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SCHMIDT RANK AND SINGULARITIES

РАНГ ШМIДТА ТА СИНГУЛЯРНОСТI

We revisit Schmidt’s theorem connecting the Schmidt rank of a tensor with the codimension of a certain variety and adapt
the proof to the case of arbitrary characteristic. We also find a sharper result of this kind for homogeneous polynomials,
assuming the characteristic does not divide the degree. Further, we use this to relate the Schmidt rank of a homogeneous
polynomial (resp., a collection of homogeneous polynomials of the same degree) with the codimension of the singular
locus of the corresponding hypersurface (resp., intersection of hypersurfaces). This gives an effective version of Ananyan–
Hochster’s theorem [J. Amer. Math. Soc., 33, № 1, 291 – 309 (2020), Theorem A].

Ми знову звертаємося до теореми Шмiдта, яка пов’язує ранг Шмiдта тензора з корозмiрнiстю певного многовиду, i
наводимо доведення, адаптоване до випадку довiльної характеристики. Крiм того, отримано бiльш точний результат
такого роду для однорiдних полiномiв за припущення, що характеристика не є дiльником степеня. Потiм ми вико-
ристовуємо цей факт, щоб зв’язати ранг Шмiдта однорiдного полiнома (вiдповiдно, колекцiї однорiдних полiномiв
однакового степеня) з корозмiрнiстю сингулярного локуса вiдповiдної гiперповерхнi (вiдповiдно, перетину гiпер-
поверхонь). Це дає ефективну версiю теореми Ананяна – Хохстера [J. Amer. Math. Soc., 33, № 1, 291 – 309 (2020),
теорема A].

1. Introduction. Let \bfk be a field (of any characteristic) and

P : V1 \times V2 \times . . .\times Vd \rightarrow \bfk 

a polylinear form, where Vi are finite dimensional vector spaces over \bfk . Equivalently, we view P as
a tensor in V \ast 

1 \otimes . . .\otimes V \ast 
d .

Definition 1.1. (i) We say that P \not = 0 has Schmidt rank 1 if there exist a partition [1, d] = I\sqcup J
into two nonempty parts and polylinear forms PI(vi1 , . . . , vir), PJ(vj1 , . . . , vjs), where va \in Va,

I = \{ i1 < . . . < ir\} , J = \{ j1 < . . . < jr\} , such that P = PI \cdot PJ . In general the Schmidt rank of
P, denoted as \mathrm{r}\mathrm{k}S(P ), is the smallest number r such that P =

\sum r

i=1
Pi with Pi of Schmidt rank 1.

For a collection of tensors P = (P1, . . . , Ps) we define the Schmidt rank \mathrm{r}\mathrm{k}S(P ) as the minimum of
Schmidt ranks of nontrivial linear combinations of (Pi).

(ii) Given a collection of nonempty subsets I1, . . . , Ir \subset [1, d] and a collection (PI1 , . . . , PIr),

where PIi is a polylinear form on
\prod 

a\in Ii
Va, we denote by (PI1 , . . . , PIr) \subset V \ast 

1 \otimes . . .\otimes V \ast 
d and call

this the tensor ideal generated by PI1 , . . . , PIr , the subspace of polylinear forms of the form

P =

r\sum 
i=1

PIi \cdot QJi ,

for some polylinear forms QJi on
\prod 

b\in Ji
Vb, where Ji = [1, d] \setminus Ii.
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The Schmidt rank of a tensor, along with a set of related notions, such as slice rank, G-rank,
analytic rank, as well as the version of Schmidt rank for homogeneous polynomials also known
as strength (see below), has been a subject of study in many recent works (see [1, 4, 5, 8, 9] and
references therein). One of the goals of this paper is to establish a precise relation (in the case of
an algebraically closed base field \bfk ) between this notion and the codimension of the singular locus
of the corresponding hypersurface, thus giving an effective version of Ananyan – Hochster’s theorem
[2, Theorem A].

Let us define the subvariety ZP = ZV1P \subset V2 \times . . . \times Vd as the set of (v2, . . . , vd) such that
P (v1, v2, . . . , vd) = 0 for all v1 \in V1. Following Schmidt, let us set

g(P ) := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V2\times ...\times Vd ZP .

In [10] (where the authors consider the case d = 3), this number is called geometric rank of P. Using
[10, Theorem 3.2], one can see that it does not depend on the ordering of the variables v1, . . . , vd.

It is easy to see that one has

g(P ) \leq \mathrm{r}\mathrm{k}S(P ) (1.1)

(see Lemma 2.1(i) below or [10, Theorem 1]).
Similarly, for a collection P = (P1, . . . , Ps), we define ZP \subset V2 \times . . .\times Vd by the condition on

(v2, . . . , vd) that the corresponding map

V1 \rightarrow \bfk s : v1 \mapsto \rightarrow (Pi(v1, v2, . . . , vd))1\leq i\leq s

has \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} < s, and we set g(P ) := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V2\times ...\times Vd ZP .

The proof of the following theorem follows closely the proof of a similar result in the case where
\bfk = \BbbC and P is symmetric, given in [11]. We modified the proof so that it would work in arbitrary
characteristic and also streamlined some parts of the original argument. The fact that the original
proof can be adapted to arbitrary characteristic was also pointed out in [11, Section 4].

Theorem 1.1. (i) Let g\prime (P ) denote the codimension in V2 \times . . .\times Vd of the Zariski closure of
the set of \bfk -points in ZP (so g(P ) \leq g\prime (P ) and g(P ) = g\prime (P ) if \bfk is algebraically closed). Then
one has

\mathrm{r}\mathrm{k}S(P ) \leq Cdg
\prime (P ),

where Cd = \mathrm{m}\mathrm{a}\mathrm{x}(2 + \theta d - 2, 2
d - 2  - 1), and \theta n is the number of ordered collections of disjoint

nonempty subsets I1 \sqcup . . . \sqcup Ip \subsetneq [1, n] (with p \geq 1). In particular, we have C3 = 2, C4 = 4 and
C5 = 14.

(ii) Assume \bfk is algebraically closed. Then, for a collection P = (P1, . . . , Ps), one has

\mathrm{r}\mathrm{k}S(P ) \leq Cd(g(P ) + s - 1).

In the appendix we prove another version of Theorem 1.1 with better bounds for d \geq 6. Even
though Schmidt applied the above result to symmetric tensors P corresponding to homogeneous
polynomials, we observe that in the symmetric case it is natural to modify the relevant variety ZP ,
and that this leads to much better estimates on the rank.
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1250 DAVID KAZHDAN, AMICHAI LAMPERT, ALEXANDER POLISHCHUK

Let f be a homogeneous polynomial of degree d on a finite-dimensional \bfk -vector space V.

The Schmidt rank of f, denoted as \mathrm{r}\mathrm{k}S(f), is the minimal number r such that f =
\sum r

i=1
gihi,

where gi and hi are homogeneous polynomials of positive degrees. Note that if \mathrm{r}\mathrm{k}S(f) = r then in
terminology of [2], f has strength r - 1. For a collection f = (f1, . . . , fs), the Schmidt rank \mathrm{r}\mathrm{k}S(f)

is defined as the minimum of Schmidt ranks of nontrivial linear combinations of fi.
Let Hf (x)(\cdot , \cdot ) denote the Hessian form of f given by the second derivatives of f. It is a

symmetric bilinear form on V depending polynomially on a point x \in V. The symmetric analog of
the variety ZP is the subvariety Z\mathrm{s}\mathrm{y}\mathrm{m}

f \subset V \times V given as

Z\mathrm{s}\mathrm{y}\mathrm{m}
f :=

\bigl\{ 
(v, x) \in V \times V | v \in \mathrm{k}\mathrm{e}\mathrm{r}Hf (x)

\bigr\} 
.

Let us set

g\mathrm{s}\mathrm{y}\mathrm{m}(f) := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V\times V (Z
\mathrm{s}\mathrm{y}\mathrm{m}
f ).

The symmetric analog of (1.1) is the inequality

g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq 4 \mathrm{r}\mathrm{k}S(f) (1.2)

(see Lemma 2.1(ii)).
Similarly, for a collection f = (f1, . . . , fs) of homogeneous polynomials of degree d, we define

the subvariety Z\mathrm{s}\mathrm{y}\mathrm{m}

f
\subset V \times V as the set of (v, x) such that the map

V \rightarrow \bfk s : v\prime \mapsto \rightarrow (Hfi(x)(v
\prime , v))1\leq i\leq s

has \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} < s. We denote by g\mathrm{s}\mathrm{y}\mathrm{m}(f) the codimension of Z\mathrm{s}\mathrm{y}\mathrm{m}

f
in V \times V.

Theorem 1.2. (i) Assume that d \geq 3 and that the characteristic of \bfk does not divide (d - 1)d.

Let g\prime \mathrm{s}\mathrm{y}\mathrm{m}(f) denote the codimension in V \times V of the Zariski closure of the set of \bfk -points in Z\mathrm{s}\mathrm{y}\mathrm{m}
f .

Then one has

\mathrm{r}\mathrm{k}S(f) \leq 2d - 3g\prime \mathrm{s}\mathrm{y}\mathrm{m}(f).

(ii) With the same assumptions as in (i), assume also that \bfk is algebraically closed. Then

\mathrm{r}\mathrm{k}S(f) \leq 2d - 3
\bigl( 
g\mathrm{s}\mathrm{y}\mathrm{m}(f) + s - 1

\bigr) 
.

For \bfk algebraically closed, we prove another version of Theorem 1.2 in the appendix with better
bounds for d \geq 6. The invariant g\mathrm{s}\mathrm{y}\mathrm{m}(f) can be viewed as an invariant measuring singularities of the
polar map x \mapsto \rightarrow (\partial if(x))1\leq i\leq \mathrm{d}\mathrm{i}\mathrm{m}V of f (see Subsection 3.3). We also prove that g\mathrm{s}\mathrm{y}\mathrm{m}(f) is related
to the codimension of the singular locus of the hypersurface f = 0. Namely, let us set

c(f) := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(f = 0).

Assuming that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) does not divide 2(d - 1), we prove that

c(f) \leq g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq (d+ 1)c(f) for d even,

c(f) \leq g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq dc(f) for d odd

(see Proposition 3.1).
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More generally, for a collection f = (f1, . . . , fs), let us set

c(f) := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}
\bigl( 
V (f)

\bigr) 
,

where V (f) \subset V is the subscheme defined by the ideal (f1, . . . , fs). We also consider the related
invariant

c\prime (f) := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V S(f),

where S(f) \subset V is the locus where the Jacobi matrix of (f1, . . . , fs) has \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} < s. It is easy to see
that

c\prime (f) \leq c(f) \leq c\prime (f) + s.

Here is our main result concerning the relation between the Schmidt rank and the codimension
of the singular locus. It can be viewed as a more precise version of the corresponding result in [9]
in the case of an algebraically closed field of sufficiently large (or zero) characteristic, as well as an
effective version of a result of Ananyan and Hochster (see [2, Theorem A(a)]), playing a central role
in their proof of Stillman’s conjecture.

Theorem 1.3. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) does not divide d. Let c\bfk (f) be the codimension in V of
the Zariski closure of the \bfk -points of \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(f = 0).

(i) We have

c(f)

2
\leq \mathrm{r}\mathrm{k}S(f) \leq (d - 1)c\bfk (f).

(ii) Assume \bfk is algebraically closed. Then, for a collection f = (f1, . . . , fs), we have

\mathrm{r}\mathrm{k}S(f) \leq (d - 1)
\bigl( 
c\prime (f) + s - 1

\bigr) 
.

Combining Theorem 1.3(i) with [2, Theorem A(c)], we get the following result.

Corollary 1.1. Assume that \bfk is algebraically closed and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) does not divide d!. For i =
2, . . . , d, let Wi \subset \bfk [V ]i be a subspace of forms of degree i. Set W =

\bigoplus 
iWi, w = \mathrm{d}\mathrm{i}\mathrm{m}W. Assume

that, for some m \geq 1, one has

\mathrm{r}\mathrm{k}S(Wi) \geq (i - 1)(m+ 2) + 3(w  - 1) for i = 3, . . . , d,

\mathrm{r}\mathrm{k}S(W2) - 1 \geq 
\biggl\lceil 
m+ 1

2

\biggr\rceil 
+ 3(w  - 1).

Then every sequence of linearly independent homogeneous forms in W is regular and the correspon-
ding complete intersection subscheme in V satisfies Serre condition Rm.

Note that without any assumptions on the characteristic on \bfk we are able to estimate in terms of
c(f) the rank of Hf (x)(u, v) viewed as a polynomial in (u, v, x) \in V \times V \times V (see Remark 3.1).

For a homogeneous polynomial f(x) of degree d on V and a vector v \in V, we denote by \partial vf(x),
the derivative of f in the direction v. Our next result concerns \partial vf for generic v.

Theorem 1.4. Let f be a homogeneous polynomial of degree d \geq 3. Assume that \bfk is algebrai-
cally closed of characteristic not dividing (d - 1)d.
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(i) For generic v \in V, one has \mathrm{r}\mathrm{k}S(\partial vf) \geq 22 - d \mathrm{r}\mathrm{k}S(f).

(ii) For s \leq 22 - d \mathrm{r}\mathrm{k}S(f) +
1

2

\biggl( 
resp., s \leq 22 - d \mathrm{r}\mathrm{k}S(f)  - 1

2

\biggr) 
, and for generic v1, . . . , vs \in V,

the derivatives (\partial v1f, . . . , \partial vsf) define a (resp., normal) complete intersection of codimension s in V.

In the appendix we prove another version of Theorem 1.4 with better bounds for d \geq 6. In
Subsection 3.4 we will also discuss the relation of the invariant g\mathrm{s}\mathrm{y}\mathrm{m}(f) with the polar map of f and
with the Gauss map of the corresponding projective hypersurface.

2. Schmidt rank of polylinear forms. 2.1. Elementary observations. First, let us prove (1.1)
and its symmetric version (1.2). We denote by \bfk [V ] the space of polynomial functions on a vector
space V and by \bfk [V ]d \subset \bfk [V ] the subspace of homogeneous polynomials of degree d.

Lemma 2.1. (i) For P \in V \ast 
1 \otimes . . .\otimes V \ast 

d one has g(P ) \leq \mathrm{r}\mathrm{k}S(P ).

(ii) For f \in \bfk [V ]d one has g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq 4 \mathrm{r}\mathrm{k}S(f).

Proof. (i) If r = \mathrm{r}\mathrm{k}S(P ), then there exists a decomposition

P =
r\sum 
i=1

PIi \cdot QJi

as in Definition 1.1. Swapping some Ii with Ji if necessary, we can assume that 1 \in Ii for all i.
Then the intersection of r hypersurfaces QJi = 0 in V2 \times . . . \times Vd is contained in ZP and has
codimension \leq r.

(ii) If we have a decomposition f =
\sum r

i=1
gihi, then over the subvariety Y = V (g1, . . . , gr,

h1, . . . , hr) \subset V the symmetric form Hf (x) has \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} \leq 2r : the subspace cut out by dg1| x, . . . , dgr| x,
dh1| x, . . . , dhr| x is contained in its kernel. Since \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V Y \leq 2r, the preimage of Y in Z\mathrm{s}\mathrm{y}\mathrm{m}

f has
codimension \leq 4r in V \times V.

Lemma 2.1 is proved.
For a subset of indices I = \{ i1 < . . . < is\} \subset [1, d], let us set

VI := Vi1 \otimes . . .\otimes Vis .

We have the following simple observation.
Lemma 2.2. Let V \prime 

1 \subset V1 be a subspace of codimension c and (\ell 1, . . . , \ell r) be a basis of the
orthogonal to V \prime 

1 in V \ast 
1 . Suppose that we have tensors

PIs \in V \ast 
1 \otimes V \ast 

Is , QJt \in V \ast 
Jt

for some subsets I1, . . . , Ir, J1, . . . , Jp \subset [2, . . . , d] such that P | V \prime 
1\times V2\times ...Vd belongs to the tensor

ideal \bigl( 
PIs | V \prime 

1\otimes VIs , QJt | s = 1, . . . , r; t = 1, . . . , p
\bigr) 
.

Then P belongs to the tensor ideal\bigl( 
(\ell i | i = 1, . . . , c), (PIs , QJt | s = 1, . . . , r; t = 1, . . . , p)

\bigr) 
.

In particular,
\mathrm{r}\mathrm{k}S(P ) \leq \mathrm{r}\mathrm{k}S(P | V \prime 

1\times V2\times ...\times Vd) + c.
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Proof. This follows immediately from the fact that the tensor ideal (\ell i | i = 1, . . . , c) is exactly
the kernel of the restriction map

(V1 \otimes V2 \otimes . . .\otimes Vd)
\ast \rightarrow (V \prime 

1 \otimes V2 \otimes . . .\otimes Vd)
\ast .

2.2. Determinantal construction. Let f : V1 \rightarrow V2 be a morphism of vector bundles on a scheme
X. For every r \geq 0, we have a natural morphism

\kappa r :
\bigwedge r

V \vee 
2 \otimes 

\bigwedge r+1
V1 \rightarrow V1 : (\phi 1 \wedge . . . \wedge \phi r)\otimes \alpha \mapsto \rightarrow \iota f\vee \phi 1 . . . \iota f\vee \phi r\alpha ,

where for a section \psi of V \vee we denote by \iota \psi :
\bigwedge i V \rightarrow 

\bigwedge i - 1 V the corresponding contraction
operator.

Lemma 2.3. (i) Assume that
\bigwedge r+1f = 0. Then the image of \kappa r is contained in \mathrm{k}\mathrm{e}\mathrm{r}(f).

(ii) Assume, in addition, that V1 and V2 are trivial vector bundles and, for some point x \in X,

the rank of f(x) : V1| x \rightarrow V2| x is equal to r. Let n = \mathrm{r}\mathrm{k}V1. Then there exist n - r global sections
s1, . . . , sn - r of V1 such that f(si) = 0 for all i, and s1(x), . . . , sn - r(x) is a basis of \mathrm{k}\mathrm{e}\mathrm{r} f(x).

Proof. (i) This is equivalent to the statement that \iota f\vee \phi r+1\kappa r(\alpha ) = 0 for any local section \phi r+1

of V \vee 
2 . But \iota f\vee \phi 1 . . . \iota f\vee \phi r \iota f\vee \phi r+1 = 0 since

\bigwedge r+1f\vee = 0.

(ii) Since V1 and V2 are trivial, we can choose splittings V1 = \scrK \oplus \scrW 1, V2 = \scrC \oplus \scrW 2 into
trivial subbundles such that \scrK | x = \mathrm{k}\mathrm{e}\mathrm{r} f(x), \scrW 2| x = \mathrm{i}\mathrm{m} f(x), and f(x) : \scrW 1| x \rightarrow \scrW 2| x is an
isomorphism. Let us consider the composed map

s :
\bigwedge r

\scrW \vee 
2 \otimes (

\bigwedge r
\scrW 1 \otimes \scrK ) \rightarrow 

\bigwedge r
V \vee 
2 \otimes 

\bigwedge r+1
V1

\kappa r - \rightarrow V1.

Then f \circ s = 0 and the image of s(x) is exactly \mathrm{k}\mathrm{e}\mathrm{r} f(x). Choosing a trivialization of the target of
s, we can write s as a collection of global sections of V1, which has the required properties.

Lemma 2.3 is proved.
2.3. Higher derivatives. Let V be a finite dimensional vector space and \bfk [V ] denote the ring of

polynomial functions on V.
For each f \in \bfk [V ], each n \geq 1 and v0 \in V, we define the homogeneous form of degree n on V,

f
(n)
v0 (v) as the nth graded component of f(v + v0) \in \bfk [V ] (viewed as a function of v, for fixed v0)

with respect to the degree grading on \bfk [V ], so that we have (finite) Taylor’s decomposition

f(v + v0) =
\sum 
n\geq 0

f (n)v0 (v).

We refer to f (n)v0 as the nth derivative of f at v0.
Lemma 2.4. Let X \subset V be an irreducible closed subvariety of codimension c, v0 \in X a

smooth \bfk -point. Let g1, . . . , gc be a set of elements in the ideal IX of X, with linearly independent

differentials at v0. Then, for any f \in IX and any n \geq 1, the form f
(n)
v0 \in \bfk [V ] belongs to the ideal

in \bfk [V ] generated by ((gi)
(j)
v0 )i=1,...,c;1\leq j\leq n.

Proof. Without loss of generality we can assume that v0 = 0. Set A = \bfk [V ], and let \^A denote
the completion with respect to the ideal of the origin (the ring of formal power series). Then the
key point is that IX \cdot \^A is generated by g1, . . . , gc. Indeed, this follows from the fact that the local
homomorphism of local regular \bfk -algebras Am/(g1, . . . , gc) \rightarrow \scrO X,v0 (where m is the maximal ideal
of v0 in A) induces an isomorphism on tangent spaces, so it induces an isomorphism of completions.
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Note that higher derivatives make sense for elements of \^A (as components in An = \bfk [V ]n), so the

assertion follows once we express any element of IX in the form
\sum 

i
gihi for some hi \in \^A.

Lemma 2.4 is proved.
We also need to work with certain polylinear forms of mixed derivatives. Assume that we have

a decomposition V = V1 \oplus . . .\oplus Vn. Then we obtain the induced direct sum decomposition

\bfk [V ]m =
\bigoplus 

m1+...+mn=m

\bfk [V1]m1 \otimes . . .\otimes \bfk [Vn]mn .

Now, for f \in \bfk [V ]m with m \leq n and a subset of indices 1 \leq i1 < . . . < im \leq n, we denote by
f (Vi1 ,...,Vim ) the component of f in \bfk [Vi1 ]1 \otimes . . .\otimes \bfk [Vim ]1. In particular, when we apply this to the
mth derivative of f at v0, we get a polylinear form

f
(Vi1 ,...,Vim )
v0 := (f (m)

v0 )(Vi1 ,...,Vim ) \in V \ast 
i1 \otimes . . .\otimes V \ast 

im , (2.1)

which we call the (Vi1 , . . . , Vim)-mixed derivative of f at v0 .
Lemma 2.5. In the situation of Lemma 2.4, assume, in addition, that V = V1 \oplus . . .\oplus Vn. Then,

for any f \in \bfk [V ] and any collection of indices I = \{ i1 < . . . < im\} \subset [1, n], the polylinear

form f
(Vi1 ,...,Vim )
v0 belongs to the tensor ideal generated by (gi)

(Vj1 ,...,Vjs )
v0 for i = 1, . . . , c and

J = \{ j1 < . . . < js\} \subset I, J \not = \varnothing .
Proof. This follows easily from Lemma 2.4.
2.4. Dimension count. Let us change the notation to

P : U \times V \times W1 \times . . .\times Wd - 2 \rightarrow \bfk .

We denote W = W1 \times . . . \times Wd - 2 and consider the variety ZP \subset V \times W of all (v, w) such that
P (u, v, w) = 0 for all u \in U.

Let Z be an irreducible component of the Zariski closure of the set of \bfk -points ZP (\bfk ) (with
reduced scheme structure) such that \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V\times W Z = g\prime (P ), and let ZW \subset W denote the closure of
the image of Z under the projection \pi W : V \times W \rightarrow W (also with reduced scheme structure). Then
\bfk -points are dense in ZW .

We can think of P as a linear map from U \otimes V to the space of polynomial functions on W,

hence, it gives a morphism of trivial vector bundles over W,

PW : V \otimes \scrO W \rightarrow U\ast \otimes \scrO W , (2.2)

and for w \in ZW , \pi 
 - 1
W (w) \cap ZP can be identified with \mathrm{k}\mathrm{e}\mathrm{r}(PW (w)).

Let \scrU \subset ZW denote the nonempty open subset where PW has maximal rank that we denote by
r. Then over \scrU the cokernel of PW is locally free over ZW , hence, the kernel of PW is a subbundle
\scrK \subset V \otimes \scrO . Denoting by \mathrm{t}\mathrm{o}\mathrm{t}\scrU (\scrK ) the total space of the bundle \scrK over \scrU , we have

\mathrm{t}\mathrm{o}\mathrm{t}\scrU (\scrK ) = \pi  - 1
W (\scrU ) \cap ZP \subset V \times W.

Note that \bfk -points are dense in \mathrm{t}\mathrm{o}\mathrm{t}\scrU (\scrK ) = \pi  - 1
W (\scrU )\cap ZP , so \pi  - 1

W (\scrU )\cap Z is an irreducible component
in \pi  - 1

W (\scrU ) \cap ZP . Since \mathrm{t}\mathrm{o}\mathrm{t}\scrU (\scrK ) is irreducible, we get

\pi  - 1
W (\scrU ) \cap Z = \mathrm{t}\mathrm{o}\mathrm{t}\scrU (\scrK ).

Hence, we have \mathrm{d}\mathrm{i}\mathrm{m}Z = \mathrm{d}\mathrm{i}\mathrm{m}ZW + \mathrm{d}\mathrm{i}\mathrm{m}V  - r or, equivalently,
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\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}W ZW + r = \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V\times W Z = g\prime (P ). (2.3)

2.5. Proof of Theorem 1.1. Step 1. Choosing a general \bfk -point. Shrinking the open subset
\scrU \subset ZW above, we can assume that \scrU is smooth. Since \bfk -points are dense in ZW we can choose a
\bfk -point

w0 = (w0
1, . . . , w

0
d - 2) \in \scrU \subset ZW .

Let us set

SV := \mathrm{k}\mathrm{e}\mathrm{r}(PW (w0) : V \rightarrow U\ast ), SU := \mathrm{k}\mathrm{e}\mathrm{r}(PW (w0)\ast : U \rightarrow V \ast ).

Step 2. The first set of key tensors. Set

c := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}W ZW .

Since w0 is a smooth point of ZW , we can choose c elements g1, . . . , gc in the ideal IZW
\subset \bfk [W ]

with linearly independent derivatives at w0. Now we recall that W = W1 \times . . . \times Wd - 2. Thus, for
each a = 1, . . . , c and each nonempty subset of indices I = \{ i1 < . . . < im\} \subset [1, d  - 2], we can
consider the polylinear forms, obtained as mixed derivatives at w0,

ga,I := g
(Wi1

,...,Wim )

a,w0 \in W \ast 
i1 \otimes . . .\otimes W \ast 

im .

Step 3. Setting up the key identity. Let us set k = \mathrm{d}\mathrm{i}\mathrm{m}V  - r. Applying Lemma 2.3(ii) to
the morphism of trivial vector bundles (2.2) over ZW , we find global sections v1(w), . . . , vk(w) \in 
V \otimes \bfk [ZW ] such that v1(w0), . . . , vk(w

0) form a basis of SV , and

P (u, vi(w), w) = 0 for any u \in U and w \in ZW , i = 1, . . . , k.

Since \bfk [W ] \rightarrow \bfk [ZW ] is surjective we can lift vi(w) to polynomials in V \otimes \bfk [W ], which we denote
in the same way. Now we define a collection of U\ast -valued polynomials on W,

fi(w) := P (u, vi(w), w) \in U\ast \otimes \bfk [W ]. (2.4)

By construction, all fi(w) belong to U\ast \otimes IZW
\subset U\ast \otimes \bfk [W ]. Equation (2.4) will be the key identity

that we will use.
Step 4. The second set of key tensors. We will consider certain mixed derivatives of vi(w),

viewed as V -valued polynomials on W. Namely, for each I = \{ i1 < . . . < ip\} \subset [1, d - 2], we set

vi,I := v
(Wi1

,...,Wip )

i,w0 \in W \ast 
I \otimes V = \mathrm{H}\mathrm{o}\mathrm{m}(WI , V ),

where
WI :=Wi1 \otimes . . .\otimes Wip .

Since (vi(w
0)) form a basis of SV , there exists a unique operator

CI : SV \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(WI , V ) : vi(w
0) \mapsto \rightarrow vi,I .

We extend CI in any way to an operator V \rightarrow \mathrm{H}\mathrm{o}\mathrm{m}(WI , V ), which we still denote by CI . Note that
we can also view CI as a linear map
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CI : V \otimes WI \rightarrow V.

For an ordered collection of disjoint subsets I1, . . . , Ip \subset [1, d - 2], we consider the composition

CI1 . . . CIp : V \otimes WI1\sqcup ...\sqcup Ip
CIp -  - \rightarrow V \otimes WI1\sqcup ...Ip - 1 \rightarrow . . .\rightarrow V \otimes WI1

CI1 -  - \rightarrow V.

We allow the case of an empty collection, i.e., p = 0, in which case we just get the identity map
V \rightarrow V.

Let us choose a basis \ell 1, . . . , \ell r \in V \ast in the orthogonal subspace to SV . For ordered collections
I1 \sqcup . . . \sqcup Ip \subset [1, d - 2] and for j = 1, . . . , r, we consider the polylinear forms

\ell j \circ CI1 . . . CIp \in V \ast \otimes W \ast 
I1\sqcup ...\sqcup Ip .

Note that for an empty collection, i.e., for p = 0, we just get \ell j \in V \ast .

Step 5. Differentiating the key identity. For each I = \{ i1 < . . . < ip\} \subset [1, d - 2], let us consider
the embedding

\iota (I) : WI \rightarrow W1 \otimes . . .\otimes Wd - 2,

which completes wi1 \otimes . . .\otimes wip by the components w0
j in the factors Wj with j \not \in I.

Let us prove by induction on p = 0, . . . , d - 2 that for any I = \{ i1 < . . . < ip\} \subset [1, d - 2], one
has

P | SU\otimes V\otimes \iota (I)(WI) \in 
\Bigl( 
(\ell j \circ CI1 . . . CIs | I1 \sqcup . . . \sqcup Is \subsetneq I, 1 \leq j \leq r, s \geq 0),

(ga,I\prime | 1 \leq a \leq c, I \prime \subset I, I \prime \not = \varnothing )
\Bigr) 
,

where on the right we have the tensor ideal generated by the specified elements. Note that all the
subsets It are supposed to be nonempty.

The base of induction p = 0 is clear, since P (u, v, w0
1, . . . , w

0
d - 2) = 0 for any u \in SU and

v \in V. Assume that p > 0 and the assertion holds for p  - 1. Let us fix a subset I0 = \{ i1 < . . . <

ip\} \subset [1, d - 2].

Now let us equate the (Wi1 , . . . ,Wip)-mixed derivatives at w0 of both sides of the key identi-
ty (2.4). We get the following equality in U\ast \otimes W \ast 

I0
:

(fi)
(Wi1

,...,Wip )

w0 = P | U\otimes vi(w0)\otimes \iota (I0)WI0
+

\sum 
I\sqcup J=I0,I \not =\varnothing 

P | U\otimes CIvi(w0)\otimes \iota (J)WJ
. (2.5)

Note that by Lemma 2.5, (fi)
(W1,...,Wp)

w0 belong to the tensor ideal generated by ga,I\prime with 1 \leq a \leq c

and I \prime \subset I0, I
\prime \not = \varnothing . Note also that the term in the sum in (2.5) corresponding to J = \varnothing has zero

restriction to SU . Hence, we get

P | SU\otimes SV \otimes \iota (I0)WI0
+

\sum 
I\sqcup J=I0;I,J \not =\varnothing 

P | (\mathrm{i}\mathrm{d}U \otimes CI)(U\otimes SV )\otimes \iota (J)WJ

\in (ga,I\prime | 1 \leq a \leq c, I \prime \subset I, I \prime \not = \varnothing ).

Now the induction assumption implies that P | SU\otimes SV \otimes \iota (I0)WI0
belongs to the tensor ideal generated

by ga,I\prime with I \prime \subset I0, I
\prime \not = \varnothing and by the restrictions of \ell j \circ CI1 . . . CIs with s \geq 1 (where I1\sqcup . . .\sqcup Is
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is a proper subset of I0). By Lemma 2.2, adding (\ell j) to the generators of the tensor ideal we get the
required assertion about P | SU\otimes V\otimes \iota (I0)WI0

.

Step 6. Conclusion of the proof for a single tensor. Now using the result of the previous step for
p = d - 2, we get

\mathrm{r}\mathrm{k}S P | SU\otimes V\otimes W1\otimes ...\otimes Wd - 2
\leq r(1 + \theta d - 2) + c(2d - 2  - 1),

where \theta n is the number of ordered collections of disjoint nonempty subsets I1 \sqcup . . . \sqcup Ip \subsetneq [1, n]

(with p \geq 1). By Lemma 2.2, this implies that

\mathrm{r}\mathrm{k}S P \leq r + r(1 + \theta d - 2) + c(2d - 2  - 1).

Now we recall that r + c = g\prime (P ) (see (2.3)). Hence, we get

\mathrm{r}\mathrm{k}S P \leq (r + c)\mathrm{m}\mathrm{a}\mathrm{x}
\bigl( 
2 + \theta d - 2, 2

d - 2  - 1
\bigr) 
= g\prime (P )Cd

as claimed.
Step 7. The case of several tensors. Now assume that \bfk is algebraically closed. Suppose we are

given a collection P = (P1, . . . , Ps) of polylinear forms on V1 \times . . .\times Vd. For a nonzero collection
of coefficients c = (c1, . . . , cs) in \bfk , we set

Pc = c1P1 + . . .+ csPs.

The key observation is that

ZP =
\bigcup 
c \not =0

ZPc ,

where we can consider c as points in the projective space \BbbP s - 1. As we have already proved, for
each c,

\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V2\times ...\times Vd ZPc \geq C - 1
d \mathrm{r}\mathrm{k}S(Pc) \geq C - 1

d \mathrm{r}\mathrm{k}S(P ).

After taking the union over c in \BbbP s - 1, we get

\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V2\times ...\times Vd ZP \geq C - 1
d \mathrm{r}\mathrm{k}S(P ) - s+ 1,

as claimed.
3. Symmetric case. 3.1. More on higher derivatives. Let f \in \bfk [V ]d. Thinking of the nth

derivative of f \in \bfk [V ] (where n \leq d) as a degree d - n polynomial map

V \rightarrow \bfk [V ]n : v0 \mapsto \rightarrow f (n)v0

we can write it as a tensor
f (n,d - n) \in \bfk [V ]n \otimes \bfk [V ]d - n.

By definition,

f(v1 + v2) =

d\sum 
n=0

f (n,d - n)(v1, v2),

so f (n,d - n) is just the component of f(v1 + v2) of bidegree (n, d - n) in (v1, v2).
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Similarly, we define an operation for n1 + . . .+ np = d,

\bfk [V ]d \rightarrow \bfk [V ]n1 \otimes . . .\otimes \bfk [V ]np : f \mapsto \rightarrow f (n1,...,np),

by letting f (n1,...,np) to be the component of multidegree (n1, . . . , np) in f(v1 + . . . + vp). For
example,

f (1,1,d - 2) \in V \ast \otimes V \ast \otimes \bfk [V ]d - 2

is exactly Hf , the Hessian symmetric form on V (depending polynomially on x \in V ).
We will use two properties of this construction, which are easy to check:

f (n1,...,np)(x, . . . , x) =
d!

n1! . . . np!
f(x);

for m \leq ni the mth derivative with respect to xi of f (n1,...,np)(x1, . . . , xp) at (x01, . . . , x
0
p) is

equal to
f (n1,...,ni - 1,m,ni - m,...,np)

\bigl( 
x01, . . . , x

0
i - 1, v, x

0
i , . . . , x

0
p

\bigr) 
.

3.2. Proof of Theorem 1.2. It will be convenient to denote one copy of V as X in the product
V \times V = V \times X. In addition, we view Hf = f (1,1,d - 2) as a bilinear form on U \times V where U = V,

so that Z\mathrm{s}\mathrm{y}\mathrm{m} consists of pairs (v, x) \in V \times X such that f (1,1,d - 2)(u, v, x) = 0 for all u \in U.

Step 1. Dimension count and choosing a general \bfk -point. Let Z be an irreducible component
of the Zariski closure of the set of \bfk -points Z\mathrm{s}\mathrm{y}\mathrm{m}

f (\bfk ), such that \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V\times X Z = g\prime \mathrm{s}\mathrm{y}\mathrm{m}(f), and let
ZX \subset X denote the closure of the image of Z under the projection p2 : V \times X \rightarrow X. As before,
we choose a nonempty smooth open subset \scrU \subset ZX over which Hf has maximal \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} r, so that
p - 1
2 (\scrU ) \cap Z is a vector bundle of \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} \mathrm{d}\mathrm{i}\mathrm{m}V  - r over \scrU . In particular,

\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}X ZX + r = g\prime \mathrm{s}\mathrm{y}\mathrm{m}(f).

We choose a \bfk -point x0 in \scrU \subset ZX and set

S := \mathrm{k}\mathrm{e}\mathrm{r}(Hf (x
0)) \subset V.

Step 2. The first set of key polynomials. Set

c := \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}X ZX .

Since x0 is a smooth point of ZX , we can choose c elements g1, . . . , gc in the ideal IZX
\subset \bfk [X]

with linearly independent derivatives at x0. Thus, for each a = 1, . . . , c, and for 1 \leq i \leq d - 2, we
consider the derivatives

(ga)
(i)
x0

\in \bfk [X]i.

Step 3. Setting up key identity. Let us set k = \mathrm{d}\mathrm{i}\mathrm{m}V  - r. Applying Lemma 2.3(ii) to the
morphism of trivial vector bundles V \otimes \scrO \rightarrow V \ast \otimes \scrO given by Hf = f (1,1,d - 2) over ZX , we find
global sections v1(x), . . . , vk(x) \in V \otimes \bfk [ZX ], such that v1(x0), . . . , vk(x0) form a basis of S, and

f (1,1,d - 2)(u, vi(x), x) = 0 for any u \in U and x \in ZX , i = 1, . . . , k.

We lift vi(x) to polynomials in V \otimes \bfk [X], which we denote in the same way. Now we define a
collection of U\ast -valued polynomials on X,

fi(x) := f (1,1,d - 2)(u, vi(x), x) \in U\ast \otimes \bfk [X]. (3.1)

By construction, all fi(x) belong to U\ast \otimes IZX
\subset U\ast \otimes \bfk [X].
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Step 4. The second set of key forms. For each 1 \leq m \leq d - 2, we consider higher derivatives of
vi at x0, viewed as V -valued polynomials on X.

(vi)
(m)
x0

\in V \otimes \bfk [X]m.

Since (vi(x
0)) form a basis of S, there exists a linear operator

Cm : S \rightarrow V \otimes \bfk [X]m : vi(x
0) \mapsto \rightarrow (vi)

(m).

We extend Cm in any way to an operator V \rightarrow V \otimes \bfk [X]m, which we still denote by Cm. For
m1 + . . .+mp \leq d - 2, we consider the composition

Cm1 . . . Cmp : V
Cmp -  -  - \rightarrow V \otimes \bfk [X]mp \rightarrow . . .\rightarrow V \otimes \bfk [X]m2+...+mp

Cm1 -  -  - \rightarrow V \otimes \bfk [X]m1+...+mp .

We allow the case of an empty collection, i.e., p = 0, in which case we just get the identity map
V \rightarrow V.

Finally, we denote by \ell 1, . . . , \ell r \in V \ast a basis in the orthogonal subspace to S. For m1+. . .+mp \leq 
d - 2 and for j = 1, . . . , r, we consider the elements

\ell j \circ Cm1 . . . Cmp \in V \ast \otimes \bfk [X]m1+...+mp .

Note that for an empty collection, i.e., for p = 0, we just get \ell j \in V \ast .

Step 5. Differentiating the key identity. Let us prove by induction on p = 0, . . . , d  - 2 that one
has

f (1,1,p,d - 2 - p)(u, v, x, x0)| S\times V\times X

\in 
\Bigl( \bigl( 

(\ell j \circ Cm1 . . . Cms)(v, x) | m1 + . . .+ms < p, 1 \leq j \leq r
\bigr) 
,

\bigl( 
(ga)

(m)
x0

(x) | 1 \leq a \leq c, 1 \leq m \leq p
\bigr) \Bigr) 
,

where on the right we have the ideal generated by the specified elements.
The base of induction p = 0 is clear, since f (1,1,d - 2)(u, v, x0) = 0 for any u \in S and v \in V.

Assume that p > 0 and the assertion holds for p - 1. Now let us equate the pth derivatives at x = x0

of both sides of (3.1). We get the following equality in U\ast \otimes \bfk [X]p :

(fi)
(p)
x0

(x) = f (1,1,p,d - 2 - p)(u, vi(x
0), x, x0) +

p\sum 
q=1

f (1,1,p - q,d - 2 - p+q)(u,Cq(vi(x
0), x), x, x0).

The left-hand side belongs to the ideal generated by (ga)
(m)
x0

(x) with 1 \leq a \leq c and 1 \leq m \leq p.

Note also that the term corresponding to q = p in the right-hand side has zero restriction to u \in S.

Hence, we get

f (1,1,p,d - 2 - p)(u, v, x, x0)| S\times S\times X

+

p - 1\sum 
q=1

f (1,1,p - q,d - 2 - p+q)\bigl( u,Cq(v, x), x, x0\bigr) \bigm| \bigm| S\times S\times X \in 
\bigl( 
(ga)

(m)
x0

(x)
\bigm| \bigm| 1 \leq a \leq c, 1 \leq m \leq p

\bigr) 
.
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Now the induction assumption implies that f (1,1,p,d - 2 - p)(u, v, x, x0)| S\times S\times X belongs to the ideal

generated by (ga)
(m)
x0

(x) for 1 \leq a \leq c, 1 \leq m \leq p and by the restrictions to S \times X of (\ell j \circ 
Cm1 . . . Cms)(v, x) with s \geq 1, m1 + . . .+ms < p, 1 \leq j \leq r. By Lemma 2.2, adding (\ell j) to the
generators of the ideal we get the required assertion about f (1,1,p,d - 2 - p)(u, v, x, x0)| S\times V\times X .

Step 6. Conclusion of the proof for a single polynomial. Now using the result of the previous
step for p = d - 2, we have

f (1,1,d - 2)(u, v, x)| S\times V\times X

\in 
\Bigl( \bigl( 

(\ell j \circ Cm1 . . . Cms)(v, x)
\bigm| \bigm| m1 + . . .+ms < d - 2, 1 \leq j \leq r

\bigr) 
,

\bigl( 
(ga)

(m)
x0

(x)
\bigm| \bigm| 1 \leq a \leq c, 1 \leq m \leq d - 2

\bigr) \Bigr) 
.

Hence,

f (1,1,d - 2)(u, v, x) \in ((\ell j(u)
\bigm| \bigm| 1 \leq j \leq r),\bigl( 

(\ell j \circ Cm1 . . . Cms)(v, x)
\bigm| \bigm| m1 + . . .+ms < d - 2, 1 \leq j \leq r

\bigr) 
,\bigl( 

(ga)
(m)
x0

(x)
\bigm| \bigm| 1 \leq a \leq c, 1 \leq m \leq d - 2)

\bigr) 
. (3.2)

Now plugging u = v = x, we obtain

d(d - 1) \cdot f(x) \in 
\Bigl( \bigl( 
Fj;m1,...,ms(x)

\bigm| \bigm| m1 + . . .+ms < d - 2, 1 \leq j \leq r
\bigr) 
,

\bigl( 
(ga)

(m)
x0

(x)
\bigm| \bigm| 1 \leq a \leq c, 1 \leq m \leq d - 2

\bigr) \Bigr) 
,

where Fj;m1,...,ms(x) = (\ell j \circ Cm1 . . . Cms)(x, x) has degree 1 +m1 + . . .+ms < d - 1. It follows
that

\mathrm{r}\mathrm{k}S(f) \leq r
\bigl( 
1 + \theta \mathrm{s}\mathrm{y}\mathrm{m}d - 2

\bigr) 
+ c(d - 2),

where \theta \mathrm{s}\mathrm{y}\mathrm{m}n is the number of (m1, . . . ,ms), with s \geq 1, mi \geq 1, m1 + . . .+ms < n. It is easy to
see that \theta \mathrm{s}\mathrm{y}\mathrm{m}n = 2n - 1  - 1. Since r + c = g\prime \mathrm{s}\mathrm{y}\mathrm{m}(f), we get

\mathrm{r}\mathrm{k}S P \leq (r + c)\mathrm{m}\mathrm{a}\mathrm{x}(2d - 3, d - 2) = g\prime \mathrm{s}\mathrm{y}\mathrm{m}(f) \cdot 2d - 3,

as claimed.
Step 7. The case of several polynomials. Now assume that \bfk is algebraically closed, and we are

given a collection f = (f1, . . . , fs) of homogeneous polynomias on V of degree d. For a nonzero
collection of coefficients c = (c1, . . . , cs) in \bfk , we set fc = c1f1+. . .+csfs. As in the nonsymmetric
case, the key observation is that

Z\mathrm{s}\mathrm{y}\mathrm{m}

f
=

\bigcup 
c\not =0

Z\mathrm{s}\mathrm{y}\mathrm{m}
fc

, (3.3)

where we can consider c as points in the projective space \BbbP s - 1. Using the case of a single polynomial,
we deduce that
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\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V\times V Z
\mathrm{s}\mathrm{y}\mathrm{m}

f
\geq 2 - d+3 \mathrm{r}\mathrm{k}S(f) - s+ 1,

as claimed.
3.3. Relation to singularities. Now we will relate g\mathrm{s}\mathrm{y}\mathrm{m}(f) to c(f), the codimension in V of the

singular locus of the hypersurface f = 0.

Proposition 3.1. (i) The subvariety Z\mathrm{s}\mathrm{y}\mathrm{m}
f \subset V \times X = V \times V contains the singular locus of

f (2,d - 2)(v, x) = 0.

(ii) One has g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq (d+ 1)c(f) (resp., g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq dc(f) if d is odd and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) \not = 2).
(iii) If \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) does not divide d - 1, then c(f) \leq g\mathrm{s}\mathrm{y}\mathrm{m}(f).

Proof. (i) The first derivative of f (2,d - 2)(v, x) along v at (v0, x0) is f (1,1,d - 2)(v, v0, x0), so
if (v0, x0) is a singular point of f (2,d - 2)(v, x) = 0, then f (1,1,d - 2)(v, v0, x0) = 0 for all v, i.e.,
(v0, x0) \in Z\mathrm{s}\mathrm{y}\mathrm{m}

f .

(ii) Since we are comparing dimensions of algebraic varieties, without loss of generality, we can
assume that \bfk is algebraically closed.

By part (i), we have g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq c(F ), where F = f (2,g - 2). It is easy to see that if F (x) =

F1(x) + . . . + Fr(x), then c(F ) \leq c(F1) + . . . + c(Fr). Also, if A : V \rightarrow W is a linear surjective
map and g \in \bfk [W ], then c(g \circ A) = c(g).

Thus, it remains to check that f (2,d - 2)(v, x) is a linear combination of d + 1 (resp., d, if d is
odd and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) \not = 2) polynomials of the form f(Ai(v, x)), for some linear surjective maps Ai :
V \times V \rightarrow V.

Let us view f(v+x) as a nonhomogeneous function of v, g(v) = g0+g1+. . .+gd of degree \leq d

(with coefficients in \bfk [V ]). Now picking any d+1 distinct elements \lambda 0, . . . , \lambda d \in \bfk , we can express
g0, . . . , gd as linear combinations of g(\lambda 0v), . . . , g(\lambda dv) (since the corresponding linear change is
given by the Vandermonde matrix).

In the case when d is odd and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) \not = 2, we can similarly express the components of
even degree, (g2i)i\leq (d - 1)/2 as linear combinations of g0 = g(0) and (g(\lambda iv) + g( - \lambda iv))/2, for
1 \leq i \leq (d - 1)/2, where (\lambda i) are nonzero constants such that (\lambda 2i ) are all distinct.

It remains to observe that g2 = f (2,d - 2) and that each g(\lambda v) = f(\lambda v+x) is of the required type.
(iii) This follows from the relation

(d - 1)f (1,d - 1)(v, x) = f (1,1,d - 2)(v, x, x).

Indeed, this implies that the intersection of Z\mathrm{s}\mathrm{y}\mathrm{m}
f with the diagonal V \subset V \times V is exactly the singular

locus of f = 0, which gives the claimed inequality.
Proposition 3.1 is proved.
Now let us consider the case of a collection f = (f1, . . . , fs) of homogeneous polynomials on V

of degree d. We consider the corresponding family of hypersurfaces in V, fc = 0 parametrized by
the projective space \BbbP s - 1. It is clear that for the locus S(f) \subset V where the rank of Jacobi matrix of
(f1, . . . , fs) is < s, we have

S(f) =
\bigcup 
c \not =0

\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(fc = 0).

Proposition 3.2. (i) One has the inclusion\bigcup 
c \not =0

\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}
\bigl( 
f
(2,d - 2)
c = 0

\bigr) 
\subset Z\mathrm{s}\mathrm{y}\mathrm{m}

f
.

(ii) One has g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq (d+ 1)c\prime (f) + d(s - 1) (resp., g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq dc\prime (f) + (d - 1)(s - 1) if d
is odd and \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) \not = 2).
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(iii) Assume that (f1, . . . , fs) define a complete intersection V (f) \subset V, i.e., \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V V (f) = s.

Then
c\prime (f) \leq c(f) \leq c\prime (f) + s.

Assume, in addition, that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) does not divide d - 1. Then

c\prime (f) \leq g\mathrm{s}\mathrm{y}\mathrm{m}(f).

Proof. (i) This follows from Proposition 3.1(i) due to (3.3).
(ii) Since S(f) has codimension c\prime (f) in V, it follows that for some a \leq s - 1, there exists an

a-dimensional subvariety X \subset \BbbP s - 1 such that

c(fc) = \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(fc) \leq c\prime (f) + a for c \in X.

Applying Proposition 3.1(ii), we see that, for each c \in X, one has

\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V\times V Z
\mathrm{s}\mathrm{y}\mathrm{m}
fc

\leq (d+ 1)(c\prime (f) + a)

(resp., \leq d(c\prime (f) + a) if d is odd). Hence, by using (3.3), we get

\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V\times V Z
\mathrm{s}\mathrm{y}\mathrm{m}

f
\leq (d+ 1)(c\prime (f) + a) - a

(resp., \leq d(c\prime (f) + a) - a if d is odd). Since a \leq s - 1, this implies the assertion.
(iii) If (f1, . . . , fs) define a complete intersection, then, by the Jacobi criterion of smoothness,

we obtain
\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g} V (f) = S(f) \cap V (f).

In particular, we have an inclusion \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g} V (f) \subset S(f), so

c\prime (f) = \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V S(f) \leq c(f).

Also, we get
c(f) - s = \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V (f) \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g} V (f) \leq \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V S(f) = c\prime (f).

If we assume in addition that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) does not divide d - 1, then the intersection of Z\mathrm{s}\mathrm{y}\mathrm{m}

f
with

the diagonal V \subset V \times V is exactly S(f). Hence, we obtain

c\prime (f) = \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V S(f) \leq g\mathrm{s}\mathrm{y}\mathrm{m}(f).

Proposition 3.2 is proved.
Proof of Theorem 1.3. (i) If f(x) =

\sum r

i=1
hi(x)gi(x) then the locus hi(x) = gi(x) = 0, for

i = 1, . . . , r, is contained in the singular locus of f(x) = 0, so c(f) \leq 2r.

Now for the other inequality, let c = c\bfk (f) and X an irreducible component of codimension c of
the Zariski closure of the \bfk -points of \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(f = 0). Let v0 \in X be a smooth \bfk -point and g1, . . . , gc \in 
I(X) defined over \bfk with linearly independent differentials at v0. For all k \in [n], \partial kf \in I(X), so
Lemma 2.4 yields

\partial kf = (\partial kf)
(d - 1)
v0 \in 

\Bigl( 
(gi)

(j)
v0

\Bigr) 
i\in [c],j\in [d - 1]

.

By Euler’s formula,
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f =
1

d

n\sum 
k=1

xk\partial kf \in 
\Bigl( 
(gi)

(j)
v0

\Bigr) 
i\in [c],j\in [d - 1]

.

This gives \mathrm{r}\mathrm{k}S(f) \leq (d - 1) \cdot c.
(ii) We deduce this from the result for a single form as in the proof of Theorem 1.2.
Proof of Corollary 1.1. In the notation of [2, Theorem A] (recalling that the strength of f is

\mathrm{r}\mathrm{k}S(f) - 1), the inequality of Theorem 1.3(i) implies that one can take

mA(d) = (d - 1)(m+ 2) - 1.

It is also well-known that for d = 2, one can take

mA(2) =

\biggl\lceil 
m+ 1

2

\biggr\rceil 
(see, e.g., [3, Proposition 4.10]). Now the assertion follows from [2, Theorem A(c)].

Remark 3.1. For \bfk algebraically closed of arbitrary characteristic, Eq. (3.2) shows that

\mathrm{r}\mathrm{k}S f (1,1,d - 2)(u, v, x) \leq (2d - 3 + 1) \cdot g\mathrm{s}\mathrm{y}\mathrm{m}(f) \leq (2d - 3 + 1) \cdot (d+ 1) \cdot c(f).

The proof of Theorem 1.4 is based on the following geometric observation.
Lemma 3.1. For generic v1, . . . , vs \in V, where s < \mathrm{d}\mathrm{i}\mathrm{m}V, we have

c\prime (\partial v1f, . . . , \partial vsf) \geq g\mathrm{s}\mathrm{y}\mathrm{m}(f) - s+ 1.

Proof. Let us denote by Z(s) \subset V s\times V the locally closed subvariety consisting of (v1, . . . , vs, x),
such that v1, . . . , vs are linearly independent and \mathrm{d}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}

\bigl( 
Hf (x)(\cdot , v1), . . . ,Hf (x)(\cdot , vs)

\bigr) 
< s

(here we consider Hf (\cdot , v) as a linear form on V ). We want to estimate the dimension of Z(s). We
get a surjective map (with at least 1-dimensional fibers) \widetilde Z(s) \rightarrow Z(s), where \widetilde Z(s) \subset V \times V s \times V is
given by

\widetilde Z(s) =
\Bigl\{ 
(v, v1, . . . , vs, x) | v \in \mathrm{k}\mathrm{e}\mathrm{r}Hf (x), v \not = 0, (v1, . . . , vs)

linearly independent, v \in \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}(v1, . . . , vs)
\Bigr\} 
.

We have a natural projection

\widetilde Z(s) \rightarrow Z\mathrm{s}\mathrm{y}\mathrm{m}
f : (v, v1, . . . , vs, x) \mapsto \rightarrow (v, x),

which is a locally trivial fibration whose fibers are irreducible of dimension n(s  - 1) + s, where
n = \mathrm{d}\mathrm{i}\mathrm{m}V. It follows that

\mathrm{d}\mathrm{i}\mathrm{m}Z(s) \leq \mathrm{d}\mathrm{i}\mathrm{m} \widetilde Z(s)  - 1 \leq \mathrm{d}\mathrm{i}\mathrm{m}Z\mathrm{s}\mathrm{y}\mathrm{m}
f + n(s - 1) + s - 1.

Hence,
\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V s\times V Z

(s) \geq g\mathrm{s}\mathrm{y}\mathrm{m}(f) - s+ 1.

Next, we observe that Hf (x)(\cdot , v) = f (1,1,d - 2)(\cdot , v, x) = (\partial vf)
(1,d - 2)(\cdot , x), so S(\partial v1f, . . . , \partial vsf)

is exactly the fiber over (v1, . . . , vs) of the projection Z(s) \rightarrow V s. For generic v1, . . . , vs, only the
components of Z(s) dominant over V s will play a role, and we deduce that
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c\prime (\partial v1f, . . . , \partial vsf) = \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V S(\partial v1f, . . . , \partial vsf) \geq \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V s\times V Z
(s) \geq g\mathrm{s}\mathrm{y}\mathrm{m}(f) - s+ 1.

Lemma 3.1 is proved.
Proof of Theorem 1.4. (i) By Lemma 3.1 with s = 1, c(\partial vf) \geq g\mathrm{s}\mathrm{y}\mathrm{m}(f). Hence, by

Theorems 1.3(i) and 1.2,

\mathrm{r}\mathrm{k}S(\partial vf) \geq 
1

2
c(\partial vf) \geq 

1

2
g\mathrm{s}\mathrm{y}\mathrm{m}(f) \geq 22 - d \mathrm{r}\mathrm{k}S(f).

(ii) If c\prime (\partial v1f, . . . , \partial vsf) \geq s (resp., c\prime (\partial v1f, . . . , \partial vsf) \geq s+2), then (\partial v1f, . . . , \partial vsf) define a
(resp., normal) complete intersection of codimension s. Hence, the assertion follows from Theorem 1.2
and Lemma 3.1.

3.4. Singularities of the polar map. Let f \in \bfk [V ]d. Note that Hf (x) can be identified with the

tangent map to the polar map \phi f : V \rightarrow V \ast of f sending x to f (1)x = df | x. Thus, g\mathrm{s}\mathrm{y}\mathrm{m}(f) measures
the degeneracy of this map.

More precisely, for any morphism \phi : X \rightarrow Y between smooth connected varieties, let us define
the Thom – Boardman rank 2 of \phi , denoted as \mathrm{r}\mathrm{k}TB(\phi ), as follows. Consider the subvariety Z\phi in
the tangent bundle TX of X consisting of (x, v) such that d\phi x(v) = 0. Then we set

\mathrm{r}\mathrm{k}TB(\phi ) = \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}TX Z\phi .

Note that \mathrm{r}\mathrm{k}TB(\phi ) \leq r, where r is the generic rank of the differential of \phi , however, the inequality
can be strict.

By definition,
g\mathrm{s}\mathrm{y}\mathrm{m}(f) = \mathrm{r}\mathrm{k}TB(\phi f ).

As is well-known, the generic rank of d\phi f = Hf is related to the dimension of the projective
dual variety X\ast of the projective hypersurface associated with f (more precisely, \mathrm{d}\mathrm{i}\mathrm{m}X\ast + 2 is the
generic rank of Hf over the hypersurface f = 0). However, it is easy to see that g\mathrm{s}\mathrm{y}\mathrm{m}(f) can be much
smaller than the generic rank of \phi f . For example, if q1(x) and q2(y) are nondegenerate quadratic
forms in two different groups of variables (x1, . . . , xn), (y1, . . . , yn), then \mathrm{r}\mathrm{k}S(q1(x)q2(y)) = 1,

so g\mathrm{s}\mathrm{y}\mathrm{m}(q1(x)q2(y)) \leq 4. On the other hand, the generic rank of \phi q1(x)q2(y) is 2n (assuming the
characteristic of \bfk is \not = 2, 3).

Example 3.1. In the case d = 3, the Schmidt rank of f is equal to its slice \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k} s(f), i.e., the
minimal s such that there exists a linear subspace L \subset V of codimension s contained in (f = 0).

Thus, for a cubic form f, assuming that \bfk is algebraically closed of characteristic \not = 2, 3, we get
from Theorem 1.2 and from (1.2) that

s(f) \leq \mathrm{r}\mathrm{k}TB(\phi f ) \leq 4s(f).

If f is a general homogeneous polynomial of degree d, then we still have \mathrm{r}\mathrm{k}S(f) = s(f) (see [4]).
So, for such f, assuming \bfk to be algebraically closed of characteristic not dividing (d  - 1)d, we
obtain

23 - ds(f) \leq \mathrm{r}\mathrm{k}TB(\phi f ) \leq 4s(f).

It seems that the invariant \mathrm{r}\mathrm{k}TB(\phi ) deserves to be studied more. For example, we do not know
whether it is always true that \mathrm{r}\mathrm{k}TB(\phi ) = \mathrm{d}\mathrm{i}\mathrm{m}X for a finite morphism \phi between smooth projective
varieties in characteristic zero. Note the following corollary from Proposition 3.1(iii).

2 The name is due to the relation with Thom – Boardman stratification in singularity theory, see [6].
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Corollary 3.1. Assume that \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(\bfk ) does not divide d - 1. Then

\mathrm{r}\mathrm{k}TB(\phi f ) \geq c(f).

In particular, if the projective hypersurface associated with f is smooth then

\mathrm{r}\mathrm{k}TB(\phi f ) = \mathrm{d}\mathrm{i}\mathrm{m}V.

Let Vf \subset \BbbP V denote the projective hypersurface associated with f. In [7] the authors consider
(for \bfk = \mathrm{C}) the closed locus S\geq r \subset Vf where the co-rank of the Hessian Hf is \geq r. They prove
that if Vf is smooth then for r(r + 1) \leq \mathrm{d}\mathrm{i}\mathrm{m}V, the subvariety S\geq r(V ) is nonempty and

\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}Vf S\geq r(V ) \leq r(r + 1)/2.

By using Corollary 3.1, we get the inequality

\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}Vf S\geq r(V ) \geq r  - 1.

If Vf is smooth then the projectivization of the restriction of \phi f to (f = 0) can be identified with
the Gauss map

\gamma : Vf \rightarrow \BbbP V \ast .

It is easy to check that if \mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}(k) does not divide d(d - 1), then for any point x \in (f = 0) \subset V one
has \mathrm{k}\mathrm{e}\mathrm{r}(d(\phi f )x) \subset Tx(f = 0) and the natural projection

\mathrm{k}\mathrm{e}\mathrm{r}(d(\phi f )x) \rightarrow \mathrm{k}\mathrm{e}\mathrm{r}(d\gamma x)

is an isomorphism. Thus, the above inequalities can be viewed as restrictions on possible degeneracies
of the Gauss map of Vf (which is finite by a result of Zak in [12]).

Appendix A. This appendix gives alternative versions of Theorems 1.1, 1.2, and 1.4, with better
bounds for d \geq 6. The second version of Theorem 1.1 is the following.

Theorem A.1. (i) Let g\prime (P ) denote the codimension in V2 \times . . .\times Vd of the Zariski closure of
ZP (\bfk ). Then one has

\mathrm{r}\mathrm{k}S(P ) \leq (2d - 1  - 1)g\prime (P ).

(ii) Assume \bfk is algebraically closed. Then for a collection P = (P1, . . . , Ps), one has

\mathrm{r}\mathrm{k}S(P ) \leq (2d - 1  - 1)(g(P ) + s - 1).

For algebraically closed fields the above result matches the one obtained by Cohen and Moshko-
witz [13], but we give a very short proof.

Proof. (i) The proof will mimic that of Theorem 1.3. Write g = g\prime (P ) and let X be an
irreducible component of the Zariski closure of ZP (\bfk ) such that \mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{m}V1\times V2\times ...\times Vd - 1

X = g. Let

x1, . . . , xn be a basis for V \ast 
d . Write P =

\sum n

k=1
xk \cdot Qk, where Qk : V1 \times V2 \times . . . \times Vd - 1 \rightarrow \bfk 

are polylinear forms. Let v0 \in X be a smooth \bfk -point and h1, . . . , hg \in I(X) defined over \bfk with

linearly independent differentials at v0. For all k \in [n], Qk = (Qk)
(V1,V2,...,Vd - 1)
v0 \in I(X), so by

Lemma 2.5 it is in the tensor ideal generated by\Bigl( 
(hi)

(Vj1 ,...,Vjs )
v0

\Bigr) 
i\in [g],\varnothing \not =\{ j1<...<js\} \subset [d - 1]

.

By definition, P is in the tensor ideal generated by the Qk, so \mathrm{r}\mathrm{k}S(P ) \leq (2d - 1  - 1) \cdot g.
(ii) We deduce this from the result for a single tensor as in the proof of Theorem 1.1.
The second version of Theorem 1.2 is the following.
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Theorem A.2. Assume that \bfk is algebraically closed of characteristic not dividing (d - 1)d.

(i) For a single form f of degree d,

\mathrm{r}\mathrm{k}S(f) \leq (d - 1)g\mathrm{s}\mathrm{y}\mathrm{m}(f).

(ii) If (f1, . . . , fs) define a complete intersection of codimension s in V, then

\mathrm{r}\mathrm{k}S(f) \leq (d - 1)
\bigl( 
g\mathrm{s}\mathrm{y}\mathrm{m}(f) + s - 1

\bigr) 
.

Proof. (i) Combine Theorem 1.3(i) and Proposition 3.1(iii).
(ii) Combine Theorem 1.3(ii) and Proposition 3.2(iii).
The second version of Theorem 1.4 is the following.
Theorem A.3. Let f be a homogeneous polynomial of degree d. Assume that \bfk is algebraically

closed of characteristic not dividing (d - 1)d.

(i) For generic v \in V, one has \mathrm{r}\mathrm{k}S(\partial vf) \geq 
1

2d - 2
\mathrm{r}\mathrm{k}S(f).

(ii) For s \leq 1

2d - 2
\mathrm{r}\mathrm{k}S(f)+

1

2

\biggl( 
resp., s \leq 1

2d - 2
\mathrm{r}\mathrm{k}S(f) - 1

2

\biggr) 
, and for generic v1, . . . , vs \in V,

the derivatives (\partial v1f, . . . , \partial vsf) define a (resp., normal) complete intersection of codimension s in V.
Proof. (i) By Lemma 3.1 with s = 1, c(\partial vf) \geq g\mathrm{s}\mathrm{y}\mathrm{m}(f). Hence, by Theorems 1.3(i) and A.2,

\mathrm{r}\mathrm{k}S(\partial vf) \geq 
1

2
c(\partial vf) \geq 

1

2
g\mathrm{s}\mathrm{y}\mathrm{m}(f) \geq 

1

2d - 2
\mathrm{r}\mathrm{k}S(f).

(ii) If c\prime (\partial v1f, . . . , \partial vsf) \geq s (resp., c\prime (\partial v1f, . . . , \partial vsf) \geq s + 2), then (\partial v1f, . . . , \partial vsf) defi-
ne a (resp., normal) complete intersection of codimension s. Hence, the assertion follows from
Theorem A.2 and Lemma 3.1.
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