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SMOOTH RIGIDITY FOR HIGHER-DIMENSIONAL CONTACT
ANOSOV FLOWS

ГЛАДКА ЖОРСТКIСТЬ ДЛЯ КОНТАКТНИХ ПОТОКIВ АНОСОВА
ВИЩОЇ РОЗМIРНОСТI

We apply the technique of matching functions in the setting of contact Anosov flows satisfying a bunching assumption.
This allows us to generalize the 3-dimensional rigidity result of Feldman and Ornstein [Ergodic Theory Dynam. Syst., 7,
№ 1, 49 – 72 (1987)]. Namely, we show that if two Anosov flow of this kind are C0 conjugate, then they are Cr conjugate
for some r \in [1, 2) or even C\infty conjugate under certain additional assumptions. This, for example, applies to geodesic
flows on compact Riemannian manifolds of 1/4-pinched negative sectional curvature. We can also use our result to recover
Hamendstädt’s marked length spectrum rigidity result for real hyperbolic manifolds.

Tехнiку узгоджених функцiй застосовано до контактних потокiв Аносова, що задовольняють умови угруповання.
Це дозволяє узагальнити результат про 3-вимiрну жорсткiсть Фельдмана та Орнштейна [Ergodic Theory Dynam.
Syst., 7, № 1, 49 – 72 (1987)]. А саме, показано, що якщо два таких потоки Аносова є C0 спряженими, то вони
є Cr спряженими для деякого r \in [1, 2), або навiть C\infty спряженими за деяких додаткових припущень. Це, на-
приклад, стосується геодезичних потокiв на компактних рiманових многовидах 1/4-стисненої негативної секцiйної
кривини. Наш результат можна також використати, щоб отримати результат Хамендстадт про жорсткiсть зi спектру
маркованих довжин для дiйсних гiперболiчних многовидiв.

1. Introduction. Let M be a closed smooth Riemannian manifold. Recall that a smooth flow \varphi t :
M \rightarrow M is called Anosov if the tangent bundle admits a D\varphi t-invariant splitting TM = Es\oplus X\oplus Eu,

where X is the generator of \varphi t, Es is uniformly contracting and Eu is uniformly expanding under
D\varphi t.

In this paper will always assume that M has an odd dimension 2d + 1 and that M is equipped
with a contact form \alpha . Recall that a 1-form \alpha is called contact if \alpha \wedge (d\alpha )d is a non-vanishing
top-dimensional form. We will consider Anosov flows \varphi t which are also contact. This means that
\varphi t preserves a contact form \alpha : \alpha (D\varphi tv) = \alpha (v) for all v \in TM and all t \in \BbbR or, equivalently,
X\alpha = 0.

Basic examples of contact Anosov flows are geodesic flows in negative sectional curvature and
more sophisticated examples can be constructed, in particular, in dimension 3 [4].

Recall that flows \varphi t
1 and \varphi t

2 are called conjugate if there exists a homeomorphism h such that
h \circ \varphi t

1 = \varphi t
2 \circ h for all t \in \BbbR .

In the setting of 3-dimensional contact Anosov flows, Feldman and Ornstein proved that any
topological (merely C0) conjugacy is, in fact, C\infty smooth [3]. To formulate our generalization recall
that the distributions Es \oplus X and Eu \oplus X are known to integrate to foliations W 0s and W 0u,

respectively, which are called weak stable and weak unstable foliations.
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Theorem 1.1. Let \varphi t
1 : M1 \rightarrow M1 and \varphi t

2 : M2 \rightarrow M2 be contact Anosov flows, which are
conjugate via a homeomorphism h : M1 \rightarrow M2. Assume that the weak stable and unstable distributi-
ons of \varphi t

1 and \varphi t
2 are Cr for some r \geq 1. Then h is Cr\ast .

Here r\ast = r if r is not integer and r\ast = r  - 1 + \mathrm{L}\mathrm{i}\mathrm{p} if r is an integer (if r = 1 we can set
r\ast = 1 as well). The latter means that h is Cr - 1 diffeomorphism with Lipschitz (r  - 1)-jet. Note
that M1 and M2 are homeomorphic via h, but a priori may carry different smooth structures. We
then conclude that they are, in fact, diffeomorphic once we know that h is C1.

We also recall the definition of a distribution E \subset TM being Cr. This mean that E is Cr when
viewed as a map from M into the grassmann bundle Gr\mathrm{d}\mathrm{i}\mathrm{m}E(M). Alternatively, E s locally spanned
by \mathrm{d}\mathrm{i}\mathrm{m}E independent Cr vector fields on M.

The main setup where this result applies is when the Anosov flows satisfy a bunching condition,
which guarantees Cr regularity of weak distributions. Denote by m(A) = \| A - 1 \|  - 1 the conorm of
a linear operator A. If, for some t > 0 and all x \in Mi,

\| D\varphi t
i| Es

i (x)
\| \| D\varphi t

i| Eu
i (x)

\| r < m(D\varphi t
i| Eu

i (x)
),

then E0s
i , the weak stable distribution of \varphi t

i, is C1+\varepsilon [10]. Similarly, if

\| D\varphi t
i| Es

i (x)
\| < m(D\varphi t

i| Eu
i (x)

)m(D\varphi t
i| Es

i (x)
)r,

then the weak unstable distribution E0u
i is also Cr. In general, these conditions are optimal for Cr

smoothness of weak distributions [10].
These bunching conditions can be verified for some specific examples. In particular, a geodesic

flow on 1/4-pinched negatively curved Riemannian manifold satisfies the above conditions with
r = 1 and, hence, has C1 weak stable and unstable distributions. The a2-pinching condition means
that the sectional curvature function K is bounded above and below as follows:

 - c < K \leq  - a2c,

where c is a positive constant. Hence, Theorem 1.1 applies to geodesic flows on Riemannian manifolds
which are C2 close to a hyperbolic manifold. Also point-wise 1/2-pinching implies that weak
distributions are C1 [11].

Now we present some corollaries of our main result. Note that by taking the product of the above
bunching inequalities we can see that they are never simultaneously satisfied if r \geq 2. Hence, in
practical terms, Theorem 1.1 only yields a limited regularity of the conjugacy: somewhere between
C1 and C2. However, we can remedy this under some additional assumptions. We need to introduce
another condition which we call conformal r-pinching. An Anosov flow \varphi t satisfies conformal
r-pinching with r \in (1, 2] if, for a sufficiently large t and all x \in M,

\| D\varphi t| Eu(x) \| < m(D\varphi t| Eu(x))
r and m(D\varphi t| Es(x))

r < \| D\varphi t| Es(x) \| .

Corollary 1.1. Let \varphi t
1 : M1 \rightarrow M2 and \varphi t

2 : M1 \rightarrow M2 be contact Anosov flows, which are
conjugate via a homeomorphism h : M1 \rightarrow M2. Assume that the weak stable and unstable distributi-
ons of \varphi t

1 and \varphi t
2 are Cr for some r > 1. Also assume that \varphi t

1 and \varphi t
2 are conformally r-pinched.

Then h is a C\infty diffeomorphism.
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Remark 1.1. In the above corollary one can replace the pinching assumption with an assumption
about existence of a conformal periodic point. This is a periodic point p = \varphi T

1 (p) such that the
linearized return map D\varphi T

1 : TpM1 \rightarrow TpM1 is conformal on Eu
1 (p) and Es

1(p). This modified
statement can be proved with a different bootstrap argument recently used by the authors in [6].
While more ad hoc, the assumption about existence of conformal periodic point does cover some
flows to which the above corollary does not apply.

Corollary 1.2. Let \varphi t
i : T

1Ni \rightarrow T 1Ni be geodesic flows on negatively curved manifolds (Ni, gi),

i = 1, 2, which are C0 conjugate. Assume that both metrics g1 and g2 are 1/2-pinched. Then the
conjugacy is C\infty smooth.

This, in particular, applies to geodesic flows of Riemannian metrics in a sufficiently small C2-
neighborhood of a hyperbolic metric: if two such metric have the same marked length spectrum (or,
equivalently, are C0 conjugate), then the conjugacy of geodesic flows is a C\infty diffeomorphism.

Corollary 1.3. Let \varphi t be a geodesic flow on a negatively curved 1/2-pinched manifold. Then
there exists a C1-neighborhood \scrU of \varphi t such that if \varphi t

1, \varphi 
t
2 \in \scrU are contact and conjugate, then the

conjugacy is C\infty smooth.

We can also partially recover a geometric rigidity result of Hamendstädt [9].

Corollary 1.4. If M and N are closed negatively curved manifolds with the same marked length
spectrum and C1 Anosov splittings, then M and N have the same volume.

Our result is weaker than the result of Hamendstädt [9] because Hamendstädt only assumed that
the Anosov splitting of TT 1M is C1 and didn’t have any assumption on the Anosov splitting of
TT 1N. Still it is enough to recover marked length spectrum rigidity of hyperbolic manifolds using the
Besson – Courtois – Gallot entropy rigidity theorem [1]. Hence, following Hamendstädt’s application
of entropy rigidity we arrive at a version of marked length spectrum rigidity for hyperbolic manifolds.

Corollary 1.5. Let (M, g1) be a closed real hyperbolic manifold of dimension \geq 3 and g2 be
a 1/4-pinched Riemannian metric on M. Assume that (M, g1) and (M, g2) have the same marked
length spectrum. Then g2 is isometric to g1.

This paper is organized as follows. In the next section, we recall some facts about contact Anosov
flows and about the matching function technique. Then we introduce the main technical tool which
we call the subbundle theorem. In Section 3, we prove Theorem 1.1, and, in Section 4, we derive all
the corollaries.

2. Preliminaries. 2.1. Basic facts about contact Anosov flows. Recall that we denote by W s,

W u, W 0s and W 0u the stable, unstable, weak stable and weak unstable foliations of an Anosov flow.
When needed, we will also use a subscript i to indicate dependence on the flow \varphi t

i, i = 1, 2.

It is immediate from the definition of Anosov contact flow \varphi t that \alpha (X) is constant; hence, we
can normalize the contact form so that \alpha (X) = 1. Also we have \mathrm{k}\mathrm{e}\mathrm{r}\alpha = Es\oplus Eu. Indeed, if v \in Es

then \alpha (v) = \alpha (D\varphi t(v)) \rightarrow 0 as t \rightarrow \infty , and similarly for v \in Eu. It is a simple exercise to check
that if \varphi t is a contact Anosov flow then \mathrm{d}\mathrm{i}\mathrm{m}Es = \mathrm{d}\mathrm{i}\mathrm{m}Eu = d.

Lemma 2.1. Let \varphi t : M \rightarrow M be a contact Anosov flow with C1 stable and unstable foliations.
Assume that the stable foliation W s admits a C1 subordinate foliation \scrF , \scrF (x) \subset W s(x), x \in M,

which integrates jointly with W u. Then \scrF is a foliation by points, that is, \scrF (x) = \{ x\} for all x \in M.

Proof. We prove the contrapositive implication. The argument is local. Assume that \mathrm{d}\mathrm{i}\mathrm{m}\scrF =

m > 0. In a small neighborhood we can pick 2d vector fields Y s
1 , Y

s
2 , . . . , Y

s
d , Y

u
1 , . . . , Y u

d which
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are C1 regular such that

Es = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ Y s
1 , Y

s
2 , . . . , Y

s
d \} , Eu = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ Y u

1 , Y u
2 , . . . , Y u

d \} 

and
T\scrF = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n} \{ Y s

1 , Y
s
2 , . . . , Y

s
m\} .

We will repeatedly use two basic facts about the Lie bracket. First, the bracket is, in fact, a first
order differential operator and, hence, is defined for C1 vector fields. The second one is this: if two
vector fields are tangent to a foliation then their bracket is also tangent to this foliation (easy direction
of the Frobenius theorem).

Because Es is integrable we have [Y s
i , Y

s
j ] \in Es \subset \mathrm{k}\mathrm{e}\mathrm{r}\alpha . Hence

d\alpha (Y s
i , Y

s
j ) = Y s

i \alpha (Y
s
j ) - Y s

j \alpha (Y
s
i ) - \alpha ([Y s

i , Y
s
j ]) = 0 2.

Similarly, d\alpha (Y u
i , Y u

j ) = 0. And by the same token, because \scrF integrates jointly with W u, we have
[Y s

i , Y
u
j ] \in T\scrF \oplus Eu \subset \mathrm{k}\mathrm{e}\mathrm{r}\alpha when i \leq m and, hence, d\alpha (Y s

i , Y
u
j ) = 0 when i \leq m.

We can now calculate \alpha \wedge (d\alpha )d(X,Y s
1 , Y

s
2 , . . . , Y

s
d , Y

u
1 , . . . , Y u

d ) using the permutation formula
for the wedge product. Recall that if \omega is a k-form and \eta is an l-form, then

(\omega \wedge \eta )(Z1, Z2, . . . , Zk+l) =
\sum 

\sigma \in Sk+l

\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n} (\sigma )\omega (Z\sigma (1), . . . , Z\sigma (k))\eta (Z\sigma (k+1), . . . , Z\sigma (k+l)).

First, applying this formula for \omega = \alpha and \eta = (d\alpha )d and using the fact that Y s/u
i \in \mathrm{k}\mathrm{e}\mathrm{r}\alpha , we have

\alpha \wedge (d\alpha )d(X,Y s
1 , . . . , Y

s
d , Y

u
1 , . . . , Y u

d ) = \alpha (X)(d\alpha )d(Y s
1 , . . . , Y

s
d , Y

u
1 , . . . , Y u

d )

= (d\alpha )d(Y s
1 , . . . , Y

s
d , Y

u
1 , . . . , Y u

d ).

Then to calculate this value we can inductively apply the wedge product formula until we express
(d\alpha )d(Y s

1 , . . . , Y
s
d , Y

u
1 , . . . , Y u

d ) as the sum over all permutations of d-fold products of values of d\alpha .
Note that by the above observations many of these values vanish. Indeed, the only non-vanishing
values have the form d\alpha (Y s

i , Y
u
j ) for i > m. Since for each permutation the corresponding product

can have at most d  - m such non-vanishing factors, it has at least m zero factors and, hence, we
obtain that \alpha \wedge (d\alpha )d(X,Y s

1 , . . . , Y
s
d , Y

u
1 , . . . , Y u

d ) = 0, contradicting the contact property of \alpha .
2.2. Matching functions and the subbundle theorem. We first recall the matching function

technique which we have first introduced in [5] and further developed in [6, 7]. Then we explain the
statement of the subbundle theorem which was proved in [6, 7].

Let \varphi t
i : Mi \rightarrow Mi, i = 1, 2. Anosov flows with Cr, r \geq 1, weak stable and unstable foliations.

Assume that they are conjugate, h \circ \varphi t
1 = \varphi t

2 \circ h. We proceed to explain a certain construction of
subbundles Ei of the unstable bundles Eu

i via locally matching functions on the local unstable leaves.
(Of course, the same construction can be applied on local stable leaves yielding subbundles of the
stable bundle.)

Recall that the conjugacy h maps leaves of W u
1 to leaves of W u

2 . For each x \in M1, consider pairs
of Cr, r \geq 1, functions (\rho 1, \rho 2) where \rho 1 is defined on an open neighborhood of x in W u

1 (x), \rho 
2 is

2Alternatively one can use invariance of d\alpha and Es, and the fact that vectors in Es contract to arrive at the same
conclusion without explicitly using the integrability property.
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defined on an open neighborhood of h(x) in W u
2 (h(x)) and such that \rho 1 = \rho 2\circ h. This relation is what

we call a matching relation. We collect all such pairs of functions into a space V r
x , V

r
x = \{ (\rho 1, \rho 2) :

\rho 1 = \rho 2 \circ h\} . The domains of definition of \rho 1 and \rho 2 can be arbitrarily small open sets. Also denote
by V r

x,1 the collection of all possible \rho 1, that is, projection of V r
x on the first coordinate, and by V r

x,2

the projection on the second coordinate.
Now we can define linear subspaces Ei(x) \subset Eu

i (x) by intersecting the kernels of all D\rho i at x,
i = 1, 2. Namely,

Ei(x) =
\bigcap 

\rho i\in V r
x,i

\mathrm{k}\mathrm{e}\mathrm{r}D\rho i(x).

We note that subbundles Ei also depend on r, which can be taken to be any number \geq 1. However
in this paper we will only use for specific r given by regularity of invariant distributions.

It turns out that all subspaces Ei(x), x \in Mi, i = 1, 2, have the same dimension and give
an integrable subbundle with certain pleasant properties. Namely, we have the following subbundle
theorem which was established in [7] (and before that for Anosov diffeomorphisms [6, Theorem 4.1]).

Theorem 2.1 (subbundle theorem). Let \varphi t
i : Mi \rightarrow Mi, i = 1, 2, be conjugate Anosov flows,

h \circ \varphi t
1 = \varphi t

2 \circ h. Assume that both flows have Cr stable foliations. Then there exist Cr regular,
D\varphi t

i -invariant distributions Ei \subset Eu
i such that

1) the distributions Ei integrate to \varphi t
i -invariant foliations \scrF i \subset W u

i ;

2) the distributions Es
i \oplus Ei integrate to an \varphi t

i -invariant Cr foliation which is subfoliated by
both W s

i and \scrF i;

3) the conjugacy h maps \scrF 1 to \scrF 2;

4) the restrictions of h to the unstable leaves are uniformly Cr transversely to \scrF 1;

5) if (\rho 1, \rho 2) \in V r
x is a matching pair, then \rho i is constant on connected local leaves of \scrF i.

Remark 2.1. In [7] we have defined the matching functions on local weak unstable manifolds
instead of local unstable manifolds. We observe that any matching pair on local weak unstable
manifolds can be restricted to local unstable manifolds and any matching pair on local unstable
manifolds can be pulled back to a matching pair on weak unstable manifolds using local projection
along the flow. Also, as explained right after the statement of [7, Theorem 2.1], the subbundles defined
through the matching functions on weak unstable manifolds are contained in unstable bundles. Hence,
both of these definitions yield the same subbundles Ei.

2.3. Non-stationary linearization for expanding foliations. Let \varphi t : M \rightarrow M be a smooth flow
which leaves invariant a continuous foliation W u with uniformly smooth leaves. Assume that W u is
an expanding foliation, that is, for a sufficiently large t, \| D\varphi t(v) \| > \| v \| for all non-zero v \in Eu,

where Eu = TW u is the distribution tangent to W u. The following proposition on non-stationary
linearization is a special case of the normal form theory developed by Guysinsky and Katok [8] and
further refined by Kalinin and Sadovskaya [13, 14]. We will denote by Du the restriction of the
differential to Eu.

Proposition 2.1. Let r \in (1, 2] and let \varphi t, W u and Eu be as above. Assume that there exists a
sufficiently large t such that

\| Du\varphi t(x) \| < m(Du\varphi t(x))r, x \in M.

Then, for all x \in M, there exists \scrH x : Eu(x) \rightarrow W u(x) such that
1) \scrH x is a smooth diffeomorphism for all x \in M ;

2) \scrH x(0) = x;
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3) D0\scrH x = id;

4) \scrH \varphi tx \circ Dx\varphi 
t = \varphi t \circ \scrH x for all t;

5) D\scrH x has (r  - 1)-Hölder dependence along W u;

6) if y \in W u(x), then \scrH  - 1
y \circ \scrH x : Eu(x) \rightarrow Eu(y) is affine.

Such family \{ \scrH x, x \in M\} is called non-stationary linearization (also called normal form or
affine structure) along W u.

It is well-known that non-stationary linearization is unique in appropriate class of linearization.
We had difficulty finding a reference for the uniqueness statement which we need. Hence, we provide
a precise uniqueness addendum with a proof. We formulate a somewhat more general point-wise
uniqueness statement than what we need for the sake of optimality and ease of future reference.

Given a point x, let \kappa x to be the infimum of all \nu so that

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}
t\rightarrow  - \infty 

\| Du
x\varphi t \| 1+\nu 

m(Du
x\varphi t)

= 0.

Note that the conformal pinching assumption of Proposition 2.1 implies that \kappa x \leq r  - 1.

Addendum 2.1. Given x \in M assume that \=\scrH \varphi tx : Eu(\varphi tx) \rightarrow W u(\varphi tx), t \leq 0, is a family of
C1 diffeomorphisms satisfying items 2, 3, 4 (where 4 will only be used for t \leq 0), and assume that
there exists \kappa > \kappa x such that

\mathrm{s}\mathrm{u}\mathrm{p}
t\leq 0,| z| \leq 1

\| Dz
\=\scrH \varphi tx  - Id \| 
| z| \kappa 

< \infty .

Then \=\scrH x = \scrH x.

Remark 2.2. In the case \kappa x is a minimum instead of an infimum, i.e., the infimum is achieved,
we can also take \kappa = \kappa x in the above addendum.

Proof. Let H \prime 
t = \scrH  - 1

\varphi tx \circ \=\scrH \varphi tx : Eu(\varphi tx) \rightarrow Eu(\varphi tx) and observe that H \prime 
t is C1, H \prime 

t(0) = 0,

D0H
\prime 
t = Id. Using the main assumption of the addendum, uniform regularity of \scrH  - 1

x and applying
the triangle inequality, we can easily verify

\mathrm{s}\mathrm{u}\mathrm{p}
t\leq 0,| z| \leq 1

\| DzH
\prime 
t  - Id \| 

| z| \kappa 
< \infty .

Also, we have the following relation:

H \prime 
0 = (Du

x\varphi 
t) - 1 \circ H \prime 

t \circ Du
x\varphi 

t,

which is easy to differentiate since two maps are linear, and we obtain

DzH
\prime 
0 = (Du

x\varphi 
t) - 1 \circ DDu

x\varphi 
t(z)H

\prime 
t \circ Du

x\varphi 
t.

Hence,

\| DzH
\prime 
0  - Id \| = \| (Du

x\varphi 
t) - 1 \circ DDx\varphi t(z)H

\prime 
t \circ Du

x\varphi 
t  - Id \| 

\leq \| (Du
x\varphi 

t) - 1 \| \| DDx\varphi t(z)H
\prime 
t  - Id \| \| Du

x\varphi 
t \| .

For t < 0, Du
x\varphi 

t is a contraction, consider t so that | Du
x\varphi 

t(z)| \leq 1, then we get that
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\| DzH
\prime 
0  - Id \| \leq \| (Du

x\varphi 
t) - 1 \| \| DDu

x\varphi 
t(z)H

\prime 
t  - Id \| \| Du

x\varphi 
t \| 

\leq C \| (Du
x\varphi 

t) - 1 \| \| Dx\varphi 
t(z) \| \kappa \| Dx\varphi 

t \| 

\leq \| (Du
x\varphi 

t) - 1 \| \| Du
x\varphi 

t \| 1+\kappa \| | z| \kappa 

and the latter goes to 0 when taking a \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{i}\mathrm{n}\mathrm{f}t\rightarrow  - \infty , according to the definition of \kappa . So DzH
\prime 
0 = Id

for every z, | z| \leq 1, and since H \prime 
0(0) = 0, we get that H \prime 

0 = Id, which means \scrH x = \=\scrH x.

3. Proof of Theorem 1.1. Recall that the weak distributions are Cr by the assumption. Since
the strong distributions are given by intersecting with the kernel of the contact form, they are also
Cr regular. Hence we apply Theorem 2.1 to \varphi t

1 and \varphi t
2 and obtain Cr distributions Ei \subset Eu

i and
corresponding integral foliations \scrF i \subset W u

i . By item 2 of the subbundle theorem we have that W s
i

and \scrF i are jointly integrable. Hence, by Lemma 2.1, we have \mathrm{d}\mathrm{i}\mathrm{m}\scrF i = 0, that is, \scrF i are foliations
by points. Then item 4 gives uniform Cr smoothness of h along the unstable foliation.

Entirely symmetric argument yields Cr smoothness of h along the stable foliation. Applying the
Journé lemma first for the unstable and flow foliations, we have that h is Cr\ast along the weak unstable
foliation. Then applying Journé lemma [12] to weak unstable and stable foliations, we obtain that h
is Cr\ast . Reversing the roles of the flows we obtain in the same way that h - 1 is Cr\ast . Hence, h is a
Cr\ast diffeomorphism.

4. Proof of the corollaries. Proof of Corollary 1.1. The conformal r-pinching assumption of
the corollary enables us to apply Proposition 2.1 to both \varphi t

1 and \varphi t
2. In this way we have normal

forms \scrH i
x, i = 1, 2, for \varphi t

i along the unstable foliation W u
i .

By Theorem 1.1 the conjugacy is Cr, r > 1. Define

\=\scrH 1
x =

\Bigl( 
h| Wu

1 (x)

\Bigr)  - 1
\circ \scrH 2

x \circ Dh| Eu
1 (x)

: Eu
1 (x) \rightarrow W u

1 (x).

It is routine to verify that \=\scrH 1
x satisfies properties 2 – 4 of Proposition 2.1. Also, since h is Cr we

have that D \=\scrH 1
x is uniformly Cr - 1 at x and, hence, verifies the main assumption of Addendum 2.1.

We invoke Addendum 2.1 and conclude that \=\scrH 1
x = \scrH 1

x, x \in M1. Hence

h| Wu
1 (x) = \scrH 2

x \circ Dh| Eu
1 (x)

\circ (\scrH 1
x)

 - 1,

which is C\infty regular as the normal forms are smooth for each x. Applying the same argument to
the stable foliation and using the Journé lemma in the same way as in the proof of Theorem 1.1, we
establish that h is a C\infty diffeomorphism.

Proof of Corollaries 1.2 and 1.3. We will verify that the geodesic flows are bunched with r =
\surd 
2

and conformally
\surd 
2-pinched. Then applying Corollary 1.1 finishes the proof of Corollary 1.2.

Also notice that both bunching and conformal pinching conditions are open in C1 topology, hence,
Corollary 1.3 also follows.

Let \varphi t be a
1

a2
-pinched geodesic flow with a =

\surd 
2. We can rescale the metric so that all

sectional curvatures lie the interval ( - a2, - 1]. Then we can use the description of stable (unstable)
subbundle as the space of bounded in the future (past) Jacobi fields (see, e.g., [2, Chapter VI]) and,
by comparison with constant-coefficients Jacobi equations J \prime \prime  - J = 0 and J \prime \prime  - a2J = 0, we have

et \leq \| D\varphi t| Eu \| < eat, t > 0, and e - at < \| D\varphi t| Es \| \leq e - t, t > 0.
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These give bounds on all needed norms and conorms. One can then easily see that bunching with
parameter r is implied by e - terat \leq et and conformal r-pinching is implied by eat \leq ert, which are
equivalent to ra \leq 2 and a \leq r. Taking r = a =

\surd 
2, we finishes the proof.

Proof of Corollaries 1.4 and 1.5. Derivations of these corollaries follow closely [9]. It is well-
known that negatively curved homotopy equivalent manifolds have orbit equivalent geodesic flows.
Then, by the classical application of the Livshits theorem [15, Theorem 19.2.9], same marked length
spectrum implies existence of a C0 conjugacy h of the geodesic flows. Thus, because we have
assumed that stable and unstable foliations are C1, we can apply Theorem 1.1. Formally speaking, it
only yields Lipschitz regularity of h. However, in fact, it is easy to overcome the loss of regularity in
this case and show that h is a C1 diffeomorphism. Indeed, recall that the loss from r to r\ast happens
at the very end of the proof of Theorem 1.1 which is due to application of Journé lemma. However
this problem only occurs for integer r \geq 2. It is an easy calculus exercise to check that if h is C1

along a pair of transverse foliations, then h is a C1 diffeomorphism.
Now denote by \alpha i the canonical contact form for \varphi t

i. That is, \alpha i is a D\varphi t
i invariant contact form

such that \alpha i(Xi) = 1, Xi =
\partial \varphi t

i

\partial t

\bigm| \bigm| \bigm| 
t=0

, i = 1, 2. Since h is a C1 diffeomorphism and the pull-back

form h\ast \alpha 2 is well-defined, we have

h\ast \alpha 2(X1) = \alpha 2(Dh(X1)) = \alpha 2(X2) = 1.

Also,
\mathrm{k}\mathrm{e}\mathrm{r}h\ast \alpha 2 = Dh - 1(\mathrm{k}\mathrm{e}\mathrm{r}\alpha 2) = Dh - 1(Es

2)\oplus Dh - 1(Eu
2 ) = Es

1 \oplus Eu
1 = \mathrm{k}\mathrm{e}\mathrm{r}\alpha 1.

But the value on X1 and the kernel determine a 1-form uniquely. Hence, h\ast \alpha 2 = \alpha 1. We have the
same for volume forms \omega i = \alpha i \wedge (d\alpha i)

d :

h\ast \omega 2 = h\ast \alpha 2 \wedge h\ast (d\alpha 2)
d = \alpha 1 \wedge (d\alpha 1)

d = \omega 1,

which implies that total volumes are the same

\mathrm{v}\mathrm{o}\mathrm{l} (M) =

\int 
M

\omega 1 =

\int 
M

h\ast \omega 2 =

\int 
N

\omega 1 = \mathrm{v}\mathrm{o}\mathrm{l} (N),

and we finishing the proof of Corollary 1.4.
For the last corollary, notice that since M is hyperbolic and N is 1/4-pinched they have C1

Anosov splitting and, hence, the above proof applies to conclude that they have the same volume.
Since geodesic flows are conjugate they also have the same topological entropy which is well-known
to coincide with the volume entropy on the universal covers \~M and \~N. Hence, by the main result
of [1] we can conclude that M and N are isometric.
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