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BOUNDS ON THE PARAMETERS OF NON-L-BORDERENERGETIC GRAPHS

OBMEXEHHS HA ITAPAMETPU HE L-'PAHUYHUX
EHEPITETUYHUX I'PA®IB

We consider graphs such that their Laplacian energy is equivalent to the Laplacian energy of the complete graph of the
same order, which is called an L-borderenergetic graph. Firstly, we study the graphs with degree sequence consisting of at
most three distinct integers and give new bounds for the number of vertices of these graphs to be non- L-borderenergetic.
Second, by using Koolen—Moulton and McClelland inequalities, we give new bounds for the number of edges of a
non- L-borderenergetic graph. Third, we use recent bounds given by Milovanovic, et al. on Laplacian energy to get
similar conditions for non- L-borderenergetic graphs. Our bounds depend only on the degree sequence of a graph, which
is much easier than computing the spectrum of the graph. In other words, we developed a faster approach to exclude
non- L-borderenergetic graphs.

Mu posmsimaeMo rpadm, JTaruiaciBcbka HEpris SKHX eKBiBaJCHTHA JIAIUTACIBCHKIM eHeprii moBHOTro rpada Takoro  Io-
PSLIKY, SIKUI Ha3UBA€THCS L-rpaHUYHUM eHepreTHYHuM rpadom. [lo-niepire, Mu BuB4aeMo rpadu, s SKUX MOCTiTOBHICTh
CTETICHIB CKJIAJIa€Thcsl HEe OUIbIIE HiK 3 TPHOX PI3HUX IUTHX YUCEN, i HABOAMMO HOBI OIIIHKH IS KUTBKOCTI BEpIIMH IIUX
rpadis, 3a SKUX BOHU He € L-rpaHu4HO eHepreTuuHuMH. [1o-Ipyre, BUKOPUCTOBYOuHM HepiBHOCTI Kynena—MoyntoHna ta
MaxkKemranna, HaBOAUMO HOBI OIIHKHU JUIsl KUIBKOCTI pebep He L-rpaHudHOro eHepretudHoro rpaga. Ilo-tpere, BHKO-
PHUCTOBYEMO OLIIHKH, IO Oy HEIIOAABHO OTpHUMaHi MijoBaHOBHYEM Ta iH. AJIS JIAIJIACIBCHKOI €HEprii, mo0 OTpuMaTH
noxtiOHi yMOBH 11l He L-rpaHMYHUX eHepreTHuHMX rpadis. Hamri ominky 3anexarsb juile BiJ IOCIIIOBHOCTI CTEHEHIB
rpada, mo Habararo 3pydHime, HikK 00UMCITIOBaTH CHeKTp rpada. [HIMMu cioBaMu, po3poOieHo GBI MBUAKHN MiAXig
JUISL BUIYYeHHS He L-rpaHuYHUX SHEepreTHYHHUX Trpadis.

1. Introduction. A graph G of order n consists of the set of vertices V' = {vj,ve,...,v,}
and edges E. It is said that v; is adjacent to v; if there exists an edge between v; and v; for
i,7 € {1,2,...,n}. The number of vertices adjacent to v; is called as the degree of v;, and it is
shown as d; for ¢ = 1,2,...,n. A graph with no vertices adjacent to itself and no multiple edges
between vertices is called as simple graph. Moreover, if the edges of a graph has no direction, it is
called as undirected graph. In this paper, we consider only simple and undirected graphs.

The adjacency matrix A(G) of a graph G with order n has the entry a;; = 1 if v; is adjacent to
vj, and 0 otherwise for 4, j = 1,2,...,n. The diagonal matrix D(G) associated with G is defined
as D(G) = diag(dy,ds,...,d,), where d; is the degree of the vertex v; of G fori =1,2,...,n. In
this paper, we study the Laplacian matrix L(G) of G, which is defined as L(G) = D(G) — A(G).
For more details and references on Laplacian matrix, see [18].

Similar to adjacency and Laplacian matrices one can associate a real symmetric matrix M with
a graph G of order n. The set Spec(M) = {\;(M), i =1,2,...,n} of eigenvalues of M is called
the M -spectrum of G. Then the M -energy of G is defined as

(1.1)

i=1
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For further details on the theory of graph energy, see [12, 17, 20], and for its applications in chemistry,
see [16, 17].
In particular, the Laplacian energy of &G, introduced by Gutman and Zhou [13] is

LE(G) =) |m —d|, (12)
i=1

where j; is Laplacian eigenvalues of G for i = 1,2,...,n and d is the average degree of G.
The general theory of Laplacian energy is studied heavily in the literature (see, for instance, [3, 4,
8-10, 21]).

Furthermore, if a graph GG of order n has the energy equivalent to the energy of a complete graph
of order n, it is called as borderenergetic, introduced by [11] and studied by [7, 15, 25]. In particular,
a graph of order n with Laplacian energy 2n — 2 is called Laplacian borderenergetic, and it is first
studied by Tura [24] and then in [6, 14]. In other words, a graph is called L-borderenergetic if it
satisfies LE(G) = LE(K,,) = 2n — 2, where K, is the complete graph of order n. A lot of families
of L-borderenergetic graphs are presented by the authors in [5].

In this paper, we study the Laplacian energy of graphs. It is needed to find all eigenvalues of a
graph to calculate its energy and check whether it is L-borderenergetic. We obtain results to make
this decision faster for non- L-borderenergetic graphs. In other words, we prove sufficient conditions
on the parameters of a non- L-borderenergetic graph.

Let G be a graph with degree sequence consisting of at most three distinct integers. We first
prove a simplified upper bound on the Laplacian energy of G (see Lemma 2.1). Then, by using this
result, we prove a lower and upper bound on the number of vertices of G. These bounds can be
calculated by using the degree sequence of G (see Theorem 3.1 and its corollaries). For example, a
graph with one vertex of degree 5 and two vertices of degree 4 and s > 14 vertices of degree 3 can
not be L-borderenergetic. In the second part of the paper, we prove two lower bounds and one upper
bound on the number of edges of G so that is not L-borderenergetic (see Theorems 4.1, 4.2, and
4.3), where the bounds depend on the degree sequence of G. In addition, we prove a lower bound on
the number of the vertex with maximum degree and on the sum of signless Laplacian eigenvalues of
a graph (see, resp., Theorems 4.4 and 5.1). We plot an illustrating graph by using SageMath [23] for
each of our results to show an existence of a graph satisfying our results and to clearly give our point.

This paper is organized as follows. In Section 2, a preliminary result which gives a McClelland
type of upper bound on Laplacian energy of a graph having at most 3 distinct degrees. Then, by this
result, we prove some sufficient conditions on the number of vertices to be non- L-borderenergetic
in Section 3. Next, the conditions on the number of edges of a non-L-borderenergetic graphs are
given in Section 4. In Section 5, the singless Laplacian spectrum of a non-L-borderenergetic graph
is studied. Finally, we conclude our paper in Section 6.

2. Preliminary results. Let G be a graph of order n and m edges with its Laplacian spectrum
{p1,...,un} and its degree sequence [dy,ds,...,d,]. In this paper, we use the Koolen—Moulton
and the McClelland type of inequalities on the Laplacian energy, respectively (see [13]):

n

LE(G) < %m +.(n=1) le - <2m>1 2.1)
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1222 CAHIT DEDE, AYSE DILEK MADEN

and

LE(G) < V2Mn, 2.2)

2m

1 n 2
whereM:m+§Zi:1 di—T

We start with a result which simplifies the McClelland inequality on Laplacian energy for a graph
with at most 3 distinct elements in its degree sequence.

Lemma 2.1. Let G be a graph of order n with t, r and n —t — r vertices of degrees «, ~v and
B, where n >t +r and o > v > [3, respectively. Then the Laplacian energy of G satisfies

[LE(G)? < Bn® + [(a— B)(a— B+ Dt + (v = B)(v — B+ )r]n— [(a— Bt + (v — B)r]”.

Proof. Suppose that G has the Laplacian spectrum {1, . . ., i, } and degree sequence [dy, da, . . .,
_ n _
d,,] with average degree d. Then LE(G) = E - |i — d|. By Cauchy —Schwarz inequality, we get
1=

n 2 n n
(Z i — d\) <y (pi—d)? =n)y (pF +d° = 2pd)
i=1 =1

=1

—n <2m +) 0 df 4 nd®— 4Jm> , (2.3)

i=1
. n 9 n 9 - n o .
where the last equality .follows from Zi:l wi = Zi:l d; + d; and Zi:l i = 2m. Since G has
t, r and n — t — r vertices of degree o, v and /3, we get
at+yr+pB(n—t—r)

at+yr+B(n—t—r) and _—
n 2 ’

d=

n
Z @2 =ta? +ry* +(n—t—r)5>%
i=1

(Zn; |1i — dl)2

Sn[at—l—fyr—i—ﬁ(n—t—r)+ta2+7“yz+(n—t—r)62

Thus, by (2.3), we have

[LE(G)?

n

(at+7r+6(n—t—r)>2
n

_4<at+’yr—|—ﬂ(n—t—r))(at+7r+g(n—t—r)>}

= pn® + [(a— B)(a— B+ 1)t + (v — B)(y — B+ Lr]n
~[a=B)t+ (v = )",

Lemma 2.1 is proved.

ISSN 1027-3190. Ykp. mam. ocypn., 2023, m. 75, Ne 9
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Fig. 1. An  L-borderenergetic ~graph of
order n = 10 with degree sequence
[6,6,6,6,6,6,6,6,5,5] satisfying
Lemma 2.1.

For » = 0 in Lemma 2.1, we have a graph GG with two distinct degrees « and (:
[LE(G)] < pn® + (a = B)(a = B+ 1)nt — (a — B)**. (2.4)

We now give an L-borderenergetic graph of order 10 and we see that its parameters n, «, (5, t
satisfy (2.4).

Example 2.1. The graph G of order n = 10 with degree sequence [6, 6, 6, 6,6, 6,6, 6,5, 5] given
in Fig. 1 satisfies the bound in Lemma 2.1. Note that the upper bound is 596, where ¢t = 8, r = 0,
a=6, 3=05, |LE(G)|?> = 324 and Spec(G) = {10,0,7,7,7,7,5,5,5,5}.

Similarly, for y = o — 1 and § = o — 2 in Lemma 2.1, we have another simplified bound on the
Laplacian energy of a graph:

[LE(G)]? < (o —2)n? + (6t + 2r)n — (r + 2t)*.

3. Results on the number of vertices of a non-L-borderenergetic graph. In this section, we
present our new results on non- L-borderenergetic graphs. In other words, we give some sufficient
conditions in order a graph not to be L-borderenergetic. Note that we mainly extend the results in
[6]. We give examples of graphs after each of our results to clarify our points. Our results mainly
give conditions on the parameters of a graph so that it is not L-borderenergetic. Hence, by using
our results, one can decide whether a given graph is L-borderenergetic without computing its energy
spectrum. Note that computation of the spectrum of a graph is not easy, on the other hand, checking a
condition on the parameters of a graph is so easy. We now present a result which extends Theorem 2
in [6].

Theorem 3.1. Let G be a graph of order n with t, v and n —t — r vertices of degrees o, ~y
and B < 4, respectively, such that o > ~v > 3 and

A=[(a=B)a—B+1t+(v—B)(y—B+1D)r+8"—4(4—B)[(a—B)t+ (y— B)r]* +4].
If either of the following holds:
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1224 CAHIT DEDE, AYSE DILEK MADEN

(i) A<QO,

i) n < [(a=B)a—B+1)t+(y—B)(y—B+1r+8 —VA
2(4-0) ’

(i) > [(a=B)a=B+1Dt+(y=B)(y—B+1Dr+8 +vVA
2(4-0) ’

then G is not L-borderenergetic.
Proof. Suppose that G is L-borderenergetic graph, i.e., LE(G) = 2(n — 1). By using the upper
bound for the Laplacian energy given in Lemma 2.1 for GG, we have

A(n—1)? = [LE(G)]?
< Bn?+ [(a—B)a—B+1)t+(y—B)(y—B+1Dr]n— [(a—B)t+ (v — B)r]”.
Therefore, we get the following inequality on n:
(4= B)m? — [(a = B)(a— B+ 1)t

+(y =B =B+ Dr+8n+ [(a—B)t+(y—P)r] +4<0.  (G.D)

Let a,b,c and A be the coefficients and discriminant of this quadratic equation with respect to n:
a=4-3,
b=—[(a=B)a=B+1t+(y—B)(y-B+1)r+8],

c=[(a—B)t+(v—B)r]* +4,
A = b2 — 4ac.

-b— VA —b A
If either of A <0 orn < J orn > i holds, then (3.1) has no solution. Therefore,

a a
G can not be L-borderenergetic. By substituting the values of a, b, ¢, we finish the proof.
Remark3.1. For 8 = 4 in Theorem 3.1, equation (3.1) has no solution when

[(a—4)t + (v —4)r]* +4
(a—4)(a=3)t+(y—4)(y—3)r+8

n <

In this case we have n < t + r, a contradiction. Similarly, when 3 > 4 and

[(a=B)a=B+1)t+(v=B)(y =B+ Dr+8] —VA
2(4 - B) ’

equation (3.1) has no solution, however in this case we also get n < t+ r, a contradiction. Therefore,
we don’t consider the case $ > 4 in Theorem 3.1.

We note that Theorem 3.1 is an extension of Theorem 2 in [6], which deals with the case v = 3,
B8 = 2 and t = 0. In other words, Theorem 3.1 deals with graphs having at most three distinct
arbitrary degrees, but Theorem 2 in [6] considers graphs only with degrees 2 and 3. Below we give
three graph-families satisfying Theorem 3.1.

n <

ISSN 1027-3190. Ykp. mam. oscypn., 2023, m. 75, Ne 9
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Example 3.1. 1. Let G be a graph of order n > 20 with ¢ = 2, » = 18 and n — t — r vertices
of degrees a = 5, v = 3 and 8 = 2, respectively. Then we have A = —16 in Theorem 3.1. So, we
conclude that G; can not be L-borderenergetic as it satisfies Theorem 3.1(i).

2. Let Gy be a graph of order n = 16 with t = 1 and r = 15 vertices of degrees o« = 5
and v = 3, respectively. Then the bound in Theorem 3.1(ii) approximately equals to 19.33. So, we
conclude that G5 can not be L-borderenergetic as it satisfies Theorem 3.1(ii).

3. Let G3 be a graph of order n > 17 with t = 1, r = 2 and n — t — r vertices of degrees
a =25, v=4 and § = 3, respectively. Then the bound in Theorem 3.1(iii) approximately equals to
16.81. So, we conclude that G5 can not be L-borderenergetic as it satisfies Theorem 3.1(iii).

We plot a graph illustrating each of the cases in this example in Fig. 2.

We now present a special case of Theorem 3.1 below in which we take « =4, y =3 and § = 2.
We also present its proof for completeness of the paper.

Corollary 3.1. Let G be a graph of order n such that G has t, r and n—t —r vertices of degree
4, 3 and 2, respectively. If either of the following holds:

() (Bt+r+4)2—2[(r+2t)2+4] <0,

St+r+4—/(Bt+r+4)2—2[(r+2t)2 +4]
2 )

St+r+4+/(Bt+r+4)2—2[(r+2t)2+4]
2 )

(ii) n <

(i) n >

then G is not L-borderenergetic.
Proof. Suppose that G is L-borderenergetic graph, i.e., LE(G) = 2(n — 1). By using the upper
bound for the Laplacian energy given in Lemma 2.1 with o = 4, v = 3 and 5 = 2, we have

4(n —1)2 = [LE(G)]? < 2n® 4 (6t 4 2r)n — (r + 2t)%
Therefore, we get the following inequality on n:
2n? — (6t 4+ 2r +8)n + (r +2t)2 +4 < 0.

If (3t + 7+ 4)2 — 2[(r + 2t)? + 4] > 0, we have the following solution set for n:

6t + 27 + 8 — /(6t + 21 + 8)2 — 8[(r + 2t)2 + 4]

n e 1 :

6t + 2r + 8 + /(6t + 2r + 8)2 — 8[(r + 2t)2 + 4]
4

The result follows by dividing each term by 2:
(3t +7r44)% —2[(r +2t)% + 4] < 0,
(3t +r4+4)% —2[(r +2t)% + 4] = 0,
t2—(2r —24)t —r* + 8r +8 =0,
A = 4(r —12)% + 4% — 321 — 32,

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 9
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G1: A non- L-borderenergetic graph of order 22 with degree sequence [5, 5, 3,3, 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2]
satisfying Theorem 3.1(i).

G2: A non-L-borderenergetic graph of order 16 with degree sequence [5,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 3] satisfying
Theorem 3.1(ii).

G3: A non- L-borderenergetic graph of order 18 with degree sequence [5,4,4,3,3,3,3,3,3,3,
3,3,3,3,3,3,3, 3] satisfying Theorem 3.1(iii).

Fig. 2. Non- L-borderenergetic graphs satisfying Theorem 3.1.

A = 8r? — 1287 + 544,

_ 2r —24—/8r2 —128r + 544

t
1 2 )
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Fig. 3. A non-L-borderenergetic graph of order
13 having 3, 8, 2 vertices of degree 2, 3, 4,
respectively, satisfying Corollary 3.1.

_ 2r —244/8r2 —128r + 544
= 5 ,

to

t1 =7 —12 —/2r2 — 32r + 136,

ty =1 — 12+ 1/2r2 — 32r + 136,
t1 <0 or to >0

is not L-borderenergetic. An example of a graph of order 13 is given below, where its parameters
satisfy the condition of Corollary 3.1, so that we conclude that it is not L-borderenergetic.

Example 3.2. The graph G of order n = 13 given in Fig. 3 satisfies the condition of Corollary 3.1.
Hence, we conclude that G is not L-borderenergetic. Note that we reached this conclusion without
computing the spectrum of GG. On the other hand, we have verified that G is not L-borderenergetic
by computing its energy, i.c.,

LE(G) ~ 18.99 # 2n — 2 = 24.

For r =n —t and r = 0 in Corollary 3.1, we get the following results, respectively.
Corollary 3.2. If G is a graph of order n > t +4+ /8t + 12 with n—t and t vertices of degree
3 and 4, respectively, then G is not L-borderenergetic.
3t+4+ (3t +4)2 —4(2t2 + 2)

with n — t

Corollary 3.3. Let G be a graph of order n >

and t vertices of degree 2 and 4, respectively. Then G is not L-borderenergetic.
Here we give two graphs for showing that graphs satisfying Corollaries 3.2 and 3.3 exist.
Example 3.3. The graphs G; and (G2 of order 15 and 12 given in Fig. 4 satisfy the conditions
of Corollaries 3.2 and 3.3, respectively. We conclude that G; and G5 are not L-borderenergetic.
Note that we reached this conclusion without computing their spectrum. It is easy to verify that they
are not L-borderenergetic by checking their energies:

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 9
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G1 GQ

Fig. 4. G1: A non- L-borderenergetic graph of order 15 having 14 and 1 vertices of degree 3 and
4, respectively, satisfying Corollary 3.2.
G2 A non- L-borderenergetic graph of order 12 having 9 and 3 vertices of degree 2 and 4,
respectively, satisfying Corollary 3.3.

LE(Gy) ~21.38 # 2n — 2 = 28,

LE(G5) ~ 18.15 # 2n — 2 = 22.

4. Results on the number of edges of a non-L-borderenergetic graph. In this section, we now
draw a connection between the number of edges of a graph and its Laplacian energy by using the
Koolen — Moulton and McClelland inequalities on the Laplacian energy (see equations (2.1) and (2.2),
respectively). In the second part of this section, we use the bounds on the Laplacian energy of a graph
given in [19].

We first use the Koolen—Moulton type of inequality to get sufficient lower bound on the number
of edges of a non-L-borderenergetic graph. In particular, we see that there exists an upper bound
on the number of edges of an L-borderenergetic graph. This result extends Theorem 3 given in [6].
In particular, the authors in [6, Theorem 3] consider a graph with maximum degree 4. On the other
hand, Theorem 4.1 holds for a graph with any maximum degree k. We denote the first Zagreb index
of a graph G by Z,(G), which is defined as Z,(G) = Z:L_l d?, where [dy,dy, . .., d,] is its degree
sequence.

Theorem 4.1. Let G be a graph of order n with m edges and maximum degree k such that

= 4k(n —1) =4+ Z,(G)(n — 1) + nk?(n — 2) + n(k — 4)(n — 1).

4k(n —1)

Then G is not L-borderenergetic.
Proof- We define

fl@)=—+,|(n=1)

o(++53(a-2)) - (2)]

ISSN 1027-3190. Ykp. mam. ocypn., 2023, m. 75, Ne 9
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k k
As f(x) is increasing in [m, 2”], we have f(m) < f <2n> Hence, the Koolen—Moulton type of

inequality on the Laplacian energy says

LE@ <24 | (n—1) [2M - <2m>1

n n

1 2m \’
where M = m + 5 Zi:l (di - n> . Then we get

LE(G)=2(n-1) < %m (=D [2<m+;§;<di - 27:1>2> B <2;”>2]

<k+ (n—l)[knJan:(di—k)?—k?}
=1

Equivalently, we have the following equation arrays which follow from the equation above:

kn + zn:(di —k)? - k2]

i=1

2n — (k+2)? < (n—1)

=(n-1) (lm+zn:d§ —2k:zn:di+ik2 —k:2>
=1 =1 =1

:(n—1)<kn+2d?—4km+nk2—k2>

=1
= (n— 1)(kn + Z,(G) — 4km + (n — 1)k?)
= (kn? 4+ nZ,(G) — 4kmn + n*k* — nk? — kn — Z,(G) + 4km — nk* + k%,
dkmn — 4km < —4n® + dnk — k* — 4k — 4+ kn® + n?k?
+nZy(G) — Zy(G) — 2nk?® — kn + k* + 4n,
dkm(n —1) < 2k(2n —2) — 4+ Z,(G)(n — 1) + nk*(n — 2) + (k — 4)(n® — n),

< 4k(n —1) =4+ Z,(G)(n — 1) + nk?(n — 2) + n(k — 4)(n — 1).

- 4k(n —1)

Then we see that the number m of edges of an L-borderenergetic graph is bounded by this bound.

Theorem 4.1 is proved.

The next example shows that there exist graphs satisfying Theorem 4.1.

Example 4.1. The 3-regular graph G of order n = 10 and m = 15 edges given in Fig. 5 is not L-
borderenergetic and satisfies the condition of Theorem 4.1. We have Spec(G) = {1,0,4,4,5,5,5,2,
2,2} and its Laplacian energy is LE(G) = 16 # 2n — 2. We note that the right-hand side of the
inequality in Theorem 4.1 is approximately 14.29.
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1230 CAHIT DEDE, AYSE DILEK MADEN

Fig. 5. A non-L-borderenergetic 3-regular graph
of order n = 10 and m = 15 edges sati-
sfying Theorem 4.1.

We can use the McClelland type of inequality on the Laplacian energy so that we can obtain an
alternative upper bound on the number of edges of an L-borderenergetic graph. We note that this
result extends Theorem 4 given in [6].

Theorem 4.2. Let G be a graph of order n and m edges with maximum degree k such that

e kn® +nZy(G) + n?k? — 4(n — 1)2.
4kn

Then G is not L-borderenergetic.

1 22\’
Proof. By using the increasing function g(z) = \/ (2 (w + 5 Zj: . (di - ;) ))n for z €

k k
[m, n], we have g(m) < g<n> Thus, by the McClelland type of inequality (2.2) on the

2 2
Laplacian energy, we get

LE(G) =2(n—1) < 2<m+; Y <di—2;”)2>n
=1

A
NA
S
no
_|_
S
ing
=
|
w
e

Then we obtain

4(n—1)? < kn2+n<2d% %ZMZ%?)
i=1 i=1 i=1
= kn* + nZ,(G) — 4kmn + n?k*.
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Fig. 6. A non-L-borderenergetic graph of
order n = 10 and m = 14 edges
with degree sequence [3,3,3,3,3,
3,3, 3,2,2] satisfying Theorem 4.2.

This gives us
dkmn < kn* +nZ,(G) +n?k* — 4(n — 1)
Hence, we see that

< kn® +nZy(G) +n?k? — 4(n — 1)2.
- 4kn

Therefore, if G is L-borderenergetic, its number of edges is bounded by above. In other words, its
number of edges cannot be greater than the right-hand side.

Theorem 4.2 is proved.

Example 4.2. The graph G of order n = 10 and m = 14 edges with degree sequence [3, 3, 3, 3,
3,3,3,3,2,2] given in Fig. 6 is non-L-borderenergetic and satisfies the condition of Theorem 4.2.
We have Spec(G) = {0,5,5,2,2,1,1,4,4,4} and its Laplacian energy is LE(G) = 16 # 2n — 2.
Note that the right-hand side of the inequality is approximately 13.96, which is less than m.

In the following theorem we obtain a lower and an upper bound on the number of edges for an
L-borderenergetic graph by using the bound on Laplacian energy given in [19]. Namely, we get a
sufficient interval on the number of edges of a graph in order not to be L-borderenergetic.

Theorem 4.3. Let G be a graph of order n and m edges with maximum degree k such that
—(8k — 1)n? +4(Z,(G) + 2k)n > 0 and

% — %\/—<8k‘ —1)n? 4+ 4(Z4(G) +2k)n <m < % + %\/—(8k —1)n? 4+ 4(Z,4(G) + 2k)n.

Then G is not L-borderenergetic.
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Proof. The lower bound given in [19] for the Laplacian energy of G

. 2<Zg(G) +2m — ‘”:2>

- )

7

where p is greater than the maximum Laplacian eigenvalue of G gives us

4m?
2<Zg(G) +2m — ——
n
2n —2 >
2k

as the largest Laplacian eigenvalue can be at most 2k (see [1] for its proof). From the last inequality
we have

(2n — 2)kn > nZy(G) + 2mn — 4m?,
and then
4m? — 2mn + (2n — 2)kn — nZ,(G) > 0.

This equation has no solution when —(8%k — 1)n? + 4(Z,(G) + 2k)n > 0 and m satisfies

g - % —(8k — 1)n?2 +4(Z4(G) + 2k)n <m < % + %\/—(Sk — 1)n? 4+ 4(Z4(G) + 2k)n.

Theorem 4.3 is proved.

In the next example we see that the number of edges of an L-borderenergetic graph satisfies
Theorem 4.3.

Example 4.3. The graph G of order n = 10 and m = 15 edges with degree sequence [4,4,
4,4,3,3,2,2,2,2] given in Fig. 7 is L-borderenergetic and satisfies the bound in Theorem 4.3.
Note that the right-hand side of the inequality is approximately 10.94 for G. We have Spec(G) =
{0,1,2,2,2,2,5,5,5,6}. Note that the Laplacian energy of G is 18, so that it is L-borderenergetic.

There exist another upper bounds on the greatest eigenvalue p of a graph. In the next theorem
we use the result on p given in [19] so that we get an upper bound on the number ¢ of vertices of
the maximum degree of an L-borderenergetic graph.

Theorem 4.4. Let G be a graph of order n and m edges with maximum degree k and minimum
degree k — 1 such that t and n — t vertices of degree k and k — 1, respectively. If

(2k? — 6k — Ak +8m —4dn + 1+ 3)n? —8m? + 2k +4m + 4k +8m —4n+1—1)n

t —
~ 202k — )n ’

then G is not L-borderenergetic.
Proof. The lower bound given in [19] for the Laplacian energy of G is

e et

jti 9

7

where y is greater than the maximum Laplacian eigenvalue of G. We know by [22] that
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Fig. 7. An L-borderenergetic graph of order
n = 10 and m = 15 edges with degree
sequence [4,4,4,4,3,3,2,2,2,2],
satisfying Theorem 4.3.

" \/Qm_ oo (2A2_1>2+ (2A2_ 1>,

where G has n — t vertices of degree 6 = k — 1 and ¢ vertices of degree A = k. From the last
inequality we have

(20 2m - 27)

oo () (557)

4 2
2<tk2+(n—t)(k—1)2+2m— m)
Mm— 92> n .

\/2m— (n—1) = (k—1)2 4 <2k‘2— 1>2+ (2l<:2— 1)

LE(G) >

Thus,

As a result, we have

(2k* — 6k — Ak +8m —4dn+ 1+ 3)n? —8m? + 2k +4m + VAk +8m —4dn+1—1)n

t < —
- 22k — 1)n

Theorem 4.4 is proved.
We show an L-borderenergetic graph of order 10 in the next example such that it has t = 2
vertices with maximum degree 6 which is less than the bound given in Theorem 4.4.
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Fig. 8. An L-borderenergetic graph of order n = 10
and m = 26 edges with degree sequence
[6,6,5,5,5,5,5,5,5,5] satisfying Theorem 4.4.

Example 4.4. The graph G of order n = 10 and m = 26 edges with degree sequence [6,6,
5,5,5,5,5,5,5,5] given in Fig. 8 is L-borderenergetic and satisfies the bound in Theorem 4.4.
We have Spec(G) = {7,4,3,0,8,8,6,6,5,5}. Note that the right-hand side of the inequality is
approximately 7.31 for G, where t = 2 and k = 6.

5. Results on the signless Laplacian spectrum of a non-L-borderenergetic graph. It is well-
known that the signless Laplacian matrix Q(G) of G is defined as Q(G) = D(G) + A(G). Let
0=pip <pp—1 <...<ppand 0 < g, < gn_1 < ... < q1 be the Laplacian spectrum and signless
Laplacian spectrum of G, respectively. If G is an r-regular graph of order n, then its signless
Laplacian spectrum is given in [2] as {2r = q1,2r — fin—1 = @2, -, 27 — [12 = @n—1,27 — [i1 = qn }-

It is also well-known that the signless Laplacian energy of G is defined as

=1

where d is the average degree of G.

Let 0, 1 < 0 < n, be the number of signless Laplacian eigenvalues greater than or equal to

_ 2 . . . 7
d =" We denote S to be the sum of signless Laplacian eigenvalues greater than or equal to d

n
as S = Zil qi-

Finally, we give a condition for a regular graph to be L-borderenergetic or not.

Theorem 5.1. Let G be an r-regular graph of order n and m edges such that n = S} —ro+1.
Then G is L-borderenergetic; otherwise G is non- L-borderenergetic.

Proof. By [9], we know that

- dmo
QE(G) = ;_1 lgi — 7| = 25 = S ro

Since G is regular, we get LE(G) = QFE(G) = 2(St —ro). So, the result is clear.

We give an example for Theorem 5.1.

Example 5.1. An L-borderenergetic 5-regular graph G; and a non- L-borderenergetic 4-regular
graph G2 of order 12 and 10 given in Fig. 9 are examples for Theorem 5.1, respectively.
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Gl G2

Fig. 9. G1: An L-borderenergetic 5-regular graph of order 12 satisfying Theorem 5.1.
G2: A non- L-borderenergetic 4-regular graph of order 10 satisfying Theorem 5.1.

6. Conclusion. In this paper we proved results on the parameters of a graph G so that it

is not L-borderenergetic. By using these results one can rapidly decide whether a given graph is
non- L-borderenergetic without computing its Laplacian energy spectrum. We focus on a subset of
graphs, namely graphs having vertices with degrees at most three distinct integers. Then the sufficient
conditions on the number of vertices and edges of graphs to be not L-borderenergetic are given. It
could be a good future work to consider new upper bounds on the Laplacian energy of a graph to
find new conditions on a graph to be a non- L-borderenergetic. Also, it can be searched more useful
conditions to determine regular graphs to be L-borderenergetic or not.

On behalf of all authors, the corresponding author states that there is no conflict of interest.
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