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Initial-boundary value problems for anisotropic
elliptic-parabolic-pseudoparabolic equations
with variable exponents of nonlinearity

MyKoLA BOKALO AND HALYNA DOMANSKA

(Presented by E. Ya. Khruslov)

Abstract. Existence and uniqueness of weak solutions of initial-
boundary value problems for anisotropic elliptic-parabolic-pseudopara-
bolic equations with variable exponents of nonlinearity are proved. Esti-
mates of the weak solutions of this problems are received. This estimates
implies continuous dependence on the input data for the weak solutions
of considered problems.
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1. Introduction

The pseudoparabolic equations are a kind of Sobolev—-Galpern type
equations. They are characterized by mixed time and space derivatives
appearing in the highest order terms of this equations. Such equations
were first studied by S. L. Sobolev in the linear case [1]. Pseudoparabolic
equations arise in numerous physical applications, e.g., seepage of fluids
through fissured rocks, unsteady flows of second-order fluids, dynamic
capillary pressure in unsaturated flow, the theory of thermodynamics
involving two temperatures |2, 3.

Mathematical study of pseudoparabolic equations goes back to works
of Showalter in the seventies [4]. Since then, a number of interesting
results on linear and nonlinear pseudoparabolic equations have been ob-
tained. In particular, existence and uniqueness of solutions to nonlinear
pseudoparabolic equations are proved in [5-8|.
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In this paper, we are interested in degenerated pseudoparabolic equa-
tions. Such equations were studied in [5,9-14]. Let us formulate one of
results that is relevant to what we are going to do in this paper.

Let V be a separable reflexive Banach space and V'’ be its dual. As-
sume A(t;-) : V. — V', 0 < t < T, is a measurable family of mono-
tone, hemicontinuous, uniformly bounded and coercive operators. Let
B :V — V' be a linear, continuous, symmetric and monotone operator.

Let V4 be the completion of space V with seminorm || - || := (B-,-)!/2,
and let V be the dual to V4. It is known that V} is a Hilbert space
and [|Bv|lyy = [[v|ly, Vv € Vj. The operator B can be extended to an

operator acting from Vj to V). Let p > 2, p' :=p/(p — 1).
The problem is, given ug € Vj and f € Ly (0,T; V"), to find a function
ue Ly(0,T;V)NC([0,T]; V,) which satisfies the equation

%(Bu(t))+fl(t;u(t))zf(t) i Ly (0,T:V") (1.1)

and the initial condition
[[w(0) — uollv;, = 0. (1.2)

As follows from [5, Corollary II1.6.3|, this problem has a unique solution.
Here is a simple example of problem (1.1),(1.2). For given [ > 0,

let V.= W}(0,1) := {v € Ly(0,0)|[v" € Ly(0,1), v(0) = v(l) = 0}
be the Sobolev space and V' = Wp71(0,l) be its dual. Any element
g € Wp71(0,l) can be written as g = go — (¢91)’, where go, g1 € Ly/(0,1)
and (g1)’ is the derivative of g; in the distribution space D’(0,1). Then

(g,v) == fol(go(a:)v(a:) + g1(x)v'(x)) da is the action of g on v € W (0,1).
Define a family of operators A(t;-) : V. — V', 0 <t < T, by A(t;v) :=
(a(z,t)|v'|P~20")’, where a is a measurable bounded function such that
essinf{a(x,t)|(x,t) € (0,1) x (0,T)} > 0.

Let b, by be measurable bounded functions on (0, ) such that b;(x) >
0if z € (aj,8;) and bj(x) = 0 otherwise (j = 0,1), where (o, 1) C
(a0, Bo) C (0,1). Also, assume inf{b;(z) [z € [a], 7]} > 0 for all [, 5]
C (aj,B;5) (j = 0,1). Define the operator B : V. — V' by Bv := byv —
(b1v), v € W (0,1). Let bo(x) := bo(z) if 2 € (ag, fo) and by(z) := 1 if
z € (0,1)\ (o, Bo). Denote by V}, the space of functions w such that w =
bo_lﬂu where v € L(0,1), and w’' € Lajoc(cu, 1), b}/Qw' € La(a, B).
This space is the completion of V' by the seminorm ||v||y;, := (fé [bo|v]? +

balo' 2] dar) /2.
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Now we can formulate the simple example of problem (1.1), (1.2).
Given ug € V, and fo,f1 € L2((0,1) x (0,7)), find a function u €

Ly(0,T; W (0,1)) such that by *u, by/*u, € C([0,T]; L»(0,1)) and

(bou — (bruz)s)e — (alus P *ug)e = fo = (fi)e in Ly (0,T5 W, 1(0,1)),
(1.3)
by *uli—o = bt *uo, b uglimo = b %ul in Ly(0,1).  (1.4)

Note that equation (1.3) is pseudoparabolic in the domain (a1, 51) X
(0,T), parabolic in the domain ((c, o) \ (a1, 51)) x (0,T) and elliptic in
((0,))\ (a0, Bo)) x (0, T). Such equations belong to the class of degenerate
pseudoparabolic equations, and we believe that the right name for them
is elliptic-parabolic-pseudoparabolic equations. By the way, if by > 0
almost everywhere on (0, 1) then corresponding equations should be called
parabolic-pseudoparabolic equations.

In this paper, we consider anisotropic elliptic-parabolic-pseudopara-
bolic equations with the variable exponents of nonlinearity that generalize
equation (1.3). A typical example is an equation

(bo(x)u =Y (bil@)ua,), )e = Y (@i, ) g, [P Pug, ),
i=1 i=1
+ao(z, )P D=0, (2,t) €Q, (1.5)

where b; > 0 on € (the functions b; can be zero on subsets of 2 of positive
measure) and dj, p; are measurable, nonnegative and bounded functions,
moreover, essinfyeq @;(z,t) > 0 (¢ = 1,n) and essinfyeqp;(z) > 1 (j =
0,n). The functions p; are called exponents of nonlinearity.

Nonlinear differential equations with variable exponents of nonlin-
earity describe many physical processes such us electromagnetic fields,
electrorheological fluids, image reconstruction processes, current flow in
variable temperature field [15]. Solutions of these problems belong to
some generalized Lebesgue and Sobolev spaces. The spaces were first
introduced in [16]. The properties of these spaces and their applications
to nonlinear differential equations with variable exponents of nonlinearity
have been actively studied (see, e.g., [17-24]). But we do not known works
where to consider the anisotropic elliptic-parabolic-pseudoparabolic equa-
tions with variable exponents of nonlinearity.

In this paper we find sufficient conditions for the existence and unique-
ness of the weak solutions to the initial-boundary value problems for the
anisotropic elliptic-parabolic-pseudoparabolic equations with variable ex-
ponents of nonlinearity. To proof the existence of weak solutions, we ap-
ply a combination of approximation and Galerkin methods. The paper
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is organized as follows. In Section 2, we formulate the problem and the
main results. Auxiliary statements are given in Section 3. Finally, in
Section 4 we prove main statements.

2. Statement of the problem and the main result

Let n € N, T' > 0 be some numbers, R” be the Euclidean space with
norm | - | defined by || := (Jz1|2 + - - - + |2,|?)V/? for = (21,...,2,) €
R™. Suppose 2 C R™ is a bounded domain with the piecewise smooth
boundary 092, 92 = I'g U 'y, where I'g is the closure of an open set on
00 (in particular, I'g can be 0 or 9Q), I'y := 9N\ T, v = (v1,... 1) is
a unit, outward pointing normal vector on the Q2. Let @ := Q x (0,7,
Yo:=10x(0,7), 31 :=171 x(0,7).

In this paper we consider the following problem: to find the function
u : Q — R satisfying (in some sense) the equation

n

(bo(x)u — Z (bz(x)uxl)zz)t — Z d(j:‘ a;(z,t,u, Vu)
i=1 "

i=1

-

+ ap(z,t,u, Vu) = — (fi(x,t))xi + fo(z,t), (z,t) €@, (2.1)

=1

the boundary conditions

3

u . =0, ' ai(z,t,u, Vu) v; 5 = 0, (2.2)
=1
and the initial condition
u(z,0) = ug(z), € Qo:={xeQ|by(z)>0}. (2.3)

Here b; : @ — R, aj : Q xR - R f; : Q — R (j = 0,n),
up : 2 — R are given functions, moreover, b; > 0 on Q (j = 0,n)
and {z € Q| bj(z) > 0} =: Q; C Qo (i = 1,n). Notice that the functions
bj can be zero on subsets of €) of positive measure.

Next we are going to define a weak solution of the problem (2.1)-
(2.3) and formulate the main result of our paper. For this, we need some
functional spaces and classes of input data of the given problem.

First we introduce the functional spaces. Let G denote 2 or Q.
Suppose that r € Loo(Q2), r(x) > 1 for a.e. = € Q. Consider a sub-
space L,(y(G) of the vector space L1(G) consisting of all measurable

functions v such that pg,(v) < oo, where pg,(v) = [, |v(z)|"® dz if
G = Q and pg.(v) = fo lv(z,t)["®) dz dt if G = Q. This is a Banach
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space with respect to the norm [lvz, (e = inf{A > 0] pg(v/A) < 1}
and it is called a generalized Lebesgue space. Note that the set C(G)
is dense in L, )(G), and if r(r) = r9 = const > 1 for a.e. z € Q,
then || - HLT(,)(G) is the standard norm || - ||, () on the Lebesgue space
L., (G). If eiseigrllfr(x) > 1, then the space L,()(G) is reflexive and the

dual space [L,.y(G)]" equals L,/()(G), where the function 7’ is defined by
ﬁ—k%:lfora.e. z €€

Consider a vector-function p = (po, . .., pn) : © — R*! satisfying the
following condition:

(P) for every j € {0,1,...,n} the function p; : 2 — R is measurable
and

p; :=essinfp;(z) > 2, p;r ;= esssup p;(z) < 4o00.
zef €

Denote by p' = (po/,...,pn') : @ — R™! the vector-function such
that ﬁ+m =1 forae. z€Q (j=0,n).

Define Wpl(.)(ﬂ) to be the space of functions v € Ly ()(€2) such that
Vg € Ly (), -5 Uz, € Ly, (1(2). This is a Banach space with respect

to the norm HUHWQ(-)(Q) = H’U”LPO(‘)(Q)‘FZ?:]_ HvxiHme(Q) and it is called

a generalized anisotropic Sobolev space. Let Wl( )(Q) be the subspace of

Wl( )(Q) that is the closure of the space C’l( ) :i={veCHQ ’ vlr, = 0}

with respect to the norm || - le( (@)
(-
Denote by Wpl(’g (Q) the space of functions w € L, .)(Q) such that
wg, € Ly, ()(Q),. € L,,1(@). Endow this space with the norm
waHW;(,o = |Jw HLPQ( )(Q)—i—zz 1 mezHLp (,(Q)- It is a generalized aniso-

tropic Sobolev space as well. Define Wp(.)(Q) to be the subspace of
W;(’(;(Q) such that if w € Wpl(’(;(@) then w(-,t) € Wpl(_)(Q) for a. e.
€ (0,7).

Consider functions b; : @ — R (j = 0,n) such that the following
condition holds:

(B) for every j € {0,1,...,n} the function b; : Q@ — R is measurable
and bounded, b;(z) > 0 for a.e. x € Q, the set Qj = {z € Q|bj(z) > 0}
is open, and ess sup,cq b;j(z) > 0 for every open set € such that Q' C Q;;
moreover, Q; C Qy and 89 NIy =0 for each i € {1,...,n}.

Letbo()—bo()lfl‘GQOandbg(): lfIL‘EQ\QO We
denote by H b(Q) the vector space of functions of the form w = bO 12, v,
where v € Ly(€2), such that for every ¢« € {1,...,n} the restriction of
w to €; admits a generalized derivative w,, € L2’1OC(QZ') and, moreover,

b; / wai € L2(9;) (to simplify notation, we regard bi1 / 2wmi as an element of
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Ly(9)). We introduce a seminorm on H%(Q) by [Jw| := (Hbé/QwHZLQ(Q) +
Yoy Hbl/zwzi ][%2(9))1/2. It is easy to check that H(Q) is the completion

of Wp(_)(Q) with respect to the seminorm || - || (see [5]).

Let us introduce vector space C([0,T]; HP(€)) consisting of those
functions h : [0,7] — H®(Q) for which b(l)/Qh € C([0,T]; L2(€2)) and
b;ﬂhri € C([0,T]; La(Q)) (i = 1,n). We endow this space with a semi-
norm

Il sy = s 1067 (IR Dl

n

b2 (Vha (-t .
+¢:1 nax, 116;"% () ha; ()] Lo)

Set by definition

Vp = Wl() (Q), Ub = WLO

P p(.)(Q) ﬂC([O,T];flb(Q)).

Clearly, for every w € UZI)’ we have w(-,t) € V), for a.e. t € [0,T].

Finally, denote by [F,; the space of vector-functions (fo, f1,..., fn)
such that f; € L, ()(Q), and f; = 0 a.e. in some neighborhood of the
surface X1 (i = 1,n).

Now let us introduce classes of the data of the problem (2.1)—(2.3).

Define A,(1—-3) to be the set of functions (ao, a1, ..., ay) that satisfy
the following assumptions:

(A1) for every j € {0,1,...,n}, the function
Q x RY™™ 35 (x,t,5,6) v aj(x,t,5,€) €R
is Caratheodory, i.e., a;(x,t,,) : R™ — R is a continuous func-
tion for a.e. (z,t) € Q, and a;(-,-,s,€) : @ — R is a measurable

function for every (s, &) € R17;

(A2) for every j € {0,1,...,n}, every (s,&) € R™” and a.e. (z,t) € Q,
we have

la;(z,t,5,8)] < Cl(‘s‘po(x)/pj’(x) + Z B ’pz(x)/pj’(l‘)) + hy(z, t),
=1

Where Cl = const > 0, h] c ij/(.) (Q)?
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(A3) for every (s1,&%), (s2,£2) € R and a.e. (z,t) € Q,

n

Z (CLi(.’L‘,t, 81751) - ai($7t7 82>§2))(§i1 - 57,2)

=1
+ (a0($,t,51,£1) - (Io(l‘,t, 52752))(51 - 32) > 0. (24)

For simplicity of notations, we denote

Oov :=wv, Ow:=uvy (i=1,n)
for any function v from € or @ to R.

Definition 2.1. Let p;, b; (j = 0,n) satisfy conditions (P), (B), respec-

t’l;’U@ly, up € ‘ﬁb(Q)7 (an f17 cee fn) € ]Fp/7 (a07a17 s aan) € Ap(l - 3)
The function u € Uzg’ is called a weak solution of problem (2.1)—(2.3) if u
satisfies the initial condition (see (2.3))

llu(-, 0) = uo ()|l = 0, (2.5)

and the integral equality

//{(Za] x,t,u, V) aw) (Zbauav) ’}dwdt
://{z:%fjﬁjv}godmdt (2.6)

holds for every v € V,, and ¢ € C}(0,T) := {p € C1([0,T]) | suppp C
(0,7)}.

Denote by A,(1-3,3*) the set of functions (ag, a1, ..., a,) € Ay(1-3)
satisfying an extra condition:

(A3*) if s1 # sg then for a.e. (x,t) € (2\ Qo) x (0,7 the sign “>”
can be replaced by the sign “>" in the inequality (2.4).

Theorem 2.1. If p;, b; (j = 0,n) satisfy conditions (P), (B), respec-
tively, and (ap, a1, . ..,a,) € Ay(1—-3,3%), then the weak solution of prob-
lem (2.1)-(2.3) is unique.

Denote by A,(1—4) the set of functions (ag,ai,...,a,) € Ay(1—3)
satisfying a condition
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(A4) for every (s,&) € RIT™ and for a.e. (z,t) € Q,

Zai(wata 5,5)51’ + CLO(ZU,t, 875)5

§=0
> K1<Z &P @ + |s|m<f>> — g(a,t),
=1

where K1 = const > 0, g € L1(Q).

Note that the function g above satisfies g(z,t) > 0 for a.e. (z,t) € Q
This follows from the inequality in condition (A4) when &, =---=§, =0
and s = 0.

Theorem 2.2. If p;, b; (j = 0,n) satisfy conditions (P), (B), respec-
tively, ug € ﬁb(Q), (fo, fis---, fn) € Fp and (ag, a1, ..., a,) € Ap(1-4),
then problem (2.1)—(2.3) has a weak solution u. Moreover, any weak
solution w of this problem satisfies the following estimate:

e ()17 + // {Z\a”t\pa<x}dmt<@nu0<>|||

+03//{ ‘fj(:c,t)]pj/(x)+g(x,t)}dxdt, (2.7)

where Cy, C3 are positive constants depending only on K1 and p; (i =

Finally, let A,(1—3,3%,4) be the set of functions (ag,a1,...,a,) €
A, (1-3) satisfying both conditions (A3*) and (.A4).

Corollary 2.1. If p;, b; (j = 0,n) satisfy conditions (P), (B), re-
spectively, ug € H( ), (fo, fiso-os fu) € Fp and (ao,a1,...,an) €
A, (1-3,3%,4), then problem (2.1)~(2.3) has a unique weak solution, and
one satisfies (2.7).

3. Auxiliary statements

In this section, we prove some technical statements, that will be im-
portant for the proof of the main results.

Let wy € C§°(R) be a standard mollifier (see [26, p. 629]), i.e., suppw;
C [-1,1], wi(2) =2 0, wi(—2) = wi(z) if z € R, [wi(z)dz = 1. Con-
sider a family of functions {w, : R — R|p > 0} defined by w,(z) :=
(1/p)wi(z/p) for all z € R and p > 0.
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For every p > 0 we define the mollification of any 1 € L;(Q) by the
rule

Yoz, t) == /w*(x,T)wp(T —t)dr forae. (z,t)€Q,

where ¢*(x,t) = Y(z,t) if x € Q, t € (0,T), and p*(z,t) :=0if x €
Q, t&(0,7).

The following statement is well known for standard Lebesgue spaces
(see [26]). For the generalized Lebesgue spaces it was proved in [23] (see
also the proof of Lemma 1 in [22]).

Lemma 3.1. If r € Loo(2), r(x) > 1 for a.e. x € Q, then for every
function f € L,y(Q) we have

fpﬁ—)of strongly in Lr(~)(Q)'

Lemma 3.2. Suppose that b (j = 0,n) satisfy condition (B), and func-
tions w € W;(’(;(Q) and g; € Ly,.1(y(Q) (j = 0,n) satisfy an identity

// { (ggjaj”>@ - (;bjajwaﬂ))@/} dr dt = 0,

vE Vg, © € CY0,T). (3.1)

Then w € C’([O,T];ﬁb(Q)) and for every 0 € C*([0,T]), v € V,, and
t1,t2 € [O,T], t1 < ta, we have

/{Zb )0jw(z, t2)0v(x )}dw
Q
Q/{Zb 2)djw(x, t1)d;v(x )}dx

+jg/ { (ggjaﬂ,)e _ (jz::objajwaju> 0’} dvdt =0, (3.2)
LB )P — Lo 1)1 - / (120

+t1/9/<§gjajw>edmdt:0. (3.3)
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Proof. Let us construct functions w,g; : Q@ x (=7,27T) (j =0,n) by

w(z, —t) it —T<t<0,
w(x,t) = ¢ w(w,t) if0<t<T,
w(z,2T —t) if T <t < 2T,
—gj(x,—t) if —T<t<0,
gj(x,t) := < gj(x,t) if0<t<T,

—gj(x,2T —t) if T <t<2T.

It is easy to check that the equality

Z:/{<ji)§jajv>(p (jz::objajwaj'l))(pl}dfﬂdt—o (3.4)

holds for every v € V,,, ¢ € C3(~T,2T).
Now let {w, | p > 0} be the functions introduced earlier in this section.

Choose a number ko € N such that 1/ky < T'/2. By definition, for each
k > ko we set

Wpla,7) = / B, t) wy p(t — 7) dt

Gj.e( :/j:rtwl/kt—T)dt j=0,n,
R

for every 7 € [-T/2,T] and for a.e. x € Q.
According to Lemma 3.1, we have

8y — O;w in L 0,0 (X (=T/2,T)), j

k—o0

0,n

—~~
g,o
t

~—

1/2810 k—>b/8w in Ly(Qx (=T/2,T)), j=0,n, (3.6)

gjyk/l kjogj in ij’(~) (Q X (_T/QvT))7 ] = Oa

S
—~~
o
N |
~—

Note that b}/*0;@y € C([~T/2,T}; L2(2)) (k > ko, j = 0,n).
For each 7 € [T'/2,T] and k > ko we substitute wy /(- — 7) for o(-)
n (3.4), which yields

b] 3 W (z, 7) Oju(x) + iﬁj,k(a:,ﬂ djv(x) pdz = 0. (3.8)
Q

]:O ]ZO
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Let k,1 € N be arbitrary numbers such that k,I > kg. Set wy :=
Wy, — Wy, Gjki = gjk — gji (j =0,n). Then it follows from (3.8) that

/ { Z bi( 8 Wi (x, T) Ojv(z) + Z@-Jd(wﬁ) 8jv($)}dx =0,(3.9)
=0

where v € V,, 7 € [-T/2, T).

Take a function § € C1(R). For every 7 € [-T/2, T), the functions
Wy (-, 7) O(7) belong to V). Substituting wy (-, 7)6(7) for of v(-) in (3.9)
and integrating the obtained equality for 7 from ¢; to to (—=T/2 < t; <
to < T), we get

/(Zb )| 0@ (¢ T)|2>9(T)
j/<
[

t1 Q
Now suppose

0<O(r)<1 if TeR, 6(r)=0 if 7<-T/2,
O(t)=1 if 7>0, 0/ (7)| <4/T if 7e€[-T/2,0].

Taking t; = —7'/2 and to =t € [0,7] in (3.10), we obtain

T=t2

dx

T=t1

M:

bj(x)|0jWp (z, T)|2>9/(7') dx dr

l\DM—l
I
o

J

M:

(x,7)0jwk (x, T)} O(7)dxdr =0. (3.10)

Il
o

1@ktll oo, 77,70 ) =, |||wkl( |||2<* / @t (-, 7)1 dr
~T/2
T n
+2 //{Zlﬁm(ﬂw)\8j@kz(m,7)|}d:cd7. (3.11)
—r/2Q 70

In view of (3.5)—(3.7), it follows from (3.11) that

1/2 o ~ : ) .
b; ajwklk,:rmo in C([0,T]; L2(S2)), j=0,n.

Therefore {b;/ 23]'@1«}20:1 (j = 0,n) are Cauchy sequences in the space
C([0,T7; L2(€2)) and hence

1/24 ~ 1/24 ~ . _ .
b; 6kak_>—+>oobj o;w in C([0,T); L2(€2)), j=0,n. (3.12)
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Hence b/*9;w € C([0,T7; L»(92)) (j = 0,n) and w € C([0,T]; H*(2)).
Take an arbitrary function § € C'1([0,7]) and any points t1,t, € [0,T
)

]
such that t; < to. For each 7 € [0,T], we multiply both sides of (3.8) by
0(7) and integrate for T over [t1,ta]:

// <Zb 3 w2, 7)} @jv(l‘))Q(T) dzdr
+t1/9/ { gﬁj’k(ﬂﬂ)ajv(@@(ﬂ} dzdr =0. (3.13)

Then we integrate by parts the first term in the left-hand side of
equality (3.13), and let k¥ — +o0. In view of (3.7), (3.12), we get (3.2).

Finally, for each 7 € [0,T] and k > ko we substitute wy (-, 7)8(7) for
v(+) in (3.8), then integrate for 7 over [t1,t2]. Similarly to (3.10), we get

T=to

dzx

/ (Zb oy, Yot

_;//<§:bj(x)|8j@k(%7)2>9'(7)d:nd7
t q J=0

+jg/{jzn:ogj,k(zﬁ)@j@k(xm)}e(f)d:zdr0. (3.14)

Letting k — 400 in (3.14) and using (3.5), (3.7), (3.12), we get (3.3). O

4. Proof of the main results

For an arbitrary function w € L1 (Q) such that wy,, ..., w;, € L1(Q),
we denote

aj(w)(z,t) := aj(z,t,w(x,t), Vw(z,t)), (z,t)€Q, j=0n

Proof of Theorem 2.1. We assume the contrary. Let u;, us be two weak
solutions of the problem (2.1)—(2.3). Let us subtract equality (2.6) with
u = ug from the same equality with v = w;. Using Lemma 3.2 with
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w=u; —u, §=1,t =0, ta =7 € (0,T], we get (see (3.3))
/{Zb )|0ju(z, T) — 8qu(m,7)\2}dac

+O/Q/ 2 (aj(ur) — aj(u2))(05u1 —8ju2)}d$dt =0,
€ (0,7]. (4.1)

This equality and (A3) yield Z?:o bj|0ju1 — djusl® = 0 a.e. on Q, and
> i—olaj(ur) — a;(u2))(9jur — djuz) = 0 a.e. on Q. The first equality
implies that w(z,t) = 0 for a.e. (x,t) € Qp x (0,T"). The second equality
and condition (A3*) imply that w(z,t) = 0 for a.e. (z,t) € (Q\Qp) X
(0,T). Therefore w(z,t) = 0 for a.e. (z,t) € @, that is, u; = ug. We
have arrived at a contradiction, which proves the theorem. O

Proof of Theorem 2.2. We use Galerkin’s method. Let {w;|j € N} be a
set of linearly independent functions from V,, that is complete in V,, and
in E[b(Q). For each m € N, let U, := {dlwl—i---'—i-dmwm |di,...,dn €
]R} be the span of {w1,...,wy} . Obviously, the closure of (J,,cy Um by
the norm WZ}(,)(Q) coincides with V,, while the closure of |J,,cy Um by
the seminorm || - || coincides with H®(Q).

We take a sequence {UO,m}j:zl such that ug,, € U, for all m € N
and

o — womll — 0. (42)

Notice that for every n € (0,1] and for a.e. = € 2, we have

2(2) ~ (bs() + 1) " |osu0m

j=0n.

2

)

2
x)‘ < 4(bj(z) + 1)‘ajuo,m(x)

By the Dominated Convergence Theorem, for every m € N we get

— 0, j=0,n.

12 1/2
Hbj Ojttom = (bj + 77) ) 1—0+

Therefore there exist sequences of positive numbers {n;,,}5°_; (j =0,n)
such that 7, — 0 (5 =0,n) and
m—+o0o

1/2 1/2
Hb]/ aqu,m - (bj + nj,m) '

— 0, j=0,n (4.3)

(Q) m——+00
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Set by definition

bjm(x) = bj(x) + Njm, =€Q, j=0,n, meN. (4.4)

Therefore, by (4.2)—(4.4), we have

Hb;”ajuo ~ b2, UOm‘ 0, j—0.n. (4.5)

—
L2(Q2) m—+o0
According to Galerkin’s method, for every m € N we set
m
=S ensluwn(a), (2,0) €Q, (4.6)
k=1

where (¢m,1, - - -, €m,m) are solutions of the Cauchy problem for the system
of ordinary differential equations

/{ijm[ aum}awl}dawg/{

teo,T], l=T,m, (4.7)

U, L:O = UQm- (4.8)

The system (4.7) can be transformed into the normal form. Hence,
according to the theorems of existence, uniqueness and extension of the
solution to this problem (see [25]), there exists a unique global solution
(C1ms -+ -+ Cmm) of problem (4.7), (4.8). This solution is defined on an
interval [0, T},,), where T;,, < T and ) means either ) or |. Further we will
get estimates that imply the equality [0,7,,) = [0,T].

For each [ € {1,...,m}, we multiply equality with number [ of (4.7)
by ¢y, then sum up over [. Next we integrate for ¢ over an interval
[0,7] C [0,T}y,). Integrating by parts and using (4.6), (4.8), we obtain

/{ijm )0 (2, T)|2} x—/{Zb]m )|0;110,m ()] }dm

+O/!{j§0aj(um)8jum}dxdt—//{;fjajum}dxdt. (4.9)

0 Q

Now we need the following form of Young’s inequality:

71 /
ab < ela|" @ 4 = =1p"@  abeR, ee(0,1), (4.10)
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for a.e. x € Q, where r € Loo(Q), r~ = essinfcqr(z) > 1, r'(z) =
r(x)/(r(x) — 1) for a.e. z € Q.

Using condition (.A4) and inequality (4.10) with small enough ¢ €
(0,1), for example, ¢ = 3 min{1, K1} > 0, we derive from (4.9) that

/{ijm )0j [t (z, T ]2}da:

7=0
+K1//{Z|8umxt |ps (= }dxdt

//nya:t!pﬂ d:vdt—i—Q//g(x,t)dxdt
0 o J=0 .
!{]Zob]m )| 0510, m (2 )Q}dg;, 7€ (0,T). (4.11)

It follows from (4.5) that the sequences { [, >0 bjm (2)|0juo m ()] x
dx}:;ol are bounded. Hence (4.11) implies the estimates

/{Zbam )|9jum (z T)’2}dx<087 (4.12)
O/Q/ { ]Z; Iajum(w,t)lpf(l’)} d dt < C, (4.13)

where 7 € (0,T,,) is arbitrary and Cg, Cy are positive constants indepen-
dent of 7 and m.

Note that (4.12) implies that [0, 7},) = [0, T]. Therefore the estimates
(4.12), (4.13) hold for each 7 € [0,T].

Condition (A2) and estimates (4.13) yield

//|a] U ) (2, 8) [P’ @ da dt < Cyg, =0, n, (4.14)

where C19 > 0 is independent of m.

Since the spaces Ly, (y(Q), Lp,/(1(Q) (j = 0,n) are reflexive (see [17,
p. 600]), it follows from (4.12), (4.13) and (4.14) that there exists a
subsequence of the sequence {u,,} (which will be denoted by {wm }men
for simplicity), functions u € WN/;(’_O)(Q), Uj € Loo(0,T;L2(2)) and x; €
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Lyy(Q) (5=

bjl.ﬁ@jumm:oﬂj «-weakly in Lo (0,75 L2(2)), j=0,n, (4.15)

,n) such that

U — U weakly in WI}(%(Q), (4.16)
a;(tm) X weakly in L, ,1(Q), j=0,n. (4.17)

Let us prove that u is a weak solution of problem (2.1)—(2.3). First
note that

i b/ strongly in L2(€2) and a.e. on Q (j =0,n). (4.18)

1M im0

Now let us show that

i = bl/Qaju (j=0,n) ae. on Q. (4.19)

Indeed, take an arbitrary function ¢ € C(Q). Then (4.15) yield that

// b2 0wt da dt M //uji/}dxdt j=0,n. (4.20)

Using the Dominated Convergence Theorem and (4.18), it is easy
to show that b}/> — b/%p in L,.(y(Q) (j = 0,n). By (4.16), we

m—+00

obtain

//ajum b2 dudt = //a bl *pdedt, j=0,n. (4.21)
q

Relations (4.20), (4.21) imply that for every ¢ € C(Q) the equalities

//ujwdmdt //b1/28 whdedt, j=0,n,

hold, which implies equalities (4.19).

Fix number [ € N and m € N such that m > [. We multiply equality
with number [ of (4.7) by a function 8 € C1([0,T]) such that §(T) = 0,
then integrate for ¢ over [0,T]. Next we integrate by parts and let m —
oo. In view of (4.5), (4.8), (4.15)—(4.19), we get

Zb 0suol)dyun(x) g dor= Zbauﬁwz o' d dt
of{ e ] (Smomam)
//(Zn: - f3) awl>0d$dt—0 (4.22)

J=
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The latter equality implies that for every v € V, and 8 € C*([0,T]),
6(T) =0,

-0 [ {Semionsia) e ] (Soaman)oaca

n

//(Z = f5) 8v>9dmdt_o (4.23)

Jj=0

Notice that if we take § = p € C3(0,T) in (4.23), then

// { z”: ((xj — f;)050)p — <
g =0

for every v € V, and ¢ € C}(0,T). According to Lemma 3.2, (4.24)
implies that

bjajuajv) cp'} dedt =0 (4.24)
=0

j=

ue C([0,T); H () (4.25)
and for every v € V,, and 6 € C1([0,77), (T) = 0, the equality

Q/{Zb 2)d5u(z,0)0 }dm—//(Zb@u@v)&dl«dt

n

//(; — [ 3v>9dxdt—0 (4.26)
holds.

Now (4.23) and (4.26) imply (2.5). In view of (4.16) and (4.25), we
conclude that u € Ué’ .
According to (4.24), to prove (2.6) it is enough to show that the

equality
!{;xﬁjv} da:zﬂ/{jii%aj(u)ajv}dx (4.27)

is valid for every v € V, and for a.e. ¢ € (0,7). To this end, we use
the monotonicity method (see [27]). Take an arbitrary function w €

W;(O)(Q) Using condition (.A3) for every m € N, we obtain

Wiy, = //{ (a; (tm —aj(w))(ajum—ajw)}edxdtz 0,
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where 0(t) =1—t/T, t € R.
Hence

Wm—//{ a; umaum}ﬂdxdt //{ aJ Uy ) Ojw
Jj= Jj=
+ aj(w)(0jun — Ojw)] } Odrdt>0, meN. (4.28)
For each [ € {1,...,m}, we multiply equality with number [ of (4.7) by

¢m,10 and then sum up over [. Next we integrate for ¢ over [0,7], then
integrate by parts and use (4.6) and (4.8). We obtain

//{Zaj(um)ajum}edxdt://{ijajum}edxdt

Q 70 Q 770

— ;// (ij7m’8jum‘2) daﬁdt—i—;/{ij7m‘ajU(]7m‘2}d.%’
Q J=0 o ~J=0

m € N. (4.29)

By (4.28) and (4.29), we get

Wm://{zz%fjajum}edwdt—;//{ibmmwjump}daydt

Jj=0

n

3 [ {Sonmannr e [ {3t

Jj=

+ a;j(w) (0jum — Ojw)] }0 dedt >0, meN. (4.30)
The relations (4.15), (4.19) imply

. . 2 2 : 2
rr}l—Igo inf // { E bj,m|8jum\ } dx dt > // { bj |8J’U,‘ } dx dt.
@ =0 Q 7

(4.31)
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Using (4.5), (4.16), (4.17) and (4.31), we derive from (4.30) that
0< 77}iﬁmoosup Wi < // { ij(?ju}ﬁ dx dt
i=1
Q
1 - 2 1 - 2
~ 97 Zb]\aju\ dx dt + B ij|6jU0| dx
Q J=0 o ~J=0

_ / / { zn: ;05w + aj(w) (@ — jw)] } 0 dvdt. (4.32)
Q

J=0

Using Lemma 3.2 and (2.5), we derive from (4.24) that

//{jzn:OXjaju}dedt = // { ]Zn;fjaju}edxdt

]. n 1 n
_ﬂ//{zbj\ajup}dxdwr2/{25”3],“0?}% (4.33)
Q 7=0 o =0

Now (4.32) and (4.33) imply that
// { Zn:(xj —aj(w))(0ju — @w)} Odxdt > 0. (4.34)
Q =0

In the case w = u — \vyp, where v € V,,, ¢ € C3(0,T) and A > 0,
inequality (4.34) implies that

// { zn:O(Xj —aj(u - )\w))ajv}ego dx dt > 0. (4.35)
Q =

Letting A — 0+ in (4.35), using conditions (A1), (\A2), and the Domi-
nated Convergence Theorem (see [26, p. 648]), we obtain

//Q { jé)(Xj - aj(u))ajv}&p dz dt =0

for all v € V,, and ¢ € CL(0,T). Therefore, (4.27) holds.
From (4.24), taking into account (4.27), we get (2.6). It follows that
u is a weak solution of problem (2.1)—(2.3).
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Finally, let us prove estimate (2.7). Take an arbitrary weak solution
u of problem (2.1)—(2.3). Using Lemma 3.2 with 0 =1,¢; =0,ta =7 €
(0,77 (see (3.3)), we derive from (2.6) that

! Q/ {jzn;)bj<x>\aju<m>|2}dx+ / Q/ {3 awol dra

Jj=0

:O/ng/{;fjaju} dmdt—l—/{ :obj(x)ijO(m)'Q}d%

[e) J

To complete the proof of (2.7), we proceed in the same way as in the
proof of inequality (4.11), this time using (A4) and (4.10). O
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