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NEW QUANTUM HERMITE -HADAMARD-TYPE INEQUALITIES
FOR p-CONVEX FUNCTIONS INVOLVING RECENTLY DEFINED
QUANTUM INTEGRALS

HOBI KBAHTOBI HEPIBHOCTI EPMITA - AJIAMAPA
JIJISL p-OIMYKJINX ®YHKIIIA, IO BKJIIOYAIOTH
HEIMOJABHO BU3HAYEHI KBAHTOBI IHTEI'PAJIN

We develop new Hermite — Hadamard-type integral inequalities for p-convex functions in the context of g-calculus by using
the concept of recently defined T, -integrals. Then the obtained Hermite - Hadamard inequality for p-convex functions is
used to get new Hermite - Hadamard inequality for coordinated p-convex functions. Furthermore, we present some examples
to demonstrate the validity of our main results. We hope that the ideas and techniques of this study may stimulate further
research in this field.

OCHOBHOIO METOIO IIbOTO JOCTI/DKEHHS € Po3poOKa HOBUX IHTErpajbHHX HepiBHocTed Tuiy Epmita—Anamapa s p-
OITYKJIHX (yHKI[IH B KOHTEKCTI ¢-YHCIEHHS 3a JIOMOMOTOI0 KoHIentii 1y - iHTerpanis, mo Oyiau HemoAaBHO Bu3Ha4deHi. Jami
oTpuMaHy HepiBHICTb Epmita — Anamapa Juist p-omykinx (QyHKIiH BUKOPHCTAHO JUIs BUBEICHHS HOBOI HepiBHOCTI EpmiTa —
Anamapa Juisi KOOpAMHOBaHHMX p-omykinx (yHKuid. Kpim Toro, HaBeleHO Kijbka NPHKIAiB, 00 MPOIEMOHCTPYBATH
JTIOCTOBIPHICTh OTPUMAHHX OCHOBHHX PE3yJbTaTiB. MU CIIOmiBAEMOCH, IO i€l Ta METOMH, 3alpPOMOHOBAaHI B Iiiif poOOTi,
MOXYTb CTUMYJIFOBATH ITOJAJIBIII JOCHTIPKCHHS B il Tamys3i.

1. Introduction. A function F : I — R, where I is an interval in R is called convex, if it satisfies
the inequality

F(to + (1 —t)p) < tF(o) + (1 —1)F(p),

where o,p € I and t € [0, 1].

Convex functions have potential applications in many fascinating and delightful fields of research.
Furthermore, have played a notable role in innumerable areas, such as coding theory, optimization,
physics, information theory, engineering, and inequality theory. Various new classes of classical
convexity have been proved in the history (see [1, 2]). Many researchers strived, attempted and
maintained their work on the notion of convex functions and generalized its variant forms in different
ways using novel ideas and advantageous techniques [3, 4]. Many mathematicians always kept
continually hardworking in the field of inequalities and have conspired with different ideas and
notions in the theory of inequalities and its applications (see [5—13]). Many inequalities are proved
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for convex functions, but the most famous and well-known from the related literature is the Hermite —
Hadamard inequality. The Hermite — Hadamard inequality introduced by Hermite and Hadamard (see
also [2] and [14, p. 137]) is one of the most prominent inequalities in the theory of convex functional
analysis. It has a appealing geometrical interpretation with diverse applications

52t o237

where F: I — R is a convex function and o, p € I with ¢ < p. Convexity is also assimilated with
the concept of quantum and post quantum calculus [15].

The concept of p-convexity is defined as follows.

Definition 1 [16]. Let I be a p-convex set. A function F: 1 — R is said to be a p-convex
function, if

(to? + (1 — 1)pP)» < tF(0) + (1 — 1) F(p) (1.1)

SJorall o,p € I, p € R\ {0} and for t € [0,1]. If the inequality in (1.1) is reversed, then F is said
to be p-concave.

In [18, Theorem 5], if we take h(t) = ¢, then we have following theorem.

Theorem 1. Let F: 1 C (0,00) — R be a differentiable function on 1°, o, p € I with o < p
and p > 0. If F' € Lo, p|, then

]

1 P
P P f }' f’

Definition 2 [19]. A4 function F: A C R? = R is called coordinated p-convex functions on A,
if the following inequality:

F((to? + (1= )pP)7, (A + (1 — NdP)7) < tAF (o, 0) + (1 — \)F(o, d)
+ (1= )AF(p,0) + (1 = 1)(1 = A)F(p,d)

holds for all t,\ € [0,1], p > 0 and (o, 0), (0,d), (p, 0), (p,d) € A, where A is bi-dimensional real
interval.

Here, if we put p = 1, then coordinated p-convexity reduces to coordinated convexity.

Zhang [16] introduced the notion of p-convex functions. It is worth to mention here that besides
the classical convex functions the class of p-convex functions also includes the class of harmonically
convex functions introduced and studied by iscan [17]. For some recent investigations on p-convex
functions, see [18].

On the other hand, quantum calculus is the analysis of calculus without limits, sometime called ¢-
calculus. Quantum calculus is regarded as an incorporation subject between mathematics and physics,
and many researchers have a notable concentration in this subject. Historically the subject of quantum
calculus can be traced back to Euler and Jacobi, but in recent decades it has experienced a rapid
development. It is also pertinent to mention here that quantum calculus is a subfield of time scale
calculus. In quantum calculus, we are concerned with a specific time scale, called the g-time scale. In
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the twentieth century Jackson et al. introduced the notion of g-definite integrals in quantum calculus.
This inspired many quantum calculus analysis, and consequently a number of articles have been
written in this area. It is worth to mention here for interested readers that it is possible that some times
more than one g-analogue exists. Many integral inequalities have been studied using quantum integrals
for various types of functions, for example, in [20—-26]. In [27], Alp and Sarikaya presented a new
definition of g-integral by using trapezoid pieces and established some new ¢-Hermite — Hadamard-
type inequalities for convex functions. In 2020, Alp and Sarikaya according to the definition of
g-integral by using trapezoid pieces Young integral inequality, Holder integral inequality, Minkowski
integral inequality, and Ostrowski type integral inequalities in [27]. Subsequently, in [28], again utilize
the trapezoidal parts, Kara et al. defined new genre of quantum integral given by Alp and Sarikaya
and established the corresponding Hermite — Hadamard inequalities. In [29], Kara and Budak defined
new Tj-integrals for the functions of two variables.

Inspired by the ongoing studies, we prove some new Hermite — Hadamard-type inequalities for
p-convex and coordinated p-convex functions. The fundamental benefit of these inequalities is that
these can be turned into quantum Hermite —- Hadamard inequalities for convex and coordinated convex
functions, classical Hermite - Hadamard inequalities for convex and coordinated convex functions
without having to prove each one separately.

This paper is organized as follows. Sections 2 and 3 provides a brief overview of the fundamentals
of g-calculus as well as other related studies in this field. In Sections 4 and 5, we establish some
new Hermite — Hadamard-type inequalities for p-convex and coordinated p-convex functions using
the notions of g-integrals. The relationship between the findings reported here and similar findings
in the literature are also considered. In Section 6, we prove that the newly established inequalities
for p-convex functions hold using some mathematical examples. Section 7 concludes with some
recommendations for future research.

2. g-Integrals and related inequalities. In this section, we first present the definitions and
some properties of quantum integrals. We also mention some well-known inequalities for quantum
integrals. Throughout this paper, let 0 < ¢ < 1 be a constant.

The g-number or g-analogue of n € N is given by

1—q" 2 n—1
[n]g = g LTt

Jackson derived the g-Jackson integral in [31] from O to p as follows:

n=0

4 o0
/f(f@)dqff =(1-q)p>_ q"F(pq")
0

provided the sum converges absolutely.
The g-Jackson integral in a generic interval [0, p] was given by in [30] and defined as follows:

/p]:(fi)dql-i - /pf(ﬁ)dqﬁ— /Uf(’””)dq“'
o 0 0

The quantum integrals on the interval [o, p| is defined as follows.
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Definition 3 [31]. Let F: [0, p] = R be a continuous function. Then the q,-definite integral on
[0, p| is defined as

/ Ft) ot =(1—)s—0) 3 @ Flg™s+ (1 - "))

n=0

Jor k € [o, pl.

In [15], Alp et al. proved the corresponding Hermite — Hadamard inequalities for convex functions,
by using g, -integrals, as follows.

Theorem 2. If F: [0,p] — R be a convex differentiable function on [o, p|, then q-Hermite—
Hadamard inequalities is defined as

}-<QU—|—p>§ 1 /F(K)adqﬁgqf(a)Jrf(p).
1+4g¢ p 1+¢

On the other hand, Bermudo et al. gave the following new definition of quantum integral on the
interval [o, p|.

Definition 4 [32]. Let F: [0, p] — R be a continuous function. Then the qP-definite integral on
[0, p| is defined as

p

/f(t) Pdgt = (1—q)(p—r)Y_q"F(q"k+ (1 —q")p)

w n=0

Jor k € [o, pl.

Bermudo et al. proved the corresponding Hermite — Hadamard inequalities for convex functions,
by using ¢”-integrals, as follows.

Theorem 3 [32]. If F: [0, p] — R be a convex differentiable function on [0, p|, then q-Hermite —
Hadamard inequalities is defined as

r(558) =5 f o<

From Theorems 2 and 3, one can write the following inequalities.
Corollary 1 [32]. For any convex function F : [o,p] — R and 0 < q < 1, we have

p
qo +p o+aqp , _
]:<1+q)+}_<1+q> o /]: odghk +/.7:(/<c) dek  p < F(o)+ F(p)

and

J—"(“?) 52(p1_0_) jf(ﬁ) oy +/pf(,<;) Pdr gf(");f(”).

o

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 9



1208 GHAZALA GULSHAN, HUSEYIN BUDAK, RASHIDA HUSSAIN, MUHAMMAD AAMIR ALI

In [33], Latif defined ¢, ,-integral for functions of two variables and presented important properties
of this integral. Latif et al. prove also a g-Hermite — Hadamard inequality for coordinated convex
functions. However, in [22] Alp and Sarikaya show that the Hermite — Hadamard inequalities in
[33] are not correct. Then they prove the corrected version of Hermite— Hadamard inequalities for
coordinated convex functions involving g,,-integrals.

On the other hand, Budak et al. [24] defined the ¢Z, q5p and ¢”*-integrals for functions of two
variables and they also gave the corresponding Hermite — Hadamard inequalities for these defined
integrals.

3. T,-integrals and related inequalities. In this section, we present definitions and properties
given by using trapezoids.

Alp and Sarikaya, by using the area of trapezoids, introduced the following generalized quantum
integral which is called 7 -integral.

Definition 5 [27]. Let F: [0, p] — R is continuous function. For k € [o, p],

1 o
[76) wips = CZ0E=DN a4 ) S0 F e+ (1= o) - Fip)|.

n=0

q

Theorem 4 (,7),-Hermite - Hadamard) [27]. Let F : [o, p] = R be a convex continuous function
on [o, p|. Then we have

I<U;p>§pigg/pﬂm> ol §f<0>-2kf(p)'

In [28], Kara et al. introduced the following generalized quantum integral which is called *7-
integral.
Definition 6 [28]. Let F: [0, p] — R is continuous function. For k € |0, p],

1+9)) ¢"F(g o+ (1 - q")p) = F(o)|.

n=0

P
/}‘(3) pquS :O—q;;p—a)

Theorem 5 (qu -Hermite — Hadamard) [28]. Let F : [0, p] — R be a convex continuous function
on [0, p]. Then we have

2 2

Kara and Budak defined T -integrals for two-variables functions as follows.
Definition 7 [29]. Suppose that F : [0, p] x [0,d] C R?> — R is continuous function. Then the
following ,,T,,3 Ty, T, and P2T,-integrals on [0, p| x [o,d] are defined by

p d
//]-"(t,s) gdg;s oqult
0

g
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_(—a)d—g)(p—0)(d—0)
4q1G2

A+a)A+aq)d Y ey Flaip+ (1 —qo,g5'd+ (1 - g5")e)

n=0m=0
o0
—(1+q) Y @5 Flp.gg'd+ (1 - g5)o)
m=0
~(1+q) qu (@ip+ (1 —gqf)o,d) + F(p,d)|,

p d
// F(t,s) ddg;s odglt
o 0

_(1-g)d—g)(p—0o)(d—0)
4q192

(1+q)(1+q2) Ezqm (alp+ (1= qP)o, g5 0+ (1 — q5")d)

n=0m=0

—(1+q@)) @ Flp.gge+ (1 - g5")d)
~(1+q) qu (aip+ (1 —qi)o,0) + Flp,0)|,

p d
//fts quTlt

_ (=)0 -g)p—0)(d-0)
4q192

A+aq)(l+a)d> Y ey Flgio+ (1 —q)p.g5"d + (1 — q5")o)

n=0m=0

—(1+a) Y &' Flo,g5'd+ (1 - q5")o)

- (1+aq) Z% (¢fo + (1 —ai)p.d) + Flo,d)|,

and
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p d
d T T
//]:ts dq25 ”dqlt
g o

_(1-g)(d-g)p—0)d-0
4q192

L+a)A+aq)> Y ates Flato+ (1 —qi)p, a5 0+ (1 - g5')d)

n=0m=0

— (L4 @)Y &' Flo,g5'0+ (1 - g5')d)

—(1+q) qu (dPo + (1= qi)p,0) + Flo,0)|,

respectively.

4. Quantum Hermite — Hadamard inequality. In this section, we show a representative appli-
cation of p-convex to obtain new Hermite - Hadamard inequalities involving T, integrals.

Theorem 6. Let F: 1 C (0,00) — R be a differentiable function on 1° 0P, pP € I with
oP < pPandp>0,q€ (0,1). If F € L[oP, pP|, then

1
oP + pP\ P p T F(o)+ F(p)
F <7 T— ) p 73 p/’ < —t -7
<< 2 > ) 2(pP — aP) / fi Ud H+/ " d " 2

Proof. By definition of p-convexity
Ftr? + (1 — )9P)r < tF(r) + (1 — ) F ().

1
By taking t = 3 we get

f<<np42rvp>§> . W

Considering kP = tpP + (1 — t)oP and P = toP 4 (1 — t)pP, we obtain

2f<<np;7p>;> < F((te" + (1= 1)0")7) + F( (10" + (1= 1)p")7 ).

By ,T-integrating with respect to ¢ over [0, 1], we have

1 1 !
p
0 0 0
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From Definitions 5 and 6, we get

26] n=0

1 fe'e)
/]—" 1P+ (1—t)oP)7 odlt = 1-q 1+ ¢"F(q"p" + (1 - q")o")7 — f(p)]
0

/.7: o-pd K
pp—o'p

and
1 . o
/f(tffp+(1—t)pp)P odgt = Q;q 1+ ¢"F(q"o? + (1 —q")p")? —F(G)]
0 q n=0
pP
1 T
= F(rr)Pd, K
pp—o'p
oPpP
Thus, we obtain
P_|_pp A A
g 1 » T
2.7-"( 5 ) ,op—ap /.7-" KP gpd /€+/F(/€P>p dy K
oP

and the first inequality of (4.1) is proved.
To prove the second inequality, using the p-convexity, we have

F((to + (1= t)0?)» ) <tF(p) + (1 = ) F (o)
and
F((to? + (1= 1)) ) < tF (o) + (1= ) F(p).

Thus,

3 =

1
Ftp? + (1 —t)oP)r + F(ta? + (1 —t)pP)» < [F(o) + F(p)]. (4.2)
By taking ,7-integral of (4.2) on [0, 1] and by using Definitions 5 and 6, we get

pp
/f K7 )ond! n+/ F(ro)"dl k| < F(o)+ F(p).

ob

pp—g'p

Thus, the proof is accomplished.
Remark 1. If we set p = 1 in Theorem 6, then Theorem 6 reduces to [32, Theorem 20].
Remark?2. In Theorem 6, if we take the limit as ¢ — 1, then inequality (4.1) becomes the
inequality (1.2).
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5. Quantum Hermite— Hadamard inequality on coordinates. In this section, by utilizing the
inequalities given in previous section, we establish some new quantum inequalities of Hermite—
Hadamard type via coordinated p-convex functions.

Theorem 7. If F: [0, p] X [0,d] — R is coordinated p-convex function on A with p > 0, then
we have the following inequalities:

o+ pP\7 [P+
A((252) (222))
1 T (PPN f L (PP
ém /f(lip,< 2 > )Updg;“+/f(“pa<2> )pdgl/{

a

dP

dr ) )
1 oP 4+ pP\r 1 T Up+pp P 1 »
Tie =) /f<< 2 ) a’Yﬁ)wdqQW/f(( 5 e | Cdgy
Qp Qp
1 pP dp pP dP
T
< 4<pp—0p)(dp—gp //.7: /ﬁp,’yp)gpdqQ’y gpd /‘d—i—//]: ,‘<.]P7")/P fygpdqlﬁ
oP oP oP oP
PP dp o ar
oP QP oP Qp
PP P
1 1 1 T 1 1 o T
< W [-F(HP,Q)+.F(I€P,d)]Updq1I€+ [F(k?,0) + F(k?,d)] dr
oP oP
v e
1 : 1 T 1 1
g | [FO PPt [1Foa) - o g
Qp QT—’

_ Flo,0)+ Flo,d) + F(p,0) + Flp,d)

< 3 (.1

Proof. Let g.(v) — R and g.(y) = .7-"(/-1%,7) is p-convex function on [p,d], by using the
inequality (4.1) for the interval [p, d] and g2 € (0,1), we have

dr dr

1

o +dP\ > 1 i, 1ogo T 9x(0) + gx(d)

gn( 9 < m gm(Wp)gqug’Y—i‘ 9x(V7) dqﬂ < - 5
oP oP

ie.,

1 d?
1P +dP\r
f<m’< 2 > ><(dpgp /F“”’””“pdzw/f””yp) Y
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F(kv, o) + F(k#,d)

= 52
- 2 (5.2)
for all k € [0, pP]. By 40T, integration of inequality (5.2) on [o?, pP], we get
1 7 oP + dP 5
1 P
» T
pp—ap/‘}—(m)’( 5 ) )Uqulli
oP
pP dP pP dp
T
< 2(pp—0'p dp— //Jr KP7’YP deqQ’Yo-pd I€+//f /{,P,fyp ryo'pdqlﬁ
oP oP oP oP
pP
]. 1 1 T
: 2(pp—op)/[f(”’g) + (e d)]ordg, k. (5.3)
oP
Similarly, by P Ty, integration of inequality (5.2) on [oP, pP], we obtain
PP o\ L
: /]: R%7 grdryy Al g
pp — oP 2 q1
oP
pP dp pP dp
< f/-”v” W ) oy P dl K+ fm 7@ Pl 7" dl k
~ 2(pP — oP) dp — oP) ’ 0" %q2 @ ’ 92 il
oP oP oP oP
pP
~ 2(pP — oP) ’ ’ @
oP

On the other hand, the function g.(y) — R and g.(y) = F (FL,"}/%) is p-convex function on [o, p],
by using the inequality (4.1) for the interval [0, p| and ¢; € (0,1), we have

p+pp 1 1 pP pP

g P 1 T T

g”( 5 ) < 5o | [ 9D it [t i
oP oP

9+(9) + 9,(p)

IN

9 )
that is,
oP + pP 7 1 P o
F(( 2 ) ryp) SW /]—“ m,'yp)apd /s+/]:(,€p77p)pdqln
oP

_ Flo) + Flp,s7)
- 2

(5.5)
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1214 GHAZALA GULSHAN, HUSEYIN BUDAK, RASHIDA HUSSAIN, MUHAMMAD AAMIR ALI

for all v € [P, dP]. By 1y, integration of inequality (5.5) on [o, dP], we get

oP + pP 1
A2 )

pP dr pP dr
T
2(pp_0_p —Qp //.F RP,’}/P gpdq2’70pd KJ—|—//./—" K,P"yp de(n,-yﬂ dq1/€

oP oP oP oP

dp

1 1 1 T
< W/[f(ffﬁ”) + F(p,v7)]or gy - (5.6)
Qp

Similarly, by %’ T,, integration of inequality (5.5) on [ ¢”, dP], we obtain

dP
1 oP + pP P
dp—gp/F<< 2 ) 771") dq27
QP

pP dp pP dr
1 101 dP . pp T,
= Q(pp—gp)(dp_gp) //‘F(Hpafyp) ’ngd K—I—//f /ﬂ?p,’yp d d
oP QP oP Qp
dp
1 1 1
= 2(dp—gp>/ F(077) + Flo, )] dgy: (5.7)
QP

By adding (5.3), (5.4), (5.6) and (5.7), we get

pP 1 PP 1
ppiap /f(mlj, (Qp;dp>p> (,—pdgln—i-/]:(n;, <Qp—;dp>p> ppdéplh'
oP op
dp dr 1
cata [ ) oo [#((555) )

gp

pP dp pP dp

1
< (o — oP)(dF — &) //.7: K,P,’)/P)de(h"}/ (,pd E+//f /ﬁ;P’f)/p d 'ygpd
g ob oP oP oP
pp dr pp dpP
+//f(ﬁ;77;)gpdg;7 H"i‘//]: KP fyp deT deT
oP QP oP Qp
pr P
1 1 1 T 1 1o
< W [F(k7,0) + F(kr,d)]ordy ks + [ [F(k?,0) + F(kr,d)]” dy x
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dp dp
1 1 1 T 1 1o T
@ ) [Flo,ye) + Flp,ve)lerdg,y + | [Flosy?) + Flo, )" dg,y |- (5.8)
or o

This completes the proof of second and third inequality of (5.1). From left-hand side of inequality
(4.1), we have

A(59)(557))

pr PP

1 1
1 L (P +dP\P T L (P +dP\P\ o1
=3 —o7) /f<m”( 2 ))”M“K+/}<m”< 2 > )p%ﬁ
oP oP
(5.9)
and
1 1
0P+ pP\ P [P +dP\ 7
A5 (55))
] ar P 1 d? P4 1
o?P + Pl of + po1
<sweg| [F((737) )i [#((757) ) 7o)
or o
(5.10)

Using (5.9) and (5.10) in (5.8), we get first inequality of (5.1). By applying right-hand side of the
inequality (4.1), we obtain

pP oY
1 1 1 1 1 P
2pP — o?) /V@mm+meMw%ﬁ+/VMmm+fmﬂmpﬂﬁ
SI@@+me;f@®+fm® (5.11)
and
d» d?
s | [F@rn) + Fohdin + [1Fon®) + Foah ) d
2(dp_Qp) Y Py VP ) or gy Y P 0
oP oP
Sf@m+fmm;f@®+fm®‘ (5.12)

Using (5.11) and (5.12) in (5.8), we obtain the last inequality of (5.1).
Thus, the proof is accomplished.

Corollary2. If we take the limit q1,qo — 1 in Theorem 7, then inequality (5.1) becomes the
Hermite— Hadamard inequality for coordinated p-convex functions which is given by
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(2 (557))

A
»
R
| -
9
=
—=
i
K,.]
/
=N
S
A/~
B
|+
=
~_
~_
QU
=N

v [H((750) )

op
1 T 11
= (pP — oP)(dP — Qp)lglf@p’w)dﬁd’y
1 “ 1 1
< A — o7 /[f(m,g) + F(kr,d)]dk
oP )
= | [+ Foala
op
< (0,0 + F(o,d) jlrf(p, 0) + F(p,d)

which is given by Yang in [19, Theorem 2.2 (for hqi(t) = hao(t) =t and p1 = pa = p)].
6. Examples.

1
Example 1. Define the function F(x) = 3 on [0, 1]. Applying Theorem 6 for ¢ = 3 and p = 3,
1
of +pP\?\ 1y 1
A7) ) -#() -5

PP PP 1 1
W /.F(/ip>gpdqﬁ+/f<ﬁp)pdqﬁ /Hod;:‘ﬂ?‘i‘ lﬁd%/ﬁl :§ 5“‘5 :2
ob oP 0 0

and

we have

Flo)+ F(p) 1

2 2
This demonstrates the result described in Theorem 6.
Example?2. Define the function F(x,7) = #2742 on [0,1] x [0, 1]. Applying Theorem 7 for

1
g1 =q2 = - and p = 2, we get

2
A(52) (57 ) =) -
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PP 1 pP 1
1 1 oP +dP\» T 1 oP +dP\v» P T
=) /“F<”’< > ))””dQ1”+/f<””’< > >>pd‘““
oP

oP
1 < Py pP 1 da? P 1
o P T oP+pP\? 1\ o1
4(dp — gP) / (( 9 > ’7p> @quﬂ"'/}-(( 5 ) ,71’) dg,y
1 1 1 1
1
=21 [ Sodin+ [ Sldln+ [ Todly+ [ 2laly
4 272 2 2 3
0 0 0 0
_ 1/1 n 1 n 1 n 1 _ 1
4\4 4 4 4) ¥
1 pP dP pP dP
101 11
4(pp — oP)(dP — oP) //f(mwp)gpdg;v gpqulm+//f(m,w)d"dg;%pdglﬁ
ob oP oP oP
pP dp oP
+\//“F(R;77;)9pd,§;7ppdg;ﬁ+//F(Hzljv’}/;)dpdg;’}/ppdglli
oP oP oP P
11 11 11 11
1
4|://li’}’0dg;’y Od£/i+//liryldg;’y Odg;’i—’_//m’yodg;ryldz];ﬁ—’_//K/ryldg;’yldg;ﬂ
00 00 00 00
_ 1/1 n 1 n 1 n 1 B 1
T4\4 4 4 4) ¥
pr P
1 1 1 T 1 1oy
8(pp_0.p) []:(IQP,Q)‘F]:(IQP,d)]UpdqlK—{— [‘F(KP’Q)—F‘F(Kp’d)] dqlﬁ
oP oPp
dP dr
1 1 1 T 1 R
-l-w [F(o,y7) + Flp,ve )lerdy,y + [ [Flo,yr) + Flp,v?)]" dg,y
oP oP
_ 1/1 n 1 n 1 n 1 B 1
8\2 2 2 2) 4

and

F(o,0) + Flo,d)+ F(p,0) + F(p,d) 1

4 4
This demonstrates the result described in Theorem 7.
7. Conclusions. In this paper, we establish new T} -Hermite - Hadamard-type inequalities for
p-convex and coordinated p-convex functions. It is also shown that some classical results can be
obtained by the results presented in the current investigations by taking the limit ¢ — 1. In the
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upcoming directions, researchers can be obtain similar inequalities for different convexity classes of
two variables functions.
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