \dots, x_n] + \sum_{i=1}^n (-1)^{n-i} \varepsilon(x_i, X^i)[x_1, \dots, \hat{x_i}, \dots, x_n, \phi(x_i)]$$

$$= \delta^1 \phi(X, x_n).$$

Therefore, $\omega - \omega' \in B^2(\mathfrak{g}, \mathfrak{g})$.

Theorem 5.2 is proved.

- **6.** Nijenhuis operators on n-Hom Lie color algebras. Motivated by the infinitesimally trivial deformation introduced in this section, we define the notion of Nijenhuis operator for a multiplicative n-Hom Lie color algebras which is a generalization of Nijenhuis operator on n-Lie algebras given in [20]. Then we define the notion of a product structure on a n-Hom Lie color algebra using Nijenhuis operators (see [24] for non-graded case).
- **6.1. Definitions and constructions.** Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra and $\mathfrak{g}_{\lambda} := (\mathfrak{g}, [\cdot, \dots, \cdot]_{\lambda}, \varepsilon, \alpha)$ be a deformation of \mathfrak{g} of order (n-1).

Definition 6.1. The deformation \mathfrak{g}_{λ} is said to be infinitesimally trivial if there exists a linear map of degree zero $\mathcal{N}: \mathfrak{g} \to \mathfrak{g}$ such that $\mathcal{T}_{\lambda} = id + \lambda \mathcal{N}: \mathfrak{g}_{\lambda} \to \mathfrak{g}$ is an algebra morphism, that is, for all $x_1, \ldots, x_n \in \mathcal{H}(\mathfrak{g})$, we have

$$\mathcal{T}_{\lambda} \circ \alpha = \alpha \circ \mathcal{T}_{\lambda},\tag{6.1}$$

$$\mathcal{T}_{\lambda}[x_1, \dots, x_n]_{\lambda} = [\mathcal{T}_{\lambda}(x_1), \dots, \mathcal{T}_{\lambda}(x_n)]. \tag{6.2}$$

The condition (6.1) is equivalent to

$$\mathcal{N} \circ \alpha = \alpha \circ \mathcal{N}$$
.

The left-hand side of Eq. (6.2) equals to

$$[x_{1}, \dots, x_{n}] + \lambda \left(\omega_{1}(x_{1}, \dots, x_{n}) + \mathcal{N}[x_{1}, \dots, x_{n}]\right) + \sum_{j=1}^{n-2} \lambda^{j+1} \left(\mathcal{N}\omega_{j}(x_{1}, \dots, x_{n}) + \omega_{j+1}(x_{1}, \dots, x_{n})\right) + \lambda^{n} \mathcal{N}\omega_{n-1}(x_{1}, \dots, x_{n}).$$

The right-hand side of Eq. (6.2) equals to

$$[x_1,\ldots,x_n] + \lambda \sum_{i_1=1}^n [x_1,\ldots,\mathcal{N}x_{i_1},\ldots,x_n] + \lambda^2 \sum_{i_1< i_2}^n [x_1,\ldots,\mathcal{N}x_{i_1},\ldots,\mathcal{N}x_{i_2},\ldots,x_n] + \ldots$$

+
$$\lambda^{n-1} \sum_{i_1 < i_2 < \dots < i_{n-1}} [x_1, \dots, \mathcal{N} x_{i_1}, \dots, \mathcal{N} x_{i_2}, \dots, \mathcal{N} x_{i_{n-1}}, x_n]$$

$$+\lambda^n[\mathcal{N}x_1,\ldots,\mathcal{N}x_2,\ldots,\mathcal{N}x_n].$$

Therefore, by identification of coefficients, we have

$$\omega_1(x_1,\ldots,x_n) + \mathcal{N}[x_1,\ldots,x_n] = \sum_{i_1=1}^n [x_1,\ldots,\mathcal{N}x_{i_1},\ldots,x_n],$$

$$\mathcal{N}\omega_{n-1}(x_1,\ldots,x_n) = [\mathcal{N}x_1,\ldots,\mathcal{N}x_2,\ldots,\mathcal{N}x_n],$$

$$\mathcal{N}\omega_{l}(x_{1},\ldots,x_{n}) + \omega_{l-1}(x_{1},\ldots,x_{n}) = \sum_{i_{1}< i_{2}<\ldots< i_{l}} [x_{1},\ldots,\mathcal{N}x_{i_{1}},\ldots,\mathcal{N}x_{i_{2}},\ldots,\mathcal{N}x_{i_{l}},\ldots,x_{n}]$$

for all $2 \le l \le n-1$.

Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra, and $\mathcal{N} : \mathfrak{g} \to \mathfrak{g}$ be a linear map of degree zero. Define a n-ary bracket $[\cdot, \dots, \cdot]^1_{\mathcal{N}} : \wedge^n \mathfrak{g} \to \mathfrak{g}$ by

$$[x_1, \dots, x_n]_{\mathcal{N}}^1 = \sum_{i=1}^n [x_1, \dots, \mathcal{N}x_i, \dots, x_n] - \mathcal{N}[x_1, x_2, \dots, x_n].$$

By induction, we define $n\text{-ary brackets }[\cdot,\dots,\cdot]^j_{\mathcal{N}}\colon \wedge^n\mathfrak{g}\to\mathfrak{g},\ 2\leq j\leq n-1,$

$$[x_1, \dots, x_n]_{\mathcal{N}}^j = \sum_{i_1 < i_2 < \dots < i_j} [\dots, \mathcal{N}x_{i_1}, \dots, \mathcal{N}x_{i_2}, \dots, \mathcal{N}x_{i_j}, \dots] - \mathcal{N}[x_1, \dots, x_n]_{\mathcal{N}}^{j-1}.$$

In particular, we have

$$[x_1, \dots, x_n]_{\mathcal{N}}^{n-1} = \sum_{\substack{i_1 \le i_2 \le \dots \le i_{n-1} \\ N}} [\mathcal{N}x_{i_1}, \dots, \mathcal{N}x_{i_{n-1}}, x_n] - \mathcal{N}[x_1, \dots, x_n]_{\mathcal{N}}^{n-2}.$$

These observations motivate the following definition.

Definition 6.2. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom–Lie color algebra. A linear map of degree zero $\mathcal{N}: \mathfrak{g} \to \mathfrak{g}$ is called a Nijenhuis operator if it satisfies $\mathcal{N} \circ \alpha = \alpha \circ \mathcal{N}$ and

$$[\mathcal{N}x_1,\ldots,\mathcal{N}x_2,\ldots,\mathcal{N}x_n]=\mathcal{N}[x_1,\ldots,x_n]^{n-1}_{\mathcal{N}}$$

The above condition can be written as

$$\sum_{j=0}^{n} (-1)^{n-j} \mathcal{N}^{n-j} \left(\sum_{i_1 < i_2 < \dots < i_j} [\dots, \mathcal{N} x_{i_1}, \dots, \mathcal{N} x_{i_2}, \dots, \mathcal{N} x_{i_j}, \dots] \right) = 0.$$

We have seen that any trivial deformation produces a Nijenhuis operator. Conversely, any Nijenhuis operator gives a trivial deformation as the following theorem shows.

Theorem 6.1. Let $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra and \mathcal{N} be a Nijenhuis operator on $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$. Then the bracket

$$[x_1, \dots, x_1]_{\lambda} = [x_1, \dots, x_1] + \sum_{i=1}^{n-1} \lambda^i [x_1, \dots, x_n]_{\mathcal{N}}^i$$

defines a deformation of \mathfrak{g} which is infinitesimally trivial.

Proof. Follows from the above characterization of identity (6.2), Theorem 5.1 and Lemma 3.1. **Proposition 6.1.** Let \mathcal{N} be a bijective Nijenhuis operator on a n-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \ldots, \cdot], \varepsilon, \alpha)$, $a \in \mathfrak{g}_0$ such that $\alpha(a) = a$ and $\mathcal{N}(a) \in Z(\mathfrak{g})$. Then \mathcal{N} is a Nijenhuis operator on the (n-1)-Hom-Lie color algebra $(\mathfrak{g}, \{\cdot, \ldots, \cdot\}, \varepsilon, \alpha)$.

Recall that, if $(\mathfrak{g},[\cdot,\cdot],\varepsilon,\alpha)$ is a Hom–Lie color algebra, the Nijenhuis operator condition writes as

$$[\mathcal{N}x, \mathcal{N}y] = \mathcal{N}[\mathcal{N}x, y] + \mathcal{N}[x, \mathcal{N}y] - \mathcal{N}^2[x, y].$$

Corollary 6.1. Let \mathcal{N} be a Nijenhuis operator on a 3-Hom-Lie color algebra $(\mathfrak{g}, [\cdot, \cdot, \cdot], \varepsilon, \alpha)$. If \mathcal{N} is a bijection, then it is a Nijenhuis operator on the Hom-Lie color algebra $(\mathfrak{g}, \{\cdot, \cdot\}, \varepsilon, \alpha)$ such that $\mathcal{N}(a) \in Z(\mathfrak{g})$.

6.2. Product structures on n-Hom-Lie color algebras. In this subsection, we study a notion of product structure on a n-Hom-Lie color algebra and show that it leads to a special decomposition of the original n-Hom-Lie color algebra. Moreover, we introduce a notion of strict product structure on a n-Hom-Lie color algebra and provide example.

Definition 6.3. Let $\mathcal{G} = (\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra.

An almost product structure on $\mathcal G$ is a linear map of degree zero $\mathcal P:\mathfrak g\to\mathfrak g,\,\mathcal P\neq\pm Id_{\mathfrak g},$ satisfying $\mathcal P^2=Id_{\mathfrak g}.$

An almost product structure is called product structure on G if it is a Nijenhuis operator.

Remark 6.1. One can understand a product structure on \mathcal{G} as a linear map of degree zero \mathcal{P} : $\mathfrak{g} \to \mathfrak{g}$ satisfying

$$\mathcal{P}^{2} = Id, \qquad \mathcal{P}\alpha = \alpha \mathcal{P},$$

$$[\mathcal{P}x_{1}, \mathcal{P}x_{2}, \dots, \mathcal{P}x_{n}] = \sum_{j=0}^{n-1} (-1)^{n-j-1} \mathcal{P}^{\mu_{n-j}} \left(\sum_{i_{1} < i_{2} < \dots < i_{j}}^{n} [\dots, \mathcal{P}x_{i_{1}}, \dots, \mathcal{P}x_{i_{j}}, \dots] \right)$$
(6.3)

for $x_1, \ldots, x_n \in \mathfrak{g}$ and $\mu_k = \begin{cases} 1, & \text{if } k \text{ is odd,} \\ 0, & \text{if } k \text{ is even.} \end{cases}$

Theorem 6.2. Let $\mathcal{G} = (\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra. Then \mathcal{G} has a product structure if and only if $\mathfrak{g} = \bigoplus_{\gamma \in \Gamma} \mathfrak{g}_{\gamma}$ admits a decomposition $\mathfrak{g} = \mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$ with $\mathfrak{g}_{\gamma} = (\mathfrak{g}_{\gamma})_{+} \oplus (\mathfrak{g}_{\gamma})_{-}$ and where the eigenspaces $\mathfrak{g}_{+} = \bigoplus_{\gamma \in \Gamma} (\mathfrak{g}_{\gamma})_{+}$ and $\mathfrak{g}_{-} = \bigoplus_{\gamma \in \Gamma} (\mathfrak{g}_{\gamma})_{-}$ of \mathfrak{g} associated to the eigenvalues 1 and -1 respectively are subalgebras.

Proof. Let \mathcal{P} be a product structure on $(\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$. According to Eq. (6.3), for all element $x_i \in \mathfrak{g}_+$, we have

$$[x_1, \dots, x_n] = [\mathcal{P}x_1, \dots, \mathcal{P}x_n]$$

$$= \sum_{j=0}^{n-1} (-1)^{n-j-1} \mathcal{P}^{\mu_{n-j}} \left(\sum_{i_1 < i_2 < \dots < i_j} [\dots, \mathcal{P}x_{i_1}, \dots, \mathcal{P}x_{i_2}, \dots, \mathcal{P}x_{i_j}, \dots] \right)$$

$$= \sum_{j=0}^{n-1} (-1)^{n-j-1} \binom{n}{j} \mathcal{P}^{\mu_{n-j}} [x_1, \dots, x_n].$$

Then we obtain

$$[x_1, \dots, x_n] = \sum_{2j+1 \le n} \binom{n}{2j+1} \mathcal{P}[x_1, \dots, x_n] - \sum_{2j \le n} \binom{n}{2j} [x_1, \dots, x_n], \quad \text{if} \quad n \quad \text{is even,} \quad (6.4)$$

$$[x_1, \dots, x_n] = \sum_{2j < n} \binom{n}{2j} \mathcal{P}[x_1, \dots, x_n] - \sum_{2j+1 < n} \binom{n}{2j+1} [x_1, \dots, x_n], \quad \text{if} \quad n \quad \text{is odd.} \quad (6.5)$$

By the binomial theorem, we get

$$\sum_{2j < n} \binom{n}{2j} - \sum_{2j+1 < n} \binom{n}{2j+1} = (-1)^{n+1}. \tag{6.6}$$

Apply the above condition to Eqs. (6.4) and (6.5), we have, for all $x_i \in \mathfrak{g}_+$, $\mathcal{P}[x_1,\ldots,x_n] = [x_1,\ldots,x_n]$. Let $x \in \mathfrak{g}_+$, then we obtain $\mathcal{P} \circ \alpha(x) = \alpha \circ \mathcal{P}(x) = \alpha(x)$, which implies that $\alpha(x) \subseteq \mathfrak{g}_+$. So, \mathfrak{g}_+ is subalgebra of \mathfrak{g} . Similarly, we show that \mathfrak{g}_- is subalgebra of \mathfrak{g} .

Conversely, we define a linear map of degree zero $\mathcal{P}: \mathfrak{g} \to \mathfrak{g}$ such that, for all $x \in \mathfrak{g}_+$ and $y \in \mathfrak{g}_-$,

$$\mathcal{P}(x+y) = x - y. \tag{6.7}$$

We have $\mathcal{P}^2(x+y) = \mathcal{P}(x-y) = x+y$, then $\mathcal{P}^2 = Id$. Since $x \in \mathfrak{g}_+$, then $\alpha(x) \in \mathfrak{g}_+$. Thus, $\mathcal{P} \circ \alpha(x) = \alpha(x) = \alpha \circ \mathcal{P}(x)$. Similarly, $\mathcal{P} \circ \alpha(y) = \alpha \circ \mathcal{P}(y)$.

If n is even, since \mathfrak{g}_+ is a subalgebra of \mathfrak{g} , then, for $x_i \in \mathfrak{g}_+$, we have

$$\sum_{j=0}^{n-1} (-1)^{n-j-1} \mathcal{P}^{\mu_{n-j}} \left(\sum_{i_1 < i_2 < \dots < i_j} [\dots, \mathcal{P} x_{i_1}, \dots, \mathcal{P} x_{i_2}, \dots, \mathcal{P} x_{i_j}, \dots] \right)$$

$$= \sum_{2j+1 < n} \binom{n}{2j+1} \mathcal{P}[x_1, \dots, x_n] - \sum_{2j < n} \binom{n}{2j} [x_1, \dots, x_n]$$

$$= \sum_{2j+1 < n} \binom{n}{2j+1} [x_1, \dots, x_n] - \sum_{2j < n} \binom{n}{2j} [x_1, \dots, x_n]$$

$$= \left(\sum_{2j+1 < n} \binom{n}{2j+1} - \sum_{2j < n} \binom{n}{2j} \right) [x_1, \dots, x_n]$$

$$\stackrel{(6.6)}{=} [\mathcal{P} x_1, \mathcal{P} x_2, \dots, \mathcal{P} x_n].$$

Also if n is odd, we have

$$\sum_{j=0}^{n-1} (-1)^{n-j-1} \mathcal{P}^{\mu_{n-j}} \left(\sum_{i_1 < i_2 < \dots < i_j} [\dots, \mathcal{P}x_{i_1}, \dots, \mathcal{P}x_{i_2}, \dots, \mathcal{P}x_{i_j}, \dots] \right)$$

$$= \left(\sum_{2j < n} \binom{n}{2j} - \sum_{2j+1 < n} \binom{n}{2j+1} \right) [x_1, \dots, x_n]$$

$$\stackrel{(6.6)}{=} [\mathcal{P}x_1, \mathcal{P}x_2, \dots, \mathcal{P}x_n].$$

One may check for all $x_i \in \mathfrak{g}_-$ similarly. Then \mathcal{P} is a product structure on \mathcal{G} .

Theorem 6.2 is proved.

Let $\mathcal{G}=(\mathfrak{g},[\cdot,\ldots,\cdot],arepsilon,\alpha)$ be a n-Hom-Lie color algebra and $\Theta\colon\mathfrak{g}\to\mathfrak{g}$ be a linear map of degree γ . Then Θ is said in the *centroid* of \mathcal{G} if, for all homogeneous elements $x_i\in\mathfrak{g},\ \Theta\circ\alpha=\alpha\circ\Theta$ and

$$\Theta[x_1, x_2, \dots, x_n] = [\Theta x_1, x_2, \dots, x_n].$$
 (6.8)

The above identity is equivalent to

$$\Theta[x_1, x_2, \dots, x_n] = \varepsilon(\gamma, X_i) \Big[x_1, \dots, \underbrace{\Theta x_i}_{i \text{th place}}, \dots, x_n \Big].$$
(6.9)

Definition 6.4. An almost product structure \mathcal{P} on \mathcal{G} is called a strict product structure if it is an element of the centroid.

Lemma 6.1. Let \mathcal{P} be a strict product structure on \mathcal{G} . Then \mathcal{P} is a product structure on \mathcal{G} such that $\left[\mathfrak{g}_+,\ldots,\mathfrak{g}_+,\mathfrak{g}_-,\mathfrak{g}_-,\ldots,\mathfrak{g}_-\right]=0$ for all $1\leq i\leq n-1$.

Proof. The identity (6.3) is equivalent to

$$\sum_{j=0}^{n} (-1)^{n-j} \mathcal{P}^{\mu_{n-j}} \left(\sum_{i_1 < i_2 < \dots < i_j}^{n} [\dots, \mathcal{P} x_{i_1}, \dots, \mathcal{P} x_{i_2}, \dots, \mathcal{P} x_{i_j}, \dots] \right) = 0.$$

Then, if \mathcal{P} is a strict product structure on \mathcal{G} and $x_i \in \mathfrak{g}$, we have

$$\sum_{j=0}^{n} (-1)^{n-j} \mathcal{P}^{\mu_{n-j}} \left(\sum_{i_1 < i_2 < \dots < i_j}^{n} [\dots, \mathcal{P} x_{i_1}, \dots, \mathcal{P} x_{i_2}, \dots, \mathcal{P} x_{i_j}, \dots] \right)$$

$$= \sum_{j=0}^{n} (-1)^{n-j} \left(\sum_{i_1 < i_2 < \dots < i_j}^{n} \mathcal{P}^{\mu_{n-j}} \mathcal{P}^{\mu_j} [x_1, \dots, x_n] \right)$$

$$= \left(\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \right) \mathcal{P}^{\mu_n} [x_1, \dots, x_n] = 0.$$

Thus, \mathcal{P} is a product structure.

Fix i such that 0 < i < n, and let (k, l) such that $0 < k \le i < l \le n$ with $x_k \in \mathfrak{g}_+$ and $x_l \in \mathfrak{g}_-$. According to Eq. (6.8), we get

$$\mathcal{P}[x_1, \dots, x_i, x_{i+1}, \dots, x_n] = [\mathcal{P}x_1, \dots, x_i, \dots, x_i] = [x_1, \dots, x_i, \dots, x_i].$$

On the other hand, by Eq. (6.9) we have

$$\mathcal{P}[x_1, \dots, x_i, x_{i+1}, \dots, x_i] = [x_1, \dots, x_i, \mathcal{P}x_{i+1}, \dots, x_i]$$
$$= -[x_1, \dots, x_i, x_{i+1}, \dots, x_i].$$

Then we obtain

$$\left[\mathfrak{g}_+,\ldots,\ \mathfrak{g}_+,\underbrace{\mathfrak{g}_+}_{i\text{th place}},\ \mathfrak{g}_-,\ldots,\ \mathfrak{g}_-\right]=0.$$

Lemma 6.1 is proved.

Proposition 6.2. Let $\mathcal{G} = (\mathfrak{g}, [\cdot, \dots, \cdot], \varepsilon, \alpha)$ be a n-Hom-Lie color algebra. Then \mathcal{G} has a strict product structure if and only if $\mathfrak{g} = \bigoplus_{\gamma \in \Gamma} \mathfrak{g}_{\gamma}$ admits a decomposition $\mathfrak{g} = \mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$, where \mathfrak{g}_{+} and \mathfrak{g}_{-} are graded subalgebras of \mathfrak{g} such that $\left[\mathfrak{g}_{+}, \dots, \mathfrak{g}_{+}, \underbrace{\mathfrak{g}_{+}}_{ith\ place}, \mathfrak{g}_{-}, \dots, \mathfrak{g}_{-}\right] = 0, 1 \leq i \leq n-1$.

Proof. The first implication is a direct computation from Lemma 6.1. Conversely, on the basis of Theorem 6.2, the map \mathcal{P} , defined in Eq. (6.7), is an almost product structure and, for all $x_k = x_k^+ + x_k^- \in \mathfrak{g}$, where $x_k^+ \in \mathfrak{g}_+$ and $x_k^- \in \mathfrak{g}_-$, we have

$$\mathcal{P}[x_1, x_2, \dots, x_n] = \mathcal{P}[x_1^+ + x_1^-, x_2^+ + x_2^-, \dots, x_n^+ + x_n^-]$$

$$= \mathcal{P}[x_1^+, x_2^+, \dots, x_n^+] + \mathcal{P}[x_1^-, x_2^-, \dots, x_n^-]$$

$$= [x_1^+, x_2^+, \dots, x_n^+] - [x_1^-, x_2^-, \dots, x_n^-]$$

$$= [\mathcal{P}x_1^+, x_2^+, \dots, x_n^+] + [\mathcal{P}x_1^-, x_2^-, \dots, x_n^-] = [\mathcal{P}x_1, x_2, \dots, x_n].$$

Then \mathcal{P} is a strict product structure on \mathcal{G} .

Proposition 6.2 is proved.

Example 6.1. Let $\mathfrak{g}_{\alpha} = (\mathfrak{g}, [\cdot, \cdot, \cdot, \cdot]_{\alpha}, \varepsilon, \alpha)$ be the 4-Hom-Lie color algebra defined in Example 3.1. Define a linear map of degree zero $\mathcal{P} : \mathfrak{g} \to \mathfrak{g}$ by

$$\mathcal{P}(e_1)=e_1, \qquad \mathcal{P}(e_2)=e_2, \qquad \mathcal{P}(e_3)=-e_3, \qquad \mathcal{P}(e_4)=-e_4 \qquad \text{and} \qquad \mathcal{P}(e_5)=-e_5.$$

It easy to prove that \mathcal{P} is a strict product structure, therefore it is a product structure. Using Theorem 6.2, we deduce that the graded subalgebras \mathfrak{g}_+ and \mathfrak{g}_- are generated by $\langle e_1, e_2 \rangle$ and $\langle e_3, e_4, e_5 \rangle$, respectively. Thus,

$$\mathfrak{g}_+ = \mathfrak{g}_{(0,0)}$$
 and $\mathfrak{g}_- = \mathfrak{g}_{(0,1)} \oplus \mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(1,1)}$.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

- 1. E. Abdaoui, S. Mabrouk, A. Makhlouf, *Cohomology of Hom-Leibniz and n-ary Hom-Nambu-Lie superalgebras*; arXiv: 1406.3776 (2014).
- 2. F. Ammar, I. Ayadi, S. Mabrouk, A. Makhlouf, *Quadratic color Hom-Lie algebras*, Moroccan Andalusian Meeting on Algebras and their Applications, Springer, Cham (2018), p. 287-312.
- 3. F. Ammar, S. Mabrouk, A. Makhlouf, *Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras*, J. Geom. and Phys., **61**, № 10, 1898–1913 (2011).
- 4. F. Ammar, N. Saadaoui, Cohomology of n-ary-Nambu Lie superalgebras and super ω_{∞} 3-algebra; arXiv:1304.5767 (2013).
- 5. J. Arnlind, A. Makhlouf, S. Silvestrov, *Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras*, J. Math. Phys., **51**, № 4, Article 043515 (2010).
- 6. J. Arnlind, A. Makhlouf, S. Silvestrov, *Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras*, J. Math. Phys., **52**, № 12, Article 123502 (2011).
- 7. J. Arnlind, A. Kitouni, A. Makhlouf, S. Silvestrov, *Structure and cohomology of 3-Lie algebras induced by Lie algebras*, Algebra, Geometry and Mathematical Physics, Springer Proc. Math. and Stat., **85** (2014).
- 8. A. Armakan, S. Silvestrov, M. Farhangdoost, *Enveloping algebras of color Hom-Lie algebras*, Turkish J. Math., **43**, 316–339 (2019).
- 9. H. Ataguema, A. Makhlouf, S. Silvestrov, *Generalization of n-ary Nambu algebras and beyond*, J. Math. Phys., **50**, № 8, Article 083501 (2009).
- 10. I. Bakayoko, S. Silvestrov, *Multiplicative n-Hom-Lie color algebras*, International Conference on Stochastic Processes and Algebraic Structures, **22**, 159–187 (2017).
- 11. P. D. Beites, I. Kaygorodov, Y. Popov, *Generalized derivations of multiplicative n-ary Hom-w color algebras*, Bull. Malays. Math. Sci. Soc., **42**, 315–335 (2019).
- 12. J. Bergen, D. S. Passman, Delta ideal of Lie color algebras, J. Algebra, 177, 740 754 (1995).
- 13. J. M. Casas, J.-L. Loday, T. Pirashvili, Leibniz n-algebras, Forum Math., 14, 189-207 (2002).
- 14. Y. L. Daletskii, L. A. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys., 39, 127-141 (1997).
- 15. V. T. Filippov, *n-Lie algebras*, Sib. Math. J., **26**, 879 891 (1985) (Transl. from Russian: *Sib. Mat. Zh.*, **26**, 126 140 (1985)).
- 16. J. Feldvoss, Representations of Lie color algebras, Adv. Math., 157, 95-137 (2001).
- 17. P. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys., 37, 103-116 (1996).
- 18. Sh. M. Kasymov, *Theory of n-Lie algebras*, Algebra and Logic, **26**, 155 166 (1987) (Transl. from Russian: Algebra i Logika, **26**, № 3, 277 297 (1987)).
- 19. I. Kaygorodov, Y. Popov, *Generalized derivations of (color) n-ary algebras*, Linear and Multilinear Algebra, **64**, 1086–1106 (2016).
- 20. J. Liu, Y. Sheng, Y. Zhou, C. Bai, *Nijenhuis operators on n-Lie algebras*, Commun. Theor. Phys., **65**, № 6, 659–670 (2016).
- 21. S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra, 195, 558-579 (1997).
- 22. R. Ree, Generalized Lie elements, Can. J. Math., 12, 493-502 (1960).
- 23. M. Rotkiewicz, Cohomology ring of n-Lie algebras, Extracta Math., 20, 219-232 (2005).
- 24. Y. Sheng, R. Tang, Symplectic, product and complex structures on 3-Lie algebras, J. Algebra, 508, 256–300 (2018).
- 25. M. Scheunert, *Generalized Lie algebras*, J. Math. Phys., 20, № 4, 712 720 (1979).
- 26. Y. Su, K. Zhao, L. Zhu, Classification of derivation-simple color algebras related to locally finite derivations, J. Math. Phys., 45, 525 536 (2004).
- 27. Y. Su, K. Zhao, L. Zhu, Simple color algebras of Weyl type, Israel J. Math., 137, 109 123 (2003).
- 28. L. A. Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys., 160, № 2, 295-315 (1994).
- 29. L. A. Takhtajan, *Higher order analog of Chevalley-Eilenberg complex and deformation theory of n-algebras*, St. Petersburg Math. J., 6, № 2, 429–438 (1995).
- 30. T. Zhang, Cohomology and deformations of 3-Lie colour algebras, Linear and Multilinear Algebra, 63, № 4, 651 671 (2015).
- 31. M. C. Wilson, Delta methods in enveloping algebras of Lie color algebras, J. Algebra, 75, 661 696 (1995).

Received 14.06.22