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JORDAN HOMODERIVATION BEHAVIOR
OF GENERALIZED DERIVATIONS IN PRIME RINGS

MOBEJIIHKA )KOPTAHOBOI TrOMOITIOXIJHOI
IS Y3ATAJIBHEHHUX ITOXIIHUX HA ITPOCTHUX KIJIBLAX

Suppose that R is a prime ring with char(R) # 2 and f(&1,...,&») is a noncentral multilinear polynomial over
C(= Z(U)), where U is the Utumi quotient ring of R. An additive mapping h: R — R is called homoderivation if
h(ab) = h(a)h(b) + h(a)b+ ah(b) for all a,b € R. We investigate the behavior of three generalized derivations F, G,
and H of R satisfying the condition

F(E%) = G(&)" + H(&)E + EH(€)
forall £ € f(R) ={f(&,.--,&) | &1s---,6n € R}

Ipunycrumo, wo R — npocre kinsue 3 char(R) # 2, a f(&1,...,&n) — HEUCHTPAIBHUI MyJIBTHIIIHIHAN TIOJIIHOM Haj
C(= Z(U)), ne U — dakrop-kinbue YTymi R. Anurusse BinoOpaxenus h : R — R Ha3MBA€THCsS TOMOIOXIIHOIO, SKIIO
h(ab) = h(a)h(b) + h(a)b + ah(b) mus Bcix a,b € R. Jlocni/ukeHO MOBEAIHKY TPhOX y3araabHeHHX moxigHux F, G ta
H na R, 1m0 3aJI0BOJBHSIOTH YMOBY

F(%) =G’ + H(E)E+EH(E)
s Beix € € f(R) ={f(&1,.--,&) &1, ..., & € R}

1. Introduction. In this paper we consider that R is a prime ring of characteristic different from 2.
Also U is the Utumi quotient ring of R, C' = Z(U) is the extended centroid of R and f(1,...,&,)
is a noncentral multilinear polynomial over C. By the word derivation of R, we mean an additive
mapping d: R — R such that d(ab) = d(a)b + ad(b) holds for all a,b € R. By the word Jordan
derivation of R, we mean an additive mapping d: R — R such that d(a?) = d(a)a + ad(a) holds
for all @ € R. Any derivation is Jordan derivation, but the converse is not true in general. Herstein
[15] proved that every Jordan derivation in a prime ring of char(R) # 2 is a derivation.

An additive mapping F': R — R is called a generalized derivation, if there exists a derivation
d on R such that F'(ab) = F(a)b+ ad(b) holds for all a,b € R. Basic examples of generalized
derivations are derivations, generalized inner derivations (i.e., maps of type x — ajx + xb; for some
a1,b1 € R). In [18], Lee proved that any generalized derivation of R can be uniquely extended to a
generalized derivation of U and its form will be g(z) = ax + d(x) for some a € U, where d is the
associated derivation. The Lie commutator of x, y is [z, y] and also defined by [z, y| = zy — yz for
all z,y € R; also the symbol z o y stands for the anticommutator xy + yz.

An additive mapping F': R — R is called a homomorphism or antihomomorphism on R if
F(ab) = F(a)F(b) or F(ab) = F(b)F(a) holds for all a,b € R, respectively. The additive mapping
F is called a Jordan homomorphism, if F'(a?) = F(a)? holds for all a € R.

It is natural to consider a map which will behave like a derivation as well as a homomorphism.
In this point of view, El Sofy [13] introduced the concept of homoderivation maps on a ring R. An
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additive mapping h from R into itself is called homoderivation if h(ab) = h(a)h(b) + h(a)b+ ah(b)
for all a,b € R. An example of such mapping is h(a) = f(a) — a for all @ € R, where f is an
endomorphism on R. As above, we can define Jordan homoderivation maps. An additive mapping
h from R into itself is called Jordan homoderivation if h(a?) = h(a)h(a) + h(a)a + ah(a) for
all a € R. It is very clear that every homoderivation is Jordan homoderivation, but in general the
converse need not be true. There are few papers in literature which studied the homoderivation maps
in prime rings and obtained commutativity of ring under certain conditions (see [2 -4, 21]).

In the spirit of consideration of above maps, in the present paper we consider three generalized
derivations F, G, H which satisfy the situation

F(§%) =G + H(§)E+ EH(E)

forall ¢ € f(R).

There are many papers in literature which studied the homomorphism or antihomomorphism
behavior of generalized derivations in prime rings (see [1, 5, 9—12, 23]).

In the present paper, we study the Jordan homoderivation behavior of three generalized derivations
in prime rings.

More precisely, we prove the following theorem.

Theorem 1.1. Let R be a prime ring with char(R) # 2 and f(&1,...,&,) be a noncentral
multilinear polynomial over C(= Z(U)), where U be the Utumi quotient ring of R. If F, G and H
are three generalized derivations on R satisfying

F(&) =G>+ H(§)E + EH(E)

for all £ € f(R), then d, g and h are three inner derivations or g is inner, d, h are outer, d, h
are linearly C-dependent modulo inner derivations of U. Moreover, the forms of the maps are as
follows:

(1) there exist a derivation d on R and \1, A2, A3 € C such that F(x) = \iz+d(z), G(z) = Az
and H(x) = A3z + d(z) for all x € R with \; = \3 + 2)3;

(2) there exist a derivation d on R, ay € U and A1, A2, A3 € C such that F(x) = Mz + d(x),
G(z) = Xow and H(z) = M3z + [a1,2] + d(x) for all * € R with f(R)?> € C and \; =
A2+ 2.

If we consider H = 0 in our main theorem, then we get the following corollary.

Corollary1.1. Let R be a prime ring of char(R) # 2 with Utumi quotient ring U and extended
centroid C and f(&1,...,&,) be a multilinear polynomial over C, which is a noncentral valued on
R. If F and G are two nonzero generalized derivations of R such that

Sforall § = (&1,...,&,) € R™, then one of the following holds:

(1) there exists \ € C such that F(x) = Nz, G(x) = Az for all z € R;

(2) there exist A € C and a € U such that F(z) = N2z + [a, 7], G(x) = Az for all x € R with
f(&1,...,6)? is central valued on R.
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1180 NRIPENDU BERA, BASUDEB DHARA

a b
Examplel.1. Let R = {(0 O)

a,b € Z}, where Z be the set of all integers. Then it is

clear that R is not prime ring, because (8 é>R<8 é) = (0). Define the maps F,G,d,g:

a b a 0 a b 0 -b a b —a 0
RéRbyF(o 0> - (0 0>’d<0 0> - (0 0) andG(o 0) - (0 0>’
g <g 8) = <8 8) on R. Then F and G are generalized derivations of R associated derivations
d and g, respectively. Now we consider a multilinear polynomial f(X,Y") = XY, which is not central
valued on R. We see that F/(f(X,Y)?) = G(f(X, Y))2 for all X,Y € R but G(X) # A\X, where
A € C. This example show that the primeness hypothesis is not superfluous in our above corollary.

2. The matrix ring case and results for inner generalized derivations.

Lemma 2.1 [8, Lemma 1]. Let C be an infinite field and m > 2. If k1,...,K: are not scalar
matrices in M,,(C), then there exists some invertible matrix P € M,,(C) such that all the entries
of PkiP~ Y, ..., PryP~" are nonzero.

Lemma 2.2. Suppose that R = M,,(C), m > 2, be the ring of all m x m matrices over the field
C and f(R) be the set of all evaluations of the polynomial f(&1,...,&,) in R.If Ay, Aa, A, a3,a4 €
R such that

Aju? + u? Ay + asuasu + ulsu + uaguay + agulas = 0

Sor all u € f(R), then a3 and a4 are scalar matrices.

Proof. 1. C is infinite field. To prove this case of the lemma, we assume on contrary that
a3 ¢ Z(R) and a4 ¢ Z(R). We prove that this case leads to a contradiction. Since ag ¢ Z(R) and
as ¢ Z(R), by Lemma 2.1 there exists a C'-automorphism 6 of M,,(C) for which aj = 6(a3) and
aly = 6(a4) have all nonzero entries. Clearly, A} = (A1), A, = 0(Az), A = 0(As), a4 and a)
must satisfying the condition

L) + F(€)° A5 + a5 f(€)as f(€)

+ F(OALF(E) + f(€)alf(€)ay + a3 f(€)%a) = 0. (1
By e;j, we consider a matrix unit with 1 in (4, j)-entry and zero elsewhere. Then it is obvious that
e?j = 0. Since f(&1,...,&,) is not central valued, by [19] there exist some matrices r1,...,7r, €

My, (C) and 0 # v € C such that f(rq,...,7,) = ve;; with 7 # j.
Therefore, substituting f(£) = ve;; in (1), we get

/ / / / /
a3€i;a3€i5 + 6@'1436@')' + ejjayeijay = 0.
Multiplying by e;; in left-hand side of the above relation, we have
/ / _
eija3eija3eij = 0,

which gives a contradiction, since a% = 6(a3) have all nonzero entries. Thus, we conclude that a3 is
scalar matrix. Again we multiplying by e;; in right-hand side of the above relation, we obtain

! ! _
eija4eija4eij = 0,

which gives a contradiction, since a/; = 6(a4) have all nonzero entries. Thus, we conclude that a4 is
scalar matrix. Therefore, when C' is infinite field, then a3 and a4 are scalar matrices.
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2. C is finite field. Suppose that K be an infinite field which is an extension of C. Let R =
M, (K) = R ®¢ K. Notice that the multilinear polynomial f(&y,...,&,) is central-valued on R if
and only if it is central-valued on R. Now the generalized polynomial identity is

(&, ) = A1f(&, .., &) + f&r, . &) As
+ a3f(€l)' .. aén)a3f(£17 s ’fn) + f(élv s "Sn)A5f(§1v B 7571)
+ (€1, E)anf (€1, ... En)ag +asf(E, ..., €n)2%as = 0.

This is not only a generalized polynomial identity for R, but also a multihomogeneous of multidegree
(2,...,2) in the indeterminates &1, ..., &,.

Hence, the complete linearization of WU(¢y,...,&,) yields a multilinear generalized polynomial
O(&1,...,&n,t1,. .., ty) in 2n indeterminates, moreover,

O(&1, .-y &nstey o ytn) =2"W(&, ..., &p).

Clearly, the multilinear polynomial © (&1, ...,&, t1,...,t,) = 0 is a generalized polynomial identity
for R and R too. Since char (C) # 2, we obtain W(&y,...,&,) =0 for all &1,...,&, € R and then
conclusion follows as above when C' was infinite.

Lemma 2.2 is proved.

Lemma 2.3. Suppose that R is a prime ring of char(R) # 2 and f(x1,...,x,) is a noncentral
multilinear polynomial over C. If Ay, Ag, As,a3,a4 € R such that R satisfies V(&1,...,&,), then
a3 € C and a4 € C.

Proof. We will show this case by contradiction. Suppose that both a3 and a4 are not central. By
hypothesis, we have

U(Ery.nbn) = ALf(&r, o &)2 + 6, 60) 2 As
+ (lgf(fl,. .. 7§n)a3f(§17 cee 7571) + f(é-h cee 7§H)A3f(§17 cee 7571)
+ f(fl, o ,fn)a4f(§1, .. ,fn)a4 =+ agf(fl, A ,§n)2a4 =0

forall &,...,&, € R.

Since R and U satisfy the same generalized polynomial identities (see [7]), so, U satisfies
U(y,...,&) = 0. Suppose that R does not satisfy any nontrivial GPL. Let T = U *x¢ C{{,
&2, ...,&n}, the free product of U and C{¢;, . .., &, }, the free C'-algebra in noncommuting indetermi-
nates £1,&2,...,&,. Then W(&y, ..., &,) is zero element in 7. This gives that { A1, a3, 1} is linearly
C-dependent, hence, there exist a1, ao, a3 € C such that a3 A1 + asas + asz.1 = 0. If a; = 0, then
az # 0 and so a3 = —ay Lo € C, a contradiction. Therefore, either oy # 0. Then A; = aas + f,
where o = —al_lozg, 8= —041_1043. Hence,

(aas+ B) (1,1 6n)* + f(€r,- - 6n)" A2
+ a3f(§17 cee 7£n)a3f(§la cee 75”) + f(glv' . 7€7L)A3f<£1> s 7571)
+ f(gla v 7£7L>a4f(€17 v 7571)&4 + a3f(§17 e 75“)2a4 =0.

Since {as, 1} is linearly C'-independent, we have
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1182 NRIPENDU BERA, BASUDEB DHARA

Oé(lgf(gl, s 7571)2 +a3f(£17 s >£n)a3f(£17 s 7577,) +a3f(£17 s ,§n)2&4 = Oa

that is,

a3f(£17 s 75”){af(§17 cee 7571) + a3f(§17 s 7&1) + f(§17 s 7&1)0’4} =0.

Since a3 ¢ C, the term a3 f (&1, ..., &n)asf (&1, - .., &) can not be canceled and, hence, as f(1, .. .,
&n)asf(&1, ..., &) =0 in T which implies a3 = 0, a contradiction.

Next suppose that U satisfies the nontrivial GPI ¥ (&y,...,&,) = 0. Then, by the well-known
theorem of Martindale in [20], U is a primitive ring with nonzero socle H and with C as its
associated division ring. By Jacobson’s theorem [16, p. 75], U is isomorphic to a dense ring of linear
transformations of a vector space V' over C.

If V is finite dimensional over C, that is, dimgV = m, then, by density of U, we have
U = M,,(C). As U is noncommutative, m > 2. By Lemma 2.2, ag € C and a4 € C, a contradiction.

If V' is infinite dimensional over C, then, by [22, Lemma 2], the set f(U) is dense on U. Thus,
U satisfies

A€ + € As + ag€asé + EAsE + Easéay + az€aa.

Since a3z ¢ C and a4 ¢ C, they can not commute any nonzero ideal of U, i.e., [as, H] # (0) and
[a4, H] # (0). Therefore, there exists hi,hy € H such that [as, h1] # 0 and [a4, ho] # 0. By [14],
there exists idempotent e € H such that ashy, hias, asho, hoay, h1, ho € eUe. Since U satisfies
generalized identity

e Ar(ete)? + (c6e) Az + as(e€e)as(ete) + (e€e) As(ete) + (cée)as(ete)a + az(ece)as e,
the subring eUe satisfies
eAre€? + e Age + eazeeagel + EeAzef + Eeagebease + eazet eaye.

Since eUe = M (C') with t =dimcVe, by above argument ag or a4 are central elements of eUe.
But then we have contradiction as ash; = (ease)h; = hjease = hias and ashy = (eage)hg =
ha(eaqe) = hoay. Therefore, we get that ag and a4 are central.

Lemma 2.3 is proved.

Lemma 2.4. Let R be a prime ring of char(R) # 2, C the extended centroid of R and
f(x1,...,xy) a noncentral multilinear polynomial over C. If a1, a2,a3 € R such that

arf(€)* + f(&aaf(&) + f(€)%as =0

forall § = (&1,...,&,) € R™, then ay is central.
Proof. By using the similar argument above as in Lemma 2.3, we get that as is central.
Lemma 2.5 [10, Lemma 2.9]. Let R be a noncommutative prime ring and p(&1, . .., &) be any
polynomial over C. If there exist a1, as,as,aq € U such that

a1p(§) + p(§)az + azp(§)as = 0

forall £ = (&1,...,&,) € R™, then one of the following holds:
(1) ag,a4 € C and a1 + as + azay = 0;
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2) ai,a3 € C and a1 + as + agay = 0;

(3) a1 + ag + agaq = 0 and p(§) is central valued on R.

Proposition 2.1. Suppose that R is a prime ring of char(R) # 2 and F, G, H are three inner
generalized derivations on R. If

F(€%) = G(&)* + H(E)E + EH(€)

for all £ € f(R), then one of the following holds:

(1) there exist a derivation d on R and \1, A2, A3 € C such that F(x) = \iz+d(z), G(z) = Az
and H(x) = A3z + d(z) for all x € R with \1 = \3 + 2)3;

(2) there exist ay,az € U and A\, A2, A3 € C such that F(x) = Mz + [a1,z], G(z) = Aoz and
H(z) = A3z + [ag, z] for all x € R with f(R)? € C and \; = )3 + 2)3.

Proof. By our hypothesis, generalized derivations F,G and H all are inner. Then there exist
ai,az,as,aq,as, a6 € U such that F(x) = a1z + zag, G(x) = azx + xay and H(x) = asx + zag
for all z € R. Now F(£2) = G(&)? + H(6)E + EH(€) for all € € f(R) gives

(a5 — a1) f(€)* + f(€)* (a6 — a2) + asf(§)asf(€)
+ f(€)(as + asas + ag) f(§) + f()asf(€)as + asf(§)*as =0 )

forall £ = (&1,...,&,) € R™. By Lemma 2.3, we get that ag and a4 are central. Then (2) reduces to

(a3 + ai + azas + a5 — a1) f(€)* + f(€)*(as — a2) + f(€)(as + asas + ag) f(§) =0 (3)

for all £ = (&1,...,&,) € R™. Now applying the Lemma 2.5, we obtain that a5 + asas + ag € C,
that is, a5 + ag € C and (3) reduces to

(a3 + af + azas + a5 — a1) f(€)* + f(€)*(2a6 — az + a5 + azas) =0

for all £ = (&1,...,&,) € R™. By application of Lemma 2.5, we have

(i) a§+ai+a3a4+a5—a1 € ¢, thatis, as—a1 € ¢, 2ag—az+as+asayq € C, thatis, ag—ag € C
and a3 + a3 + azaq + a5 — a1 +2a6 — az + as +agag = 0, that is, (a3 +a4)? +2(as +ag) = a1 + as.
Since a5 — a1 € cand ag —as € C, so a1 +as € C.

Therefore, in this case we get F'(z) = a1z +xas = a1z +x(a; +az) —za; = [a1, z]+ (a1 +a2)z,
where a1 4+ a2 € C and G(x) = azz + xaq = (a3 + aq4)x, a3 + ag4 € C. Also

H(x) = asx + xag = (a5 — a1)r + a1z + z(as — a2) + zas
= (a5 + ag — a1 — az)x + (a1 + xasz)
= (a5 + ag — a1 — az)r + [a1, 2] + (a1 + az)z = (a5 + ag)r + [a1, 2],

where a5 4 ag € C, (a3 + a4)? + 2(as + ag) = a1 + az, this is, conclusion (1).

(i) f(x1,...,2,)? is central valued and a% + ai 4+ agaq + a5 — a1 + 2a6 — as + a5 + agaqg = 0,
that is, (a3 + a4)? + 2(as + ag) = a1 + az implying a; + a € C.

Therefore, in this case we get F'(z) = ajx+za = ayxz+z(a; +az) —za; = [a1, x|+ (a1 +a2)zx,
where a; + a2 € C and G(x) = agx + xaq = (a3 + aq)z, ag + a4 € C. Also

H(x) = asx + xag = asx + x(as + ag) — xas
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= las, z] + (a5 + ag)x = a5 — a1, z] + [a1, 2] + (a5 + ag)z,

where as + ag € C, also (a3 + a4)? + 2(as + ag) = a1 + ag with f(x1,...,2,)? is central valued
on R, this is, conclusion (2).

Proposition 2.1 is proved.

3. Proof of Theorem 1.1. Here R is a prime ring and U the Utumi quotient ring of R and
C = Z(U) (see [6] for more details). It is well-known that any derivation of R can be uniquely
extended to a derivation of U. Now we consider f(&1, ..., &,) be a noncentral multilinear polynomial
over the field C' and d be a derivation on R.

We shall use the notation

fl&,. &) =686 &+ Z Ao&o(1)€5(2) - - - Eo(n)

€Sy ,U?éid

for some a, € C, and S,, denotes the symmetric group of degree n. Then we have

d(f(&,. ., &) = fU&, ... &) + Zf(fl, o d(&), - G,

where f4(¢1,. .., &,) be the polynomials obtained from f(£1,...,&,) replacing each coefficients o,
with d(a, ).

By [18, Theorem 3] every generalized derivation g of R can be uniquely extended to a generalized
derivation of U and its form will be g(x) = az+d(z) forall z € U, where a € U and d is a derivation
of U. Thus, we can assume that F'(z) = ax + d(z), G(z) = bz + g(x) and H(x) = cx + h(x)
for all x € R with some fixed a,b,c € U and d, g, h are derivations on U. Thus, by [7, 19], our
hypothesis yields

af(€)* +d(f(£)) () + F()A(f()
=bf(DS(E) +cf(©) + F(E)cf (&) +bf(E)g(f(€))

+g(FELFE) +9(F(©)" +h(F(©)F(E) + FER(F() )

forall £ = (&,...,&,) € U™ If d, g and h are three inner derivations, then F, G and H are three
inner generalized derivations and in this case conclusions follow by Proposition 2.1. Therefore, to
prove Theorem 1.1, we need to consider the following cases:

1) d, g are inner and h is outer;

2) g, h are inner and d is outer;

3) d, h are inner and g is outer;

4) h is inner and d, g are outer;

5) d is inner and g, h are outer;

6) g is inner and d, h are outer;

7) d, g, h all are outer.

We divide these 7 cases into the following cases:
Casel: d, g are inner and h is outer.
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JORDAN HOMODERIVATION BEHAVIOR OF GENERALIZED DERIVATIONS IN PRIME RINGS 1185
Let d(z) = [p, x] and g(x) = [¢, x] for all x € R and for some p,q € U. By (4), we get

af(€)* + [p, F(F(E) + F(©O)lp, F(©)]
= bf(E)bf (&) + cf(€)* + f(E)cf(€) +bf(&)la, F(€)]

+ [0, FOWBLE) + (la. F©)])° + h(F()) F(E) + FOR(£(©)) )

for all £ = (&1,...,&,) € U™. Since h is outer derivation, by Kharchenko’s theorem [17], we may

replace h(f(&1,...,&,)) by fP(&1,. .., &) + Z f&, ... 2iy...,&) in (5) and then U satisfies
blended component

D SE sz G &) (G 6) Zfsl,...,zi,...,m:o.

In particular, for z; = & and 23 = ... = 2, = 0, we have 2f ({1, ..., &,)? = 0. Since Char(R) # 2,
so f(&1,...,&)?% =0, which implies f(&1,...,&,) = 0, a contradiction.

Case2: g, h are inner and d is outer.

Let g(x) = [p,z] and h(z) = [¢,z] for all z € R and for some p,q € U. By (4), we get

af(€)? +d(f(&)£(€) + f(OA(f(&))
= bF(EDFE) + cf (€)% + F(E)cf(€) + bf(E)lp, f(E)]

+[p, FEIBFE) + (Ip. £ + g, FEOIFE) + F(©)la F(E)] ©6)

for all £ = (&1,...,&,) € U™. Since d is outer derivation, by Kharchenko’s theorem [17], we may

replace d(f(&1,...,&,)) by f4(&1,...,&) + Z fl&, ... x ..., &) in (6) and then U satisfies
blended component

Zf(gl,...,:ci,...,5n>f(51,...,5n>+fsl,...,fnfol,... ireeerEn) = 0.

In particular, for z1 = & and 22 = ... = 2, = 0, we have 2f(¢1,...,&,)? = 0, which implies
f(&,...,&,) =0, a contradiction.

Case3: d, h are inner and g is outer.

Let d(z) = [p, z] and h(z) = [g, z] for all x € R and for some p, ¢ € U. By (4), we obtain

af(©)* + [p, FOIF (&) + F(©lp, ()]
= bf(E)bF(E) +cf(©)* + F()ef(€) +bf(E)g(f(£))
+g(FEDFE) + g(f(©)* + [a, FEIFE) + f(©)g: £(9)] (7)

for all £ = (&1,...,&,) € U™. Since g is outer derivation, by Kharchenko’s theorem [17], we may

replace g(f(fla e 7571)) by fg(gl) e 7571) + Zl f(§17 s Yiy e e 7571) in (7), and then U satisfies
blended component

é-l?"‘?é.n ngl?“'?yi?"'?gn)
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+Zf(£17"‘7y7;?‘"’gn)bf(£17""£n)+f 617"')577, Zf£17"‘?yi7"'7£n)

2
+Zf(€17"'7yi7"'7€n)fg(§17"'7€n)+<Zf(§17"'7yi7"'7§n)> :O' (8)

Putting y; = —y;, we get

—bf(&,. . 6n) Zf&,...,yi,...,fm

_Zf(€177yl>7§n)bf(§1>7§n) fg gl)"'aé’n nglv"wyiu”'ugn)

2
_Zf(£175y17a£n)f flvagn (nglavyw?gn)) =0. (9)

2
Now adding (8) and (9), we get 2(2 JECS TR T/ ,fn)) = 0. In particular, for y; = & and

Yo = ... =1yp =0, we have 2f(&1,...,&,)? = 0. Since CharR # 2, so f(&1,...,&,)? = 0, which
implies f(&1,...,&,) = 0, a contradiction.

Case4: h is inner and d, g are outer.

Let h(z) = [p, z] for all x € R and for some p € U. By (4), we get

af(€)? +d(f(£)f(&) + f(©A(£(€))
= bI(DF(E) + cf (€)% + F(E)ef(€) +bF(E)g(f(£))
+g(FEOBFE) +g(£(©)” + Ip, FELFE) + F©)Ip, F(E)] (10)

forall £ = (&1,...,&,) € U™
Subcase 4.1: d, g are linearly C-independent modulo inner derivations of U.
Since d and g are outer derivations, by Kharchenko’s theorem [17], we may replace d(f (&1, - -.,&n))
by
FUEL &) D) F G &)

and g(f(£1>7£n)) by
fg(glw"?gn)+Zf(€17"'>yia"~7€n>'

Then U satisfies blended component

S F G m G € ) F (G ) Zf&,..., ives&n) = 0.

In particular, for 1 = &1 and @3 = ... = z, = 0, we have 2f(&1,...,&,)% = 0, which implies
f&1,...,&,) =0, a contradiction.
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Subcase 4.2: d, g are linearly C-dependent modulo inner derivations of U.

In this subcase we get d(z) = ag(x) + [¢,z] for all z € U, for some ¢ € U and 0 # « € C.
Then from (10) we obtain

af(€)* + (ag(f(©) + la, F(©)) F(&) + (&) (ag(f(€)) + [a. F(E)])
= 0f(E)DF(&) +cf(€)" + f(E)ef(€) +bf(©)g(f(€))

+9(FEDBS(E) +g(F(©)” + [, FOIF () + F(©)lp. [(£)

for all & = (&1,...,&,) € U™. Since g is outer derivations, by Kharchenko’s theorem [17], we may
replace g(f(&1,...,&n)) by

f9<£1,...,§n>+Zf(§1,...,yi,...,§n>.

Then U satisfies blended component

azf(£177y7477£n)f(£177£n)+af 517"‘7577/ Zf 517"'7:1/7:7"';571)
fl . &) Zfgl,...,yi,...,gm+Zf<&,...,yi,...,sn>bf<§1,...,£n>

+fg 51:-‘-7€n Zf515"'7yi7"'7£n)+Zf(§la"’7yi7°"7§n)fg(§17"‘7§n)

2

Putting y; = —y;, we have

_aZf(é-la"'7yi)"'7§n)f(€17'”7€n)_ glw"aé’n nglw")yiu'”vgn)
:_bf 517"'7£n Zfgla"wyi)"wgn)_Zf(flv"'7yia"'7£n)bf(£la"'7£n)

— f9(&, . &) Zf € Bin ) = P i GG )

2
+ (Zf(sl,...,yi,...,sm). (12)

2
Now adding (11) and (12), we get 2(2, FEre i ,5n)> — 0. In particular, for y; = & and

Yo =...=1yp =0, we have 2f(&1,...,&,)? = 0. Since CharR # 2, so f(&1,...,&,)? = 0, which
implies f(&1,...,&,) = 0, a contradiction.

Case5: d is inner and g, h are outer.

Let d(x) = [p, z] for all x € R and for some p € U. By (4), we obtain
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af(€)* + [p, FELF(E) + f(E)lp, f(£)]
= 0f (D (&) +cf(&)° + F(€)ef(€) +bf(©)g(f(€))

+g(F)DFE) + g(f(€))* + h(F(€)) F(&) + FER(F(E)) (13)
forall £ = (&1,...,&,) e U™

Subcase 5.1: g, h are linearly C-independent modulo inner derivations of U.
Since g and h are outer derivations, by Kharchenko’s theorem [17], we may replace

g(f(glaagﬂ)) by
fg(fla"wgn)+Zf(§1a---ayi>-~7§n)

and h(f(&1,...,&n)) by
f’"‘(ﬁl,---,fn)+Zf<£1,...,zi,...,fn>,

and U satisfies a blended component

Zﬂ&,...,zi,...,5n>f(51,...,5n>+f51,...,5nZf&,..., Ziy ey &n) =0,

In particular, for z; = &; and 23 = ... = 2, = 0, we have 2f(¢1,...,&,)? = 0, which implies
f(&,...,&,) =0, a contradiction.

Subcase 5.2: g, h are linearly C-dependent modulo inner derivations of U.

Here we get h(x) = ag(z) + [¢,z] for all z € U, for some g € U and 0 # « € C. Then from
(13) we obtain

af(€)®+ [p, F(OIF (&) + F(Olp, ()]
= bf(E)bF(E) + cf(E)? + F(E)ef(€) +bf(E)g(f(€)) + g(f(©)bf(E)
+g(£(€)) + (eg(f(©) + . FOI) () + F(©) (ag(£()) + g, £(£)])

for all £ = (&1,...,&,) € U™. Since g is outer derivations, by Kharchenko’s theorem [17], we may

replace g(f(&1,...,&n)) by
& &)+ D F (€ i n).

Then U satisfies blended component

61?"'7571 Zf glvvyla7£H)+Zf(§1,ayh7§n)bf(§1v7671)

+fg 517"'7577/ Zf617"'7y7:7"'7€n>+Zf(§17'"7y'i7"'7§n)fg(§17'"?én)

2
+ (Zf({l,...,yi,...,fn)> +aZf(§1,...,y¢,...,§n)f(§1,...,§n)

+af(,. .. 6) fol,...,yi,...,m:o. (14)
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Putting y; = —y;, we have

_bf 517"‘7€TL Zf615"'7yi7"')§n)_Zf(glv"‘vyia”'7£n)bf(§1""7£n)

_fg gl,---»gn Zf513'-'>yia"'7£n)_Zf(glw"7yia'-'7£n)fg(£17'"agn)

2
+ (Zf(§17-“7yia~--7§n)> _O‘Zf(gla”-vyi7---7§n)f(€17~--7671)

—le 517"')571 Zféluvyl)aén)zo (15)

2
Now adding (14) and (15), we get 2<Z,f(§1,...,yi, e ,fn)) = 0. In particular, for y; = &

and yo = ... =y, = 0, we obtain 2f(£1,...,&,)% = 0. Since CharR # 2, so f(&1,...,&0)? =0,
which implies f(1,...,&,) = 0, a contradiction.

Case6: g is inner and d, h are outer.

Let g(x) = [p,z] for all x € R and for some p € U. By (4), U satisfies

af(€)? +d(f(€))f(&) + f(OA(f(€))
= bF(EDF(E) + cf (€)% + F(E)cf (&) + bf(E)lp, f(£)]

+ [p, FEIBFE) + (Ip. FE) + h(F(€)) £(6) + FOR(F(E))- (16)

Subcase 6.1: d, h are linearly C-independent modulo inner derivations of U.
Since d and h are outer derivations, by Kharchenko’s theorem [17], we may replace

d(f(f1,,§n)) by
fd(glv"'vé.n)+Zf(£1>--'axi7---7§n)

and h(f(&1,...,&)) by
f’"‘(ﬁl,---,fn)+Zf<51,...,zi,...,sn>,

and U satisfies a blended component

Zf(glv'”7$i7"'7€n)f(§1)"'7€n)+f61)"'5571 Zfélv"w 77671):0

In particular, for z1 = & and 29 = ... = 2, = 0, we have 2f(¢1,...,&,)? = 0, which implies
f&1,...,&,) = 0, a contradiction.

Subcase 6.2: d, h are linearly C-dependent modulo inner derivations of U.

Here we obtain h(z) = ad(x) + [q, z] for all € U, for some ¢ € U and 0 # « € C. Then from
(16) we get

af(€)? +d(f(&)f(&) + f(©A(£(€))
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= bf(E)LF(E) +cf(€)° + f()cf (&) +bf(E)lp, F(E)] + [p, F(E)IbF(€)
+ ([0, Q) + (ad(£(8)) + la, FO) F(&) + £©) (ad(£(€) + g, FO))  (17)

for all £ = (&1,...,&,) € U". Since d is outer derivations, by Kharchenko’s theorem [17], we may
replace d(f(&1,...,&,)) b

fd(gl,...,fn)+Zf(§1,...,a;i,...,§n).

Then U satisfies blended component

Zf(é’l?'"7xi7"'7£n)f(£1""75”)+fgl""?&’n Zf§17"'7 ‘7"'75”)

:a(Zf(fl,,.%“,gn)>f(§17a£n)

+ [ ) }:f&ww iyeeer&n) = 0.

In particular, for x1 = &; and z9 = ... = z,, = 0, we have

( a_2)f(§17"'7€n)2:0a

implying o = 1. Then (17) reduce to

af ()2 = ((b+p)f(€) — f(©)p)®

+(ef(€) + [0, FN F(&) + F(©) (cf () + [a. F(©)])- (18)
Then by Lemma 2.3, we get that b+ p,p € C, that is, b, p € C also the equation (18) becomes
(a =0 —c—q)f(€)* = f(&)ef(6) — f(€)*q. 19)

By Lemma 2.4, we have that ¢ € C, so (19) reduce to

(a—b*—c—q)f(&)*+ f(§)*(g— ) =0,

by application of Lemma 2.5, we obtain

() a—b?—c—q,q—ceCanda—b>—c—q+q—c=0,thatis, a = b*>+2c. Now b,p,c € C
and a — b> — ¢ — q,q — c € C implies that a, b, c,p,q € C with a = b* + 2c.

Therefore, in this section we get F'(x) = ax + d(x), where a € C and G(z) = bz + [p, z] = bz,
where b € C. Also H(x) = cx + ad(z) + [¢, 2] = cx + d(z), where ¢ € C with a = b? + 2¢. This
is conclusion (1) of Theorem 1.1.

Q@ f&*cCanda—-b*>—-c—q+q—c =0, thatis, a = b*> + 2¢c. Now b,p,c € C and
a = b? + 2c implies that a,b, p,c € C with a = b% + 2c.

Therefore, in this section we get F'(x) = ax + d(x), where a € C and G(z) = bz + [p, z] = bz,
be C. Also H(x) = cx + ad(z) + [q,7] = cx + d(z) + [gq, z], where ¢ € C with a = b2 + 2¢. This
is conclusion (2) of Theorem 1.1.
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Case7: d, g, h all are outer.
Subcase 7.1: d, g, h are linearly C-independent modulo inner derivations of U.
Since d, g and h are all outer derivations, by Kharchenko’s theorem [17], we may replace

d(f(&,....&)) by
fd(gla'-wgn)+Zf(§17"'7xia"'7€n)a

g(f(&,...,&)) by
9, &) +Zf(§1,...,yi,...,§n)

and h(f(&1,...,&n)) by
. &) +Zf(§1,...,zi,...75n>-

Then U satisfies a blended component

Zf(fl,...,xi,...,gn)f(gl,...,fn)+f(§1,...,gn)Zf(&,...,xi,...,§n) =0.

In particular, for z1 = ¢ and 22 = ... = x, = 0, we have 2f(¢1,...,&,)? = 0, which implies
f(&,...,&,) =0, a contradiction.

Subcase 7.2: d, g, h are linearly C-dependent modulo inner derivations of U.

This implies there exist «, 5,7 € C and ¢ € U such that

ad(z) + Bg(x) + yh(z) = [g, 7] (20)

for all x € R. If we consider 5 = v = 0, then inevitably o % 0, which implies the contradiction
that d is inner. So to move forward we have to consider (3,7) # (0,0). Without loss of generality
we assume that v # 0. By (20) we obtain

h(z) = o'd(z) + B'g(x) + [d', 2]

for all z € R, where o/ = —yta, B/ = -7 18, ¢ =7 1q.
By (4), we get

af(€)? +d(f(€))f(&) + f(OA(f(€))
= bF(EDF(E) + cf (€)% + F(E)cf(€) + bF(E)g(f(£))

+g(FEBL(E) +g(f(&) + (d(f() + B'g(f(€)) + ld', F(E)]) F(€)
+ FO(A(f () + Bg(f(€) +[d, F(€)]) 1)

forall £ = (&1,...,&,) € U™

Now we have to consider the following two cases:

1. We consider that d, g are linearly C'-independent modulo inner derivations of U. Since d and
g are outer derivations, by Kharchenko’s theorem [17], we may replace d(f(1,...,&,)) by

fd@l,...,fn)+Zf(£1,...,xz-,...,§n>
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and g(f(£1>7£n)) by
FIEr, . 6n) +Zf<§1,...,yz-,...,§n>

in (21). Then U satisfies blended component

517"'7511 Zf glavyla7£n)+2f(£17ayu7£n)bf(£laagn)

+fg 517"'7571 Zf517"'7yia'--7£7l)+Zf<§17'"7yi7"‘7§n>fg(§17'"agn)

2
+ <Zf(€177y2775n)> +/B/Zf(§17"')yia"'7§n)f(§17"'7€n)

+ B f(&,. ) Zf&,...,yi,...,mzo. (22)

Taking y; = —y;, we get

—bf(&1s---,6n) Zf51,---,yi,-~7§n)—Zf(&,---7yi,---,§n)bf(§1,---,§n)

_fg 51,~--7fn Zf517"‘7yia"'a£n)_Zf(é-l)'"7yi7"'7£n)fg(£17"'agn)

2
+ (Zf(£1>-"7yia"-7£n)> _5/2.]0(517-"73/%"-agn)f(glw~'7§n)

—Bf(&,- - 6n) Zf&,...,yi,...,m:o. (23)

2
Adding (22) and (23), we obtain 2(2 fl&r, oy, ,§n)) = 0. In particular, for y; = & and

Yo = ... =1yn =0, we have 2f(&1,...,&,)? = 0. Since CharR # 2, so f(&1,...,&,)? = 0, which
implies f(&1,...,&,) = 0, a contradiction.

2. We consider that d, g are linearly C'-dependent modulo inner derivations of U and d(z) =
a19(x) + [q1,x] for all z € U and some a; € C. Then (21) reduces to

af(€)* + (arg(f(€)) + lar, FN) (&) + £(€) (arg(f(€)) + lar, F(E)])
= bf(E)BF(E) +cf(&)" + F(E)ef(€) +bf(©)g(f(€) + g(f(€)bF(E)
+9(f(€)" + (arg(F(€)) + olq, FO] + Bg(f(€) + ', FE)]) F(€)
+ (&) (e arg(f(€)) + lar, f(E)] + B'9(f(€)) + [d', F(E)])

forall £ = (&1,...,&,) € U™. Since g is a outer derivations, by Kharchenko’s theorem [17], we may

replace g(f(&1,...,&n)) by
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fg(é.l?"'7£n)+Zf(£17"‘7y7:""7£n)‘

Then U satisfies blended component

alZf(£17"'7yi>"'7§'ﬂ)f(§17"'7‘£n)+a1f éh"'agn nglv . 7yi>"'7§'ﬂ)
YACSPRERISY) Zf 51,~-7yi,---,§n)+Zf(fh---,yz‘w--vfn)bf(&,--wfn)

+fg Sla"'agn Zf 61)"'ayiv"‘7£n)+Zf(€la"'ayi)"'7€n)fg(€la'”7€n)

2
+ (Zf(§17""yi7"'7§n)> +(a/al+/3/)Zf(€17"'7y7:7"'7€n>f(£17"'7§n)

+ (o + B)F(E &)Y (&b 6n) =0, (24)

i

Taking y; = —y;, we get

_alZf(glw"7yi7"'7§n)f(§17"‘7§n) O[lf gh'")é.n nglv"‘ayia"'ugn)
:_bf gla"'agn ngh "ayia--'agn)_Zf(gla"'7yi7"'a£n)bf(£l7"'a£n)

_fg 517"'7571 Zf 517"'ayi7"'7£n>_Zf(glv"'vyiw"7§n)fg(§17"-7£n)

2
+ (Zf(fl,...,yi,...,fn)> - (a’a1+5’)Zf(§1,...,y,~,...,gn)f(gl,...,gn)

—(O/Oél‘i‘ﬁ gl?"'agn Zf£17>ylaa£n):0 (25)

2
Adding (24) and (25), we obtain 2(2 JACS T T/ ,§n)) = 0. In particular, for y; = & and

Yo = ... =1yp =0, we have 2f(&1,...,&,)? = 0. Since CharR # 2, so f(&1,...,&,)? = 0, which
implies f(&1,...,&,) =0, a contradiction.
Theorem 1.1 is proved.

Acknowledgements. The first author expresses his thanks to the University Grants Commission,
New Delhi, for its SRF awarded to him under UGC-Ref. No. 1133/(CSIR-UGC NET JUNE 2018)
dated April 16, 2019.

We are highly thankful to the learned referee(s) whose comments and suggestions enhanced the
paper and made it more readable.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 9



1194 NRIPENDU BERA, BASUDEB DHARA

References

1. E. Albas, Generalized derivations on ideals of prime rings, Miskolc Math. Notes, 14, No 1, 3-9 (2013).
2. E. F. Alharfie, N. M. Muthana, On homoderivations and commutativity of rings, Bull. Inst. Math. Virtual Inst., 9,
301-304 (2019).
3. E.F. Alharfie, N. M. Muthana, The commutativity of prime rings with homoderivations, Int. J. Adv. and Appl. Sci.,
5, Ne 5, 79-81 (2018).
4. A. Al-Kenani, A. Melaibari, N. Muthana, Homoderivations and commutativity of x-prime rings, East-West J. Math.,
17, Ne 2, 117-126 (2015).
5. A. Ali, N. Rehman, S. Ali, On Lie ideals with derivations as homomorphisms and antihomomorphisms, Acta Math.
Hungar., 101, Ne 1-2, 79-82 (2003).
6. K. I. Beidar, W. S. Martindale III, A.V. Mikhalev, Rings with generalized identities, Pure and Appl. Math., 196,
Marcel Dekker, New York (1996).
C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103, Ne 3, 723 —728 (1988).
8. V. De Filippis, O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear
polynomials, Comm. Algebra, 40, Ne 6, 1918 -1932 (2012).
9. V. De Filippis, Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals, Acta Math. Sin.
(Engl. Ser.), 25, Ne 2, 1965-1974 (2009).
10. B. Dhara, Generalized derivations acting on multilinear polynomials in prime rings, Czech. Math. J., 68, Ne 1,
95-119 (20183).
11. B. Dhara, S. Sahebi, V. Rehmani, Generalized derivations as a generalization of Jordan homomorphisms acting on
Lie ideals and right ideals, Math. Slovaca, 65, Ne 5, 963 -974 (2015).
12. B. Dhara, Generalized derivations acting as a homomorphism or antihomomorphism in semiprime rings, Beitr.
Algebra und Geom., 53, 203-209 (2012).
13. M. M. El Sofy, Rings with some kinds of mappings, M. Sci. Thesis, Cairo Univ., Branch of Fayoum, Cairo, Egypt
(2000).
14. C. Faith, Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14, 369-371 (1963).
15. 1. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8, 11041110 (1957).
16. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., 37 (1964).
17. V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic, 17, 155-168 (1978).
18. T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27, Ne 8, 4057-4073 (1999).
19. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin., 20, Ne 1, 27-38 (1992).
20. W. S. Martindale 111, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12, 576 —584 (1969).
21. A. Melaibari, N. Muthana, A. Al-Kenani, Centrally-extended homoderivations on rings, Gulf J. Math., 4, Ne 2, 62 -70
(2016).
22. T. L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloq., 3, 369-478 (1996).
23. Y. Wang, H. You, Derivations as homomorphisms or antihomomorphisms on Lie ideals, Acta Math. Sin. (Engl. Ser.),
23, Ne 6, 11491152 (2007).
Received 17.06.22

ISSN 1027-3190. Vkp. mam. oscypn., 2023, m. 75, Ne 9



