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SCHMIDT RANK AND SINGULARITIES
PAHI' HIMIATA TA CUHT'YJIAPHOCTI

We revisit Schmidt’s theorem connecting the Schmidt rank of a tensor with the codimension of a certain variety and adapt
the proof to the case of arbitrary characteristic. We also find a sharper result of this kind for homogeneous polynomials,
assuming the characteristic does not divide the degree. Further, we use this to relate the Schmidt rank of a homogeneous
polynomial (resp., a collection of homogeneous polynomials of the same degree) with the codimension of the singular
locus of the corresponding hypersurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan—
Hochster’s theorem [J. Amer. Math. Soc., 33, Ne 1, 291-309 (2020), Theorem A].

Mu 3HOBY 3BepTaemMocs a0 teopemu LlIminTa, sika moB’s3ye panr IlIMiara TeH30pa 3 KOPO3MIPHICTIO TIEBHOTO MHOTOBUIY, 1
HABOJIMMO JIOBEJCHHSI, aallTOBaHe [0 BUMAJKY IOBLIbHOI XapakTepucTuku. Kpim Toro, OTpuMaHo GLIbLI TOYHHUI pe3yabTar
TAKOTO POIY VIS OMHOPIJHHUX TOJIHOMIB 32 MPHITYIIICHHS, 1[0 XapaKTEPUCTHKA HE € TITbHUKOM cTerneHs. [1oTiM MU BHKO-
pUCTOBYEMO Liei (akt, mob 38’ s13atu paHr LlIMiara oqHOPiAHOTO MoiHOMa (BIAMTOBITHO, KOJIEKIIT OJHOPIAHUX MOJIHOMIB
OJTHAKOBOTO CTEIEHs) 3 KOPO3MIPHICTIO CHHTYIISIPHOTO JIOKyCa BiJIOBIAHOI TileproBepxHi (BiAMOBIHO, MEPETHHY rimep-
noBepxoHb). Lle mae epextuBHy Bepcito TeopemMu AHansHa— Xoxctepa [J. Amer. Math. Soc., 33, Ne 1, 291-309 (2020),
Teopema A].

1. Introduction. Let k be a field (of any characteristic) and
P:VixVox...xVyg—k

a polylinear form, where V; are finite dimensional vector spaces over k. Equivalently, we view P as
atensorin Vi* ®...®@ V.

Definition 1.1. (i) We say that P # 0 has Schmidt rank 1 if there exist a partition [1,d] = TL.J
into two nonempty parts and polylinear forms Pr(v;,,...,v;.), Pr(vj,,...,v;,), where v, € Vg,
I={ih<...<iy}, J=4j1 <...<jp}, such that P = Py - Pj. In general the Schmidt rank of
P, denoted as rkS(P), is the smallest number r such that P = Z:ﬂ P; with P; of Schmidt rank 1.

For a collection of tensors P = (Py, ..., P,) we define the Schmidt rank vk (P) as the minimum of
Schmidt ranks of nontrivial linear combinations of (P;).

(if) Given a collection of nonempty subsets I, ...,I, C [1,d] and a collection (Pr,,..., Py, ),
where Py, is a polylinear form on Haeli Va, we denote by (Pr,,...,Pr,) CV¥*®...®V} and call
this the tensor ideal generated by Pr,, ..., Pr,., the subspace of polylinear forms of the form

T
P=> Pi-Qu,
i=1

for some polylinear forms @ j; on HbeJ- Vp, where J; = [1,d] \ 1.
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SCHMIDT RANK AND SINGULARITIES 1249

The Schmidt rank of a tensor, along with a set of related notions, such as slice rank, G-rank,
analytic rank, as well as the version of Schmidt rank for homogeneous polynomials also known
as strength (see below), has been a subject of study in many recent works (see [1, 4, 5, 8, 9] and
references therein). One of the goals of this paper is to establish a precise relation (in the case of
an algebraically closed base field k) between this notion and the codimension of the singular locus
of the corresponding hypersurface, thus giving an effective version of Ananyan— Hochster’s theorem
[2, Theorem A].

Let us define the subvariety Zp = Zgl C Vo x ... x Vg as the set of (ve,...,vg) such that
P(vi,v9,...,vq) = 0 for all v; € V;. Following Schmidt, let us set

g(P) := codimy, .. xv, Zp.

In [10] (where the authors consider the case d = 3), this number is called geometric rank of P. Using
[10, Theorem 3.2], one can see that it does not depend on the ordering of the variables vy, . .., vq.
It is easy to see that one has

g(P) < 1k%(P) (1.1)
(see Lemma 2.1(i) below or [10, Theorem 1]).
Similarly, for a collection P = (P1,...,Ps), we define Z C Vo x ... x V; by the condition on
(va,...,vq) that the corresponding map
V1 — k% V1 (F’Z'(Ul, V2, ... ,vd))lgigs

has rank < s, and we set g(P) := codimy, x..xv, Z5-

The proof of the following theorem follows closely the proof of a similar result in the case where
k = C and P is symmetric, given in [11]. We modified the proof so that it would work in arbitrary
characteristic and also streamlined some parts of the original argument. The fact that the original
proof can be adapted to arbitrary characteristic was also pointed out in [11, Section 4].

Theorem 1.1. (i) Let ¢'(P) denote the codimension in Vo x ... x Vy of the Zariski closure of
the set of k-points in Zp (so g(P) < ¢'(P) and g(P) = ¢'(P) if k is algebraically closed). Then
one has

rk¥(P) < Cag'(P),

where Cq = max(2 + 04_2,2972 — 1), and 0, is the number of ordered collections of disjoint
nonempty subsets Iy U ... U I, C [1,n] (with p > 1). In particular, we have C3 = 2, Cy = 4 and
Cs = 14.

(ii) Assume k is algebraically closed. Then, for a collection P = (Py, ..., P;), one has

k% (P) < Ca(g(P) + s — 1).

In the appendix we prove another version of Theorem 1.1 with better bounds for d > 6. Even
though Schmidt applied the above result to symmetric tensors P corresponding to homogeneous
polynomials, we observe that in the symmetric case it is natural to modify the relevant variety Zp,
and that this leads to much better estimates on the rank.
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1250 DAVID KAZHDAN, AMICHAI LAMPERT, ALEXANDER POLISHCHUK

Let f be a homogeneous polynomial of degree d on a finite-dimensional k-vector space V.
'

The Schmidt rank of f, denoted as rk®(f), is the minimal number 7 such that f = E - gihi,
1=

where g; and h; are homogeneous polynomials of positive degrees. Note that if rk* (f) = r then in
terminology of [2], f has strength r — 1. For a collection f = (f1,..., fs), the Schmidt rank rk®(F)
is defined as the minimum of Schmidt ranks of nontrivial linear combinations of f;.

Let Hy¢(x)(-,-) denote the Hessian form of f given by the second derivatives of f. It is a
symmetric bilinear form on V' depending polynomially on a point « € V. The symmetric analog of
the variety Zp is the subvariety Z;ym C V x V given as

Z7" = {(v,x) € V. x V | v € ker Hy(z) }.

Let us set
gsym(f) := codimy v (Z7™).

The symmetric analog of (1.1) is the inequality

gsym (f) < 41K5(f) (1.2)

(see Lemma 2.1(ii)).
Similarly, for a collection f = (f1,..., fs) of homogeneous polynomials of degree d, we define
the subvariety Z;ym C V x V as the set of (v, x) such that the map

V k% U/ — (‘Hfi (a:)(vl,v)hgigs

has rank < s. We denote by gsym(f) the codimension of Z;ym inV xV.

Theorem 1.2. (i) Assume that d > 3 and that the characteristic of k does not divide (d — 1)d.
Let ggym(f) denote the codimension in V. x V of the Zariski closure of the set of k-points in Z;ym.
Then one has

kS (f) < 2979l (f)-
(i1) With the same assumptions as in (1), assume also that k is algebraically closed. Then
k5 (f) < 273 (goym (F) + 5 — 1).

For k algebraically closed, we prove another version of Theorem 1.2 in the appendix with better
bounds for d > 6. The invariant gsy,(f) can be viewed as an invariant measuring singularities of the
polar map = — (9;f(x))1<i<dimv of f (see Subsection 3.3). We also prove that gsym (f) is related
to the codimension of the singular locus of the hypersurface f = 0. Namely, let us set

¢(f) := codimy Sing(f = 0).
Assuming that char(k) does not divide 2(d — 1), we prove that
(f) < gsym(f) < (d+1)e(f) for d even,
c(f) < gsym(f) < de(f) for d odd

(see Proposition 3.1).
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SCHMIDT RANK AND SINGULARITIES 1251

More generally, for a collection f = (fi,..., fs), let us set
c(f) := codimy Sing (V(f)),

where V(f) C V is the subscheme defined by the ideal (f1,..., fs). We also consider the related
invariant

d(f) := codimy S(f),

where S(f) C V is the locus where the Jacobi matrix of (f1,..., fs) has rank < s. It is easy to see
that

d(f) <e(f) <d(f)+s.

Here is our main result concerning the relation between the Schmidt rank and the codimension
of the singular locus. It can be viewed as a more precise version of the corresponding result in [9]
in the case of an algebraically closed field of sufficiently large (or zero) characteristic, as well as an
effective version of a result of Ananyan and Hochster (see [2, Theorem A(a)]), playing a central role
in their proof of Stillman’s conjecture.

Theorem 1.3. Assume that char(k) does not divide d. Let cx(f) be the codimension in V of
the Zariski closure of the k-points of Sing(f = 0).

(1) We have

C(2f> <k5(f) < (d— Dewlf).

(ii) Assume k is algebraically closed. Then, for a collection f = (f1,..., fs), we have
tk%(f) < (d - 1)((f) +s—1).

Combining Theorem 1.3(i) with [2, Theorem A(c)], we get the following result.

Corollary1.1. Assume that k is algebraically closed and char(k) does not divide d!. For i =
2,...,d, let W; C k[V]; be a subspace of forms of degree i. Set W = @, W;, w = dim W. Assume
that, for some m > 1, one has

rkS(W;) > (i — 1) (m +2) +3(w—1) for i=3,...,d,

rk®(Wy) —1 > Fn;ﬂ +3(w —1).

Then every sequence of linearly independent homogeneous forms in W is regular and the correspon-
ding complete intersection subscheme in V satisfies Serre condition R,,.

Note that without any assumptions on the characteristic on k we are able to estimate in terms of
c(f) the rank of Hs(x)(u,v) viewed as a polynomial in (u,v,z) € V x V' x V (see Remark 3.1).

For a homogeneous polynomial f(z) of degree d on V and a vector v € V, we denote by 9, f(x),
the derivative of f in the direction v. Our next result concerns J, f for generic v.

Theorem 1.4. Let f be a homogeneous polynomial of degree d > 3. Assume that k is algebrai-
cally closed of characteristic not dividing (d — 1)d.

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 9



1252 DAVID KAZHDAN, AMICHAI LAMPERT, ALEXANDER POLISHCHUK

(i) For generic v € V, one has rkS(&Jf) > 92-d rks(f).

(i) For s < 2279rk%(f) + % <resp., s < 2274 k5(f) — ;), and for generic vy, ...,vs €V,
the derivatives (Oy, f, ..., 0y, f) define a (resp., normal) complete intersection of codimension s in V.

In the appendix we prove another version of Theorem 1.4 with better bounds for d > 6. In
Subsection 3.4 we will also discuss the relation of the invariant geym (f) with the polar map of f and

with the Gauss map of the corresponding projective hypersurface.

2. Schmidt rank of polylinear forms. 2.1. Elementary observations. First, let us prove (1.1)
and its symmetric version (1.2). We denote by k[V] the space of polynomial functions on a vector
space V' and by k[V]; C k[V] the subspace of homogeneous polynomials of degree d.

Lemma 2.1. (i) For P €V ®...® V} one has g(P) < tk”(P).

(i) For f € k[V]4 one has gsym(f) < 41k°(f).

Proof. (i) If r = rk®(P), then there exists a decomposition

,
P=> P,-Qy
=1

as in Definition 1.1. Swapping some I; with J; if necessary, we can assume that 1 € [; for all i.
Then the intersection of r hypersurfaces Q;, = 0 in Vo x ... X Vj is contained in Zp and has
codimension < r.

(ii) If we have a decomposition f = 211 gihi, then over the subvariety Y = V(g1,...,gr,
hi,...,h;) C V the symmetric form H(x) has rank < 2r : the subspace cut out by dgi |z, - - -, dgr |,
dhilg, ..., dhy|, is contained in its kernel. Since codimy Y < 2r, the preimage of Y in Z;ym has
codimension < 4r in V x V.

Lemma 2.1 is proved.

For a subset of indices I = {i; < ... <15} C [1,d], let us set

Vi=V, ®...0V..

We have the following simple observation.

Lemma 2.2. Let V] C Vi be a subspace of codimension ¢ and ({1,...,¢,) be a basis of the
orthogonal to V| in Vi*. Suppose that we have tensors

PeViroVy, Q5 eV}

for some subsets In,.... Iy, J1,....Jp C [2,...,d] such that Ply, v, v, belongs to the tensor
ideal

(PIS|V{®V13> Qs ls=1,....m; t= 1,...,p).
Then P belongs to the tensor ideal

((€i|i:1,...,c), (Pr,,Qy, |s=1,...,r; tzl,...,p)).

In particular,
rkS(P) < 1"kS(P|Vl’><V2><...><Val) +c.
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SCHMIDT RANK AND SINGULARITIES 1253

Proof. This follows immediately from the fact that the tensor ideal (¢; | i =1,...,c¢) is exactly
the kernel of the restriction map

NM@Ve®...oVy) = (V/ealhe...0 V)"

2.2. Determinantal construction. Let f: V] — V5 be a morphism of vector bundles on a scheme
X. For every r > 0, we have a natural morphism

T 7’+1
et NV O N Vio Vit (A AG) @as vy, o ipug0,

where for a section ¢ of V'V we denote by ¢y : /\iV — /\i_1 V' the corresponding contraction
operator.

Lemma 2.3. (i) Assume that /\T+1 f = 0. Then the image of k, is contained in ker(f).

(i1) Assume, in addition, that Vi and Va are trivial vector bundles and, for some point x € X,
the rank of f(x): Vilz — Vals is equal to r. Let n = rk V4. Then there exist n — r global sections
S1y-.+ySn—r of V1 such that f(s;) =0 for all i, and s1(x), ..., sn—r(2) is a basis of ker f(x).

Proof. (i) This is equivalent to the statement that ¢yvy . k() = 0 for any local section ¢, 11
Of VZ\/' But Lfv¢1 v Lfv¢rLfv¢T+1 = 0 since /\T+1f\/ = 0.

(i) Since Vi and V5 are trivial, we can choose splittings Vi = K & Wy, Vo = C & Wy into
trivial subbundles such that K|, = ker f(z), Wh|, = im f(z), and f(x): Wil — Wha|, is an
isomorphism. Let us consider the composed map

ss AWy e (A mer) - Ao N,

Then f o s = 0 and the image of s(x) is exactly ker f(x). Choosing a trivialization of the target of
s, we can write s as a collection of global sections of V;, which has the required properties.

Lemma 2.3 is proved.

2.3. Higher derivatives. Let V be a finite dimensional vector space and k[V'| denote the ring of
polynomial functions on V.

For each f € k[V], each n > 1 and vy € V, we define the homogeneous form of degree n on V,

éff ) (v) as the nth graded component of f(v + vg) € k[V] (viewed as a function of v, for fixed vg)

with respect to the degree grading on k[V], so that we have (finite) Taylor’s decomposition

fo+v) =Y fD().

n>0

We refer to f53 ) as the nth derivative of f at vo.

Lemma 2.4. Let X C V be an irreducible closed subvariety of codimension c, vp € X a
smooth k-point. Let g1, ...,9. be a set of elements in the ideal Ix of X, with linearly independent
differentials at vy. Then, for any f € Ix and any n > 1, the form fég‘) € k[V] belongs to the ideal
in K[V generated by ((9:)%))i-1..c<j<n- :

Proof. Without loss of generality we can assume that vy = 0. Set A = k[V], and let A denote
the completion with respect to the ideal of the origin (the ring of formal power series). Then the
key point is that Iy - Ais generated by g1, ..., g.. Indeed, this follows from the fact that the local
homomorphism of local regular k-algebras Ay /(g1, ..., 9c) = Ox, (Where m is the maximal ideal
of vy in A) induces an isomorphism on tangent spaces, so it induces an isomorphism of completions.
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Note that higher derivatives make sense for elements of A (as components in A, = k[V],), so the
assertion follows once we express any element of [x in the form ZZ g;h; for some h; € A.
Lemma 2.4 is proved.
We also need to work with certain polylinear forms of mixed derivatives. Assume that we have
a decomposition V =V} & ... ® V,,. Then we obtain the induced direct sum decomposition

kVin= @B  kVilm @... @k[Vim,.

mi+...+mp=m

Now, for f € k[V],, with m < n and a subset of indices 1 < i; < ... < i,, < n, we denote by
fVirVim) the component of f in k[Vi,]i ® ... ® k[V;,,]1. In particular, when we apply this to the
mth derivative of f at vy, we get a polylinear form

s Vim) o (o) ViVin) e V2 @ L@ Vi 2.1)

vo

which we call the (V;,,...,V;, )-mixed derivative of f at vy.

Lemma 2.5. [n the situation of Lemma 2.4, assume, in addition, that V =V, & ...3 V,. Then,
for any f € K[V] and any collection of indices I = {iy < ... < in} C [1,n], the polylinear
form fﬁoil""’vim) belongs to the tensor ideal generated by (gi)gjt)/jl""’v“) for v = 1,...,c and
J={ji<...<jycl J+ao.

Proof. This follows easily from Lemma 2.4.

2.4. Dimension count. Let us change the notation to

P:U><V><W1><...><Wd_2—>k.

We denote W = W7 x ... x Wy_g and consider the variety Zp C V x W of all (v,w) such that
P(u,v,w) =0 forall u € U.

Let Z be an irreducible component of the Zariski closure of the set of k-points Zp(k) (with
reduced scheme structure) such that codimy xyw Z = ¢/(P), and let Zy, C W denote the closure of
the image of Z under the projection 7y : V x W — W (also with reduced scheme structure). Then
k-points are dense in Zyy.

We can think of P as a linear map from U ® V to the space of polynomial functions on W,
hence, it gives a morphism of trivial vector bundles over W,

Py:V &0y — U*® O, (2.2)

and for w € Zy, my; (w) N Zp can be identified with ker( Py (w)).

Let U C Zy denote the nonempty open subset where Py has maximal rank that we denote by
r. Then over U the cokernel of Py is locally free over Zy, hence, the kernel of Py is a subbundle
K C V ® O. Denoting by toty;(K) the total space of the bundle I over U, we have

toty (K) = ' (U) N Zp C V x W.

Note that k-points are dense in toty (K) = 7y} (U) N Zp, so T, (U)N Z is an irreducible component
in ;! (U) N Zp. Since toty(K) is irreducible, we get

T (U) N Z = toty (K).

Hence, we have dim Z = dim Zyy + dim V' — r or, equivalently,
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codimy Zy + r = codimy xyw Z = ¢'(P). (2.3)

2.5. Proof of Theorem 1.1. Step 1. Choosing a general k-point. Shrinking the open subset
U C Zy above, we can assume that I/ is smooth. Since k-points are dense in Zy we can choose a

k-point
0

w’ = (w?, ... W) ) €U C Zy.
Let us set

Sy == ker(Py (w®): V — U"), Sy = ker(Py (w®)*: U — V™).
Step 2. The first set of key tensors. Set

¢ := codimyy Zy .

Since w” is a smooth point of Zy, we can choose ¢ elements g1, ..., g. in the ideal I Zzw C k[W]
with linearly independent derivatives at w”. Now we recall that W = Wy x ... x Wy_o. Thus, for
each a = 1,..., ¢ and each nonempty subset of indices I = {i; < ... < i} C [1,d — 2], we can

consider the polylinear forms, obtained as mixed derivatives at w?,

Wiy Wi, i .
ga7[ = gi7w& ) EW21®®W’Lm

Step 3. Setting up the key identity. Let us set k = dimV — r. Applying Lemma 2.3(ii) to
the morphism of trivial vector bundles (2.2) over Zyy, we find global sections vy (w),. .., vi(w) €
V ® k[Zw] such that v1(w®), ..., vx(w") form a basis of Sy, and

P(u,vi(w),w) =0 forany u e U and we Zy, i=1,...,k

Since k[W] — k[Zy/] is surjective we can lift v;(w) to polynomials in V' ® k[W], which we denote
in the same way. Now we define a collection of U*-valued polynomials on W,

filw) := P(u,v;(w),w) € U* @ k[W]. (2.4)

By construction, all f;(w) belong to U* ® Iz,, C U* @ k[W]. Equation (2.4) will be the key identity
that we will use.

Step 4. The second set of key tensors. We will consider certain mixed derivatives of v;(w),
viewed as V -valued polynomials on . Namely, for each I = {i; < ... <y} C [1,d — 2], we set

vig = o We) e o v = Hom(Wy, V),

i,w9

where
Wy = Wi1 ®--~®Wip-

Since (v;(w”)) form a basis of Sy, there exists a unique operator
Cr: Sy - Hom(Wp,V): vi(wo) = Vi T

We extend C7 in any way to an operator V' — Hom (W7, V'), which we still denote by C. Note that
we can also view C7 as a linear map

ISSN 1027-3190. Ykp. mam. scypn., 2023, m. 75, Ne 9



1256 DAVID KAZHDAN, AMICHAI LAMPERT, ALEXANDER POLISHCHUK

Cr:VeoWr =V

For an ordered collection of disjoint subsets I1,. .., I, C [1,d — 2|, we consider the composition

C C
Cr .. .Cr VOWrLL 1, —5VoWnu g, = ... VoW, —5 V.

We allow the case of an empty collection, i.e., p = 0, in which case we just get the identity map
V=V

Let us choose a basis ¢1,...,¢. € V* in the orthogonal subspace to Sy . For ordered collections
Liu...ul,C[l,d—2] and for j = 1,...,r, we consider the polylinear forms

ljoCr...CrL, e VWL,

Note that for an empty collection, i.e., for p = 0, we just get /; € V™.
Step 5. Differentiating the key identity. For each I = {i; < ... <y} C [1,d—2], let us consider
the embedding
()W W1 ®...0 Wi_o,

which completes w;; ® ... ® w;, by the components w? in the factors W) with j & I.
Let us prove by inductionon p = 0,...,d —2 that forany I = {i; < ... <i,} C [1,d—2], one
has

P‘SU®V®L(I)(W1) € ((EjOC[l...CIS | LHU...uI, I, 1<j<rs>0),

(ga7[/|1§CLSC, IlCI? I/#g))a

where on the right we have the tensor ideal generated by the specified elements. Note that all the
subsets I; are supposed to be nonempty.

The base of induction p = 0 is clear, since P(u,v,w?,..., w9l ,) = 0 for any u € Sy and
v € V. Assume that p > 0 and the assertion holds for p — 1. Let us fix a subset Iy = {i; < ... <
ipt C[1,d—2].

Now let us equate the (W;,, ..., W; )-mixed derivatives at w? of both sides of the key identi-
ty (2.4). We get the following equality in U* @ W7} :

(Wi oo Wi)

(fi) o0 = Pluguww)eu(lo)w;, T > Pluscruw)edsyw,: (2.5)
1UJ=Io,I40

Note that by Lemma 2.5, ( fi)fuvgl""’Wp ) belong to the tensor ideal generated by g, ;7 with 1 < a < ¢
and I’ C Iy, I' # @. Note also that the term in the sum in (2.5) corresponding to J = & has zero
restriction to Syy. Hence, we get

Plsyosveiiow, + . Plids scnwesy)ednyw,
[UI=Toil,J42

€ (G| 1<a<el'C LI #0).

Now the induction assumption implies that Plg, Sv@u(Io)Wr belongs to the tensor ideal generated
by go v with I’ C Iy, I' # & and by the restrictions of £;0CY, ... Cp, with s > 1 (where I L. .. LT,
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SCHMIDT RANK AND SINGULARITIES 1257

is a proper subset of /). By Lemma 2.2, adding (¢;) to the generators of the tensor ideal we get the
required assertion about P|g, qy g, Io)Wi, -

Step 6. Conclusion of the proof for a single tensor. Now using the result of the previous step for
p=d— 2, we get

k% Pls,ovewie..ow, . <7(1+04_2) + (2772 = 1),

where 6,, is the number of ordered collections of disjoint nonempty subsets I; U ... U I, C [1,n]
(with p > 1). By Lemma 2.2, this implies that

kS P <74 (14604 9) +c(2¢72 - 1).
Now we recall that r + ¢ = ¢'(P) (see (2.3)). Hence, we get

rk® P < (r + ¢) max (2+ 042, 2072 _ 1) =4'(P)Cy

as claimed.

Step 7. The case of several tensors. Now assume that k is algebraically closed. Suppose we are
given a collection P = (P, ..., Ps) of polylinear forms on Vj x ... x V. For a nonzero collection
of coefficients ¢ = (c1,...,¢cs) in k, we set

Pr=c1Pi+ ...+ csPs.
The key observation is that

Zs =\ ) Zp,
#0

ol

where we can consider ¢ as points in the projective space P*~!. As we have already proved, for
each ¢,
. -1 -1 B
codimy, x _xv, Zp. > O 1k¥(Pr) > C7 k5 (P).

After taking the union over ¢ in P!, we get
codimy, x...xv, 45 > C’;l rks(?) —s+1,

as claimed.
3. Symmetric case. 3.1. More on higher derivatives. Let f € k[V];. Thinking of the nth
derivative of f € k[V] (where n < d) as a degree d — n polynomial map

V = k[V],: v f)

we can write it as a tensor
Ft=) € K[V, @ k[V]a-n.

By definition,
d
flor+v2) =Y U (01, 0),
n=0
so f(m4=") is just the component of f(v; + va) of bidegree (n,d — n) in (vy,vs).
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Similarly, we define an operation for n; + ... 4+ n, =d,
k[V]g = k[V]p, ® ... @Kk[V],, : f s frme),

by letting f("1-"») to be the component of multidegree (1, ... ,np) in f(vr + ...+ v,). For
example,
FOLE2) e V* @ V* @ K[V]g_s

is exactly Hy, the Hessian symmetric form on V' (depending polynomially on x € V).
We will use two properties of this construction, which are easy to check:

d!
fovem) (g x) = ———— f(x);
nil...onp!
for m < n; the mth derivative with respect to x; of f("1me)(zy, ... x,) at (29,...,29) is
equal to

N yeeeyg— 1, — MM, 0 0 0 0
f( =1t ”)(xl,...,xi_l,v,xi,...,xp).

3.2. Proof of Theorem 1.2. It will be convenient to denote one copy of V' as X in the product
V xV =V x X. In addition, we view Hy = f(1L1.d=2) a5 a bilinear form on U x V where U =V,
so that Z%™ consists of pairs (v, z) € V x X such that f(1b14=2)(y, v, 2) = 0 for all u € U.

Step 1. Dimension count and choosing a general k-point. Let Z be an irreducible component
of the Zariski closure of the set of k-points Z;""(k), such that codimyxx Z = g¢,,(f), and let
Zx C X denote the closure of the image of Z under the projection po: V' x X — X. As before,
we choose a nonempty smooth open subset ¢/ C Zx over which H; has maximal rankr, so that
py L (U) N Z is a vector bundle of rank dim V' — 7 over . In particular,

codimy Zx 4 1 = gl (f)-
We choose a k-point z° in i C Zx and set
S := ker(H(2")) C V.
Step 2. The first set of key polynomials. Set
c:=codimyx Zx.

Since 2 is a smooth point of Zx, we can choose ¢ elements gy, ..., g. in the ideal I, C k[X]

with linearly independent derivatives at 2°. Thus, for each a = 1,...,¢, and for 1 <i < d — 2, we

consider the derivatives '
(90)"% € K[X];.

Step 3. Setting up key identity. Let us set k = dimV — r. Applying Lemma 2.3(ii) to the
morphism of trivial vector bundles V' ® O — V* ® O given by Hy = f (1L.Ld=2) over Zx, we find
global sections v1(z), ..., vx(z) € V ® k[Zx], such that vy (2?), ..., vp(x") form a basis of S, and

f(l’l’d_Q)(u,vi(x),x) =0 forany ueU and reZx, i=1,...,k.

We lift v;(z) to polynomials in V' ® k[X], which we denote in the same way. Now we define a
collection of U*-valued polynomials on X,

fila) = fELA=D (v (2), 2) € U* @ K[X]. (3.1)

By construction, all f;(x) belong to U* ® Iz, C U* ® k[X].
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Step 4. The second set of key forms. For each 1 < m < d — 2, we consider higher derivatives of
v; at 20, viewed as V -valued polynomials on X.

()% € V @ K[X]m.
Since (v;(2?)) form a basis of S, there exists a linear operator
Con: S =V @K[X]m: vi(z0) — (v)™.
We extend C, in any way to an operator V' — V ® k[X],,,, which we still denote by C,,. For

mi1 +...+my < d— 2, we consider the composition

Cm Cm
Cong -+ Cony s V=3V @ K[ X)) = .. =V OK Xt tmy —5 V QKX iyt -

We allow the case of an empty collection, i.e., p = 0, in which case we just get the identity map
V=V

Finally, we denote by /1, ..., ¢, € V* abasis in the orthogonal subspace to S. For mi+...+m, <
d—2 and for j =1,...,r, we consider the elements

;0 Crmy - Coy € V* QK[ Xyt 4my-

Note that for an empty collection, i.e., for p = 0, we just get £; € V™.
Step 5. Differentiating the key identity. Let us prove by induction on p = 0,...,d — 2 that one
has

f(l,l,p,d—Z—p) (U, v, T, xO) |S><V><X

€ (((Ejole...Cms)(v,x)|m1—|—...+ms<p, 1<j<r),

(W) @) [ 1a<e 1<m<p)),
where on the right we have the ideal generated by the specified elements.

The base of induction p = 0 is clear, since f(1142) (y,v,20) = 0 for any v € S and v € V.
Assume that p > 0 and the assertion holds for p — 1. Now let us equate the pth derivatives at z = z°
of both sides of (3.1). We get the following equality in U* ® k[X],:

p
(fl)i%) (SU) = f(l,l,P,d—Q—p) (u7 U’i(ajo)a x, ‘,EO) + Z f(l,l,p—q,d—2—p+q) (u7 Cq(’l)i (Q:O)a $), x, xo)'
q=1

The left-hand side belongs to the ideal generated by (ga);?’ () with 1 <a<cand 1 <m < p.
Note also that the term corresponding to ¢ = p in the right-hand side has zero restriction to u € S.
Hence, we get

f(l,l,p,d72*p) (u,v,z, JIO) lsx 5% x

p—1
+ 37 pOLemad=2opta) (4 Oy (v,2),2,2°) | g, o, 5 € ((92)5 (@) [ 1 <a<e, 1<m < p).
q=1
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Now the induction assumption implies that f(11P4=2=P) (4 v, 2, 29)| g5 55 x belongs to the ideal
generated by (ga);?) () for 1 < a < ¢, 1 < m < p and by the restrictions to S x X of (¢; o

Crmy - . Cpy)(v,x) with s > 1, my +...+ms <p, 1 <j <r ByLemma 2.2, adding (¢;) to the
generators of the ideal we get the required assertion about f(11P4=2=P) (y vz, 29) | g5y x -

Step 6. Conclusion of the proof for a single polynomial. Now using the result of the previous
step for p = d — 2, we have

f(1717d_2) (’LL, v, $)|S><V><X

€ (((ﬁjole...CmS)(v,x)‘m1+...+ms<d—2, 1<j<r),

(95 (@) [1<a<e 1 Smgd—2)>.

mO
Hence,

LD (g0, 2) € ((4i(u) [ 1< 5 <7),

((fjoC’ml...Cms)(v,x)‘m1+...+m5<d—2’ 1§j§7~)7

(g) @) |[1<a<e, 1<m<d—2)). (3.2)

20

Now plugging © = v = x, we obtain
a(d=1)- f(@) € ((Fiomy,om. () [ ma+ .4 my <d=2, 1< <7),

(0 @) [1€a<e, 1<m<d-2)),

20

where Fjn,...m,(2) = ({j 0 Cp, ...Cn,)(x, x) has degree 1 +my + ... +my < d — 1. It follows
that
tk%(f) < r(1+637%) + c(d - 2),

where 0;7™ is the number of (my,...,ms), with s > 1, m; > 1, my + ...+ mg < n. It is easy to
see that 07" = 271 — 1. Since r + ¢ = g, (f), we get

1S P < (14 ¢)max(2'%,d — 2) = gl (£) - 205,

as claimed.

Step 7. The case of several polynomials. Now assume that k is algebraically closed, and we are
given a collection f = (f1,..., fs) of homogeneous polynomias on V of degree d. For a nonzero
collection of coefficients ¢ = (cy,...,cs) in k, we set fe = ¢1 fi+...+csfs. As in the nonsymmetric

case, the key observation is that

Z;ym =Jzm, (3.3)
40

where we can consider ¢ as points in the projective space P!, Using the case of a single polynomial,
we deduce that
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codimy xy/ Z%ym > 273 k() — s+ 1,
as claimed.

3.3. Relation to singularities. Now we will relate gsym (f) to c(f), the codimension in V' of the
singular locus of the hypersurface f = 0.

Proposition 3.1. (i) The subvariety Z
fZa=2)(y, ) = 0.

(i) One has gsym(f) < (d+ 1)c(f) (resp., gsym(f) < de(f) if d is odd and char(k) # 2).

(iii) If char(k) does not divide d — 1, then c(f) < gsym(f)-

Proof (i) The first derivative of f(>4=2)(v, x) along v at (v°,z°) is FALA=2) (4 40 20) 50
if (v°,29) is a singular point of fZ4=2(v,z) = 0, then f(14=2) (10 29) = 0 for all v, i.e.,
(v0,2%) € Z;ym.

(i1) Since we are comparing dimensions of algebraic varieties, without loss of generality, we can
assume that k is algebraically closed.

By part (i), we have geym(f) < c(F ) Where F = f29-2) 1t is easy to see that if F(x) =
Fi(z)+ ...+ F.(x), then ¢(F) < ¢(F1) + ...+ c(F,). Also, if A: V — W is a linear surjective
map and g € k[WW], then ¢(g o A) = ¢(g).

Thus, it remains to check that f(>9=2)(v, z) is a linear combination of d + 1 (resp., d, if d is
odd and char(k) # 2) polynomials of the form f(A;(v,z)), for some linear surjective maps A; :
VxV =V

Let us view f(v4x) as a nonhomogeneous function of v, g(v) = go+g1+. . .+gq of degree < d
(with coefficients in k[V']). Now picking any d + 1 distinct elements g, ..., \g € k, we can express
go, - -, 94 as linear combinations of g(Agv),...,g(Aqv) (since the corresponding linear change is
given by the Vandermonde matrix).

In the case when d is odd and char(k) # 2, we can similarly express the components of
even degree, (g2i)i<(4—1)/2 as linear combinations of go = ¢(0) and (g(Aiv) + g(—=A;v))/2, for
1 <i < (d—1)/2, where ()\;) are nonzero constants such that (\?) are all distinct.

It remains to observe that go = f(24=2) and that each g(\v) = f(\v + ) is of the required type.

(iii) This follows from the relation

(d—1)f0I (0, z) = fOLED (4 2 7).

sym

CV x X =V xXV contains the singular locus of

Indeed, this implies that the intersection of Z;y ™ with the diagonal V' C V x V is exactly the singular
locus of f = 0, which gives the claimed inequality.

Proposition 3.1 is proved.

Now let us consider the case of a collection f = (fi,..., fs) of homogeneous polynomials on V'
of degree d. We consider the corresponding family of hypersurfaces in V, fz = 0 parametrized by
the projective space P*~!. It is clear that for the locus S(f) C V where the rank of Jacobi matrix of

(f1,..., fs) is < s, we have B
= USing(fE:

0
Proposition 3.2. (i) One has the inclusion
|J Sing (£ =0) c z3m,
40

(i) One has gaym(F) < (d+ 1)/ (F) + d(s — 1) (resp, goym(F) < d(P) + (d— (s — 1) if d
is odd and char(k) # 2).
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(iii) Assume that (f1,..., fs) define a complete intersection V(f) C V, i.e., codimy V(f) = s.
Then

d(f) <elf) < (f)+s.

Assume, in addition, that char(k) does not divide d — 1. Then

C/(?) < Jsym (7)

Proof. (1) This follows from Proposition 3.1(i) due to (3.3).

(ii) Since S(f) has codimension ¢/(f) in V; it follows that for some a < s — 1, there exists an
a-dimensional subvariety X C P*~! such that

c(fz) = codimy Sing(fz) < d(f) +a for ce X.

Applying Proposition 3.1(ii), we see that, for each ¢ € X, one has

codimy v Z]S%’m < (d+1)(d(f) +a)
(resp., < d(c'(f) + a) if d is odd). Hence, by using (3.3), we get

codimy v/ Z;ym < @d+1)((f)+a)—a

(resp., < d(c'(f) + a) — a if d is odd). Since a < s — 1, this implies the assertion.
(iii) If (fi1,..., fs) define a complete intersection, then, by the Jacobi criterion of smoothness,
we obtain

Sing V(f) = S(f) nV(f).
In particular, we have an inclusion Sing V' (f) C S(f), so

d(f) = codimy S(f) < c(f).

Also, we get

c(f)—s= codimy, ) Sing V(f) < codimy S(f) = ¢(f).

If we assume in addition that char(k) does not divide d — 1, then the intersection of Z;ym with

the diagonal V' C V x V is exactly S(f). Hence, we obtain

d(f) = codimy S(f) < gsym(f)-

Proposition 3.2 is proved.

-

Proof of Theorem 1.3. (i) If f(z) = Z ) hi(z)gi(x) then the locus h;(z) = g;(xz) = 0, for

1=
i =1,...,r, is contained in the singular locus of f(x) =0, so ¢(f) < 2r.

Now for the other inequality, let ¢ = ¢ (f) and X an irreducible component of codimension ¢ of
the Zariski closure of the k-points of Sing(f = 0). Let vy € X be a smooth k-point and g1, ..., 9. €
I(X) defined over k with linearly independent differentials at vy. For all k& € [n],0rf € I(X), so
Lemma 2.4 yields

_ (d—1) NG
Of = (Okf)y '€ ((92)” )ie[C],jE[d_l}.

By Euler’s formula,
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f— Clizn:”a’“f € ((gz’)%)) '

—1 i€lc],j€[d—1]

This gives rk(f) < (d — 1) - c.

(i1)) We deduce this from the result for a single form as in the proof of Theorem 1.2.

Proof of Corollary 1.1. In the notation of [2, Theorem A] (recalling that the strength of f is
rk® (f) — 1), the inequality of Theorem 1.3(i) implies that one can take

TA(d) = (d—1)(m+2) — 1.
It is also well-known that for d = 2, one can take

m+1

a2

(see, e.g., [3, Proposition 4.10]). Now the assertion follows from [2, Theorem A(c)].
Remark3.1. For k algebraically closed of arbitrary characteristic, Eq. (3.2) shows that

ke fELE) (0, ) < (2972 1) - gam(f) < 292 1) - (d+ 1) - e(f)

The proof of Theorem 1.4 is based on the following geometric observation.
Lemma 3.1. For generic vy, ...,vs € V, where s < dim V, we have

Cl(avlfa--- 78’Usf) > gsym(f) —s+1

Proof. Letus denote by Z(5) ¢ V*xV the locally closed subvariety consisting of (V1,...,0s,2),
such that vy,...,vs are linearly independent and dimspan (Hy(z)(-,v1),...,Hp(z)(-,vs)) < s
(here we consider Hy(-,v) as a linear form on V). We want to estimate the dimension of Z (5). We
get a surjective map (with at least 1-dimensional fibers) z6) 5 7 (5) where Z6) CcVXxVExVis
given by

Z6) = {(v,vl,...,vs,x) |vekerHe(x), v#0, (vi,...,0s)

linearly independent, v € span(vy,... ,vs)}.
We have a natural projection
AN Z]Scym: (v,v1,...,0s,2) = (v, 1),

which is a locally trivial fibration whose fibers are irreducible of dimension n(s — 1) + s, where
n = dim V. It follows that

dim Z¢*) < dim Z) =1 < dim Z7™ + n(s — 1) + s — 1.

Hence,
codimysyy Z) > Gsym(f) —s+ 1.

Next, we observe that Hy(x)(-,v) = FOLA=2) (g 2) = (9, £)B4=2D (-, ), 50 S (D, f - - -, o, f)
is exactly the fiber over (vq,...,v) of the projection Z(*) — V. For generic vy, ..., v, only the
components of Z(*) dominant over V* will play a role, and we deduce that
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By f,- -0, f) = codimy Sy, f- .., . f) > codimyssy Z6) > gom(f) — s + 1.

Lemma 3.1 is proved.
Proof of Theorem 1.4. (i) By Lemma 3.1 with s = 1, ¢(0yf) > ¢gsym(f). Hence, by
Theorems 1.3(i) and 1.2,

S (0uf) 2 5el0uf) > (D) = 275 ().

(i) IOy, fy- -y 00 f) = s (resp., (O, [y Ou f) = s+2), then (Oy, f, ..., 0y, f) define a
(resp., normal) complete intersection of codimension s. Hence, the assertion follows from Theorem 1.2
and Lemma 3.1.

3.4. Singularities of the polar map. Let f € k[V],. Note that H;(x) can be identified with the

tangent map to the polar map ¢: V — V* of f sending x to fél) = df|,. Thus, gsym(f) measures
the degeneracy of this map.

More precisely, for any morphism ¢ : X — Y between smooth connected varieties, let us define
the Thom —Boardman rank? of ¢, denoted as rk’Z(¢), as follows. Consider the subvariety Zg in
the tangent bundle 7X of X consisting of (z,v) such that d¢,(v) = 0. Then we set

l"kTB ((;5) = COdimTX Z¢.

Note that rk” P () < r, where r is the generic rank of the differential of ¢, however, the inequality
can be strict.
By definition,
gsym(f) = rkTB(¢f)'

As is well-known, the generic rank of d¢; = Hy is related to the dimension of the projective
dual variety X™* of the projective hypersurface associated with f (more precisely, dim X™* + 2 is the
generic rank of H s over the hypersurface f = 0). However, it is easy to see that g™ ( f) can be much
smaller than the generic rank of ¢ ;. For example, if ¢ () and ¢2(y) are nondegenerate quadratic
forms in two different groups of variables (x1,...,2y), (y1,...,Yyn), then k(g1 (2)q2(y)) = 1,
S0 gsym(q1(7)g2(y)) < 4. On the other hand, the generic rank of @y, (4)g.(y) 15 27 (assuming the
characteristic of k is # 2, 3).

Example3.1. In the case d = 3, the Schmidt rank of f is equal to its slice rank s(f), i.e., the
minimal s such that there exists a linear subspace L C V' of codimension s contained in (f = 0).
Thus, for a cubic form f, assuming that k is algebraically closed of characteristic # 2,3, we get
from Theorem 1.2 and from (1.2) that

s(f) <tk"P(¢y) < 4s(f).

If f is a general homogeneous polynomial of degree d, then we still have rk” (f) = s(f) (see [4]).
So, for such f, assuming k to be algebraically closed of characteristic not dividing (d — 1)d, we
obtain

257 s(f) < k"B (gp) < 4s(f).

It seems that the invariant rk”(¢) deserves to be studied more. For example, we do not know
whether it is always true that rk’ Z(¢) = dim X for a finite morphism ¢ between smooth projective
varieties in characteristic zero. Note the following corollary from Proposition 3.1(iii).

% The name is due to the relation with Thom —Boardman stratification in singularity theory, see [6].
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Corollary 3.1. Assume that char(k) does not divide d — 1. Then
kP (65) = el f).

In particular, if the projective hypersurface associated with f is smooth then
tk?B(¢;) = dim V.

Let V; C PV denote the projective hypersurface associated with f. In [7] the authors consider
(for k = C) the closed locus S>, C V; where the co-rank of the Hessian H; is > r. They prove
that if V is smooth then for r(r + 1) < dim V, the subvariety S>,.(V') is nonempty and

codimy, S>.(V) <r(r+1)/2.
By using Corollary 3.1, we get the inequality
codimy, S>.(V) > r — 1.

If V; is smooth then the projectivization of the restriction of ¢ ¢ to (f = 0) can be identified with
the Gauss map
v Vf — PV™.
It is easy to check that if char(k) does not divide d(d — 1), then for any point x € (f =0) C V one
has ker(d(¢¢).) C T(f = 0) and the natural projection

ker(d(¢y)e) — ker(dv,)

is an isomorphism. Thus, the above inequalities can be viewed as restrictions on possible degeneracies
of the Gauss map of V (which is finite by a result of Zak in [12]).
Appendix A. This appendix gives alternative versions of Theorems 1.1, 1.2, and 1.4, with better
bounds for d > 6. The second version of Theorem 1.1 is the following.
Theorem A.1. (i) Let ¢'(P) denote the codimension in Vo x ... x Vy of the Zariski closure of
Zp(k). Then one has
rk¥(P) < (2971 = 1)4/(P).

(ii) Assume k is algebraically closed. Then for a collection P = (P4, ..., Ps), one has
k%(P) < 277 = 1)(9(P) + s — 1).

For algebraically closed fields the above result matches the one obtained by Cohen and Moshko-
witz [13], but we give a very short proof.
Proof. (i) The proof will mimic that of Theorem 1.3. Write ¢ = ¢/(P) and let X be an

irreducible component of the Zariski closure of Zp(k) such that codimy, xv,x..xv, , X = g. Let
x1,...,Ty be a basis for V. Write P = Zzzlxk - Qr, where Qp: Vi x Vo x ... x Vy_1 — k
are polylinear forms. Let vg € X be a smooth k-point and hy,...,hy € I(X) defined over k with
linearly independent differentials at vy. For all k& € [n], Qx = (Qk)g,gl’VQ""’Vdfl) € I(X), so by
Lemma 2.5 it is in the tensor ideal generated by

(el

By definition, P is in the tensor ideal generated by the Qy, so rk®(P) < (241 —1) . g.
(i1)) We deduce this from the result for a single tensor as in the proof of Theorem 1.1.
The second version of Theorem 1.2 is the following.

)@'e[g],®¢{j1<...<js}ddfl}'
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Theorem A.2. Assume that k is algebraically closed of characteristic not dividing (d — 1)d.
(1) For a single form f of degree d,

k% (f) < (d — 1)gsym(f)-

(i) If (f1,..., fs) define a complete intersection of codimension s in 'V, then

rks(f) < (d - 1) (gsym(f) +s5— 1)'
Proof. (1) Combine Theorem 1.3(i) and Proposition 3.1(iii).
(i1)) Combine Theorem 1.3(ii) and Proposition 3.2(iii).
The second version of Theorem 1.4 is the following.
Theorem A.3. Let f be a homogeneous polynomial of degree d. Assume that k is algebraically
closed of characteristic not dividing (d — 1)d.

(i) For generic v € V, one has tk° (9, f) > 57 5 rk¥(f).
1 1
ii < S = L8 < S(f)—= j e, Us
(ii) Fors < 575 rk (f)+2 (resp,s <503 rk”(f) 2>,andf0rgenerzcv1, ,vs €V
the derivatives (Oy, f, ..., 0y, f) define a (resp., normal) complete intersection of codimension s in V.
Proof. (i) By Lemma 3.1 with s =1, ¢(0,f) > gsym(f). Hence, by Theorems 1.3(i) and A.2,
1 1
s > = > = > S(f).
rk (avf) = QC(avf) = 2gsym(f) = 94_2 rk (f)

(i) If ¢ (Opy fy- - 0u, f) = s (xesp., (Op, fy--., 0. f) > s+ 2), then (Oy, f,...,0,. f) defi-
ne a (resp., normal) complete intersection of codimension s. Hence, the assertion follows from
Theorem A.2 and Lemma 3.1.
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