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A class of periodic integral equations with
numerical solving by a fully discrete

projection method
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(Presented by A. M. Samoilenko)

Abstract. For a class of integral periodic equations of the first kind the
problem of stable approximate solving is considered. The error estimates
in the metric of Sobolev spaces for a fully discrete projection method with
two discretization parameters are established. For choosing the level of
discretization a balancing principle is used.
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Introduction

As is known elliptic pseudodifferential equations are frequently found
in various problems of natural sciences that can be described by a bound-
ary value problems such as Laplace, Neumann or Helmholz equations.
Moreover by solving such equations the special class of periodic inte-
gral equations arises that contains the elliptic pseudodifferential equa-
tions. Such problems are well-known and were investigated, for example,
in [2,4,7]. It is known that the mentioned problems are unstable by direct
solving in the case of perturbed data but can be selfregularized by dis-
cretization on the appropriate pair of spaces. Therefore to obtain a good
approximation it is necessary to find a fitting discretization parameter
that is considered as regularization parameter. A too large discretiza-
tion parameter leads to instability in approximation and a too small one
gives high error bound. Thus it is necessary to use special techniques for
choosing an appropriate discretization level. In this paper a balancing
principle is proposed for this purpose. Due to this principle, our method
does not need knowledge of the smoothness level for the exact solution.
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For an approximative solving the mentioned periodic integral equa-
tions fully discrete collocation and projection methods are widely used
(for a detailed review on this topic see [7]). In the framework of the paper
only fully discrete projection methods will be considered. Moreover here
we apply some modification of it that was firstly proposed for solving the
integral Symm equation (see Example 1.1) in [4]. Further, such a way
for discretization was investigated in [8] by solving the same equation
but on the scale of Sobolev spaces. In the paper this approach will be
applied on wide class of pseudodifferential equation with saving the order
of accuracy.

1. Statement of the problems

In the space L2(0, 1) we consider the following integral equation

Au(t) = f(t), t ∈ [0, 1], (1.1)

where f is a 1- periodic function and the operator A has the form

A =

q∑
p=0

Ap, Apu(t) =

1∫
0

kp(t− s)ap(t, s)u(s) ds. (1.2)

Let’s denote by C∞ = C∞([0, 1]2) the space C∞ of infinite smooth 1-
biperiodic functions of two variables. Suppose that ap ∈ C∞([0, 1]2), p =
0, . . . , q, and

a0(t, t) ̸= 0, ∀ t ∈ [0, 1]. (1.3)

Moreover, assume that kp(t) is a 1-periodic function with known Fourier
coefficients k̂p(n) with respect to the trigonometric basis. Additionally,
we suppose that for some α ∈ R and β > 0 the following inequalities

c00|n|α ≤ |k̂0(n)| ≤ c0|n|α, n ∈ Z/0, (1.4)

|k̂0(n)− k̂0(n− 1)| ≤ cnα−β , n ∈ Z, (1.5)

|k̂p(n)| ≤ cnα−β , n ∈ Z, p = 1, . . . , q, (1.6)

hold true, where c, c0, c00 > 0 and

n =

{
|n|, n ∈ Z/0
1, n = 0.
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Denote by Hλ1 and Hλ1,λ2 , −∞ < λ1, λ2 < ∞, Sobolev spaces of
1-periodic and 1-biperiodic functions with the norms

∥u∥λ1 :=

(∑
n∈Z

|n|2λ1 |û(n)|2
)1/2

<∞,

∥a∥λ1,λ2 :=

( ∑
(k,l)∈Z2

|k|2λ1 |l|2λ2 |â(k, l)|2
)1/2

<∞

respectively. Here

û(n) =

1∫
0

e−n(t)u(t) dt, â(k, l) =

1∫
0

1∫
0

e−k(t)e−l(s)a(t, s) dt ds

are the Fourier coefficients of the functions u(t) and a(t, s) with respect
to the trigonometric basis {ek}+∞

k=−∞, where ek(t) = ei2πkt, t ∈ [0, 1].

Further we will consider the equation (1.1) in the scale Hλ1 .
Note, that in the general case the operator A : H0 → H0 is unsta-

ble and the corresponding equation in space H0 should be regularized.
Following [7, Ch. 7], we write the operator A (1.2) as

A = D +A′
0 +

q∑
p=1

Ap, (1.7)

where D ∈ L(Hλ,Hλ−α) is performing the isomorphism between the
spaces Hλ and Hλ−α and the operators A′

0, Ap ∈ L(Hλ,Hλ−α+β), p =
1, . . . , q, are compact on the pair of spaces Hλ and Hλ−α. This yields the
statement that the operator A performs the isomorphism between Hλ

and Hλ−α and the equation (1.1) is uniquely solvable. Thereafter there
are constants c′λ, c

′′
λ > 0, such that for any v ∈ Hλ the following relation

c′λ∥v∥λ ≤ ∥Av∥λ−α ≤ c′′λ∥v∥λ (1.8)

holds true.
Further we will assume that the exact solution of equation (1.1) be-

longs to some Sobolev spaces, namely u ∈ Hµ for some µ > α+ 1/2 and
∥u∥µ ≤ 1. Then due to (1.8) we have that f ∈ Hµ−α and ∥f∥µ−α ≤ c′′µ.

Note that the set of classical elliptic pseudodifferential equations satis-
fies the conditions (1.3)–(1.6) (see for detail [6]). Below, we cite examples
of some equations that satisfy the conditions (1.3)–(1.6).
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Example 1.1. The typical example of an equation from the class under
consideration is the integral Symm equation

Au(t) :=
1∫

0

k0(t− s)u(s) ds+

1∫
0

a1(t, s)u(s) ds = f(t), (1.9)

k0(t− s) = log | sinπ(t− s)|, (1.10)

a1(t, s) =


log |x(t)−x(s)|

| sinπ(t−s)| , t ̸= s

log(|x′(t)/π|), t = s,

where x(t) is some function such that |x′(t)| ≠ 0 for t ∈ [0, 1]. It is well-
known that the kernel a1(t, s) of the operator A1 is a C∞-smooth and
1-biperiodic function and Fourier coefficients of k0(t) have the form

k̂0(n) =

{ 1
2|n| , n ∈ Z/0
log 2, n = 0.

It is evident that the conditions (1.3)-(1.6) are satisfied for a0(t, s) =
k1(t, s) ≡ 1, α = −1 and any β > 0.

Example 1.2. The integral equation

1∫
0

|x(t)− x(s)|2 log |x(t)− x(s)|u(s) ds = f(t), t ∈ [0, 1],

arises in the solution of biharmonic Dirichlet problems in a bounded
domain with smooth Jordan boundary (for more detailed information,
see for example, [1], [7, Ch. 6]). We rewrite the equation in the form

1∫
0

k0(t− s)a0(t, s)u(s) ds+

1∫
0

a1(t, s)u(s) ds = f(t),

where

a0(t, s) =
|x(t)− x(s)|2

sin2 π(t− s)
for t ̸= s, a0(t, t) =

|x′(t)|2

π2
,

a1(t, s) = |x(t)− x(s)|2 log |x(t)− x(s)|
| sinπ(t− s)|

for t ̸= s, a1(t, t) ≡ 0,

k0(t) = sin2 πt log | sinπt|.
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The Fourier coefficients k0 are known and have the following form

k̂0(0) = −1

2
log 2 +

1

4
, k̂0(±1) =

1

4
log 2− 3

16
,

k̂0(n) =
1

4|n|(n2 − 1)
, |n| ≥ 2.

It is easy to see that the conditions (1.4)–(1.6) are satisfied for α = −3,
β = 1. Thus, the equation under consideration is also included in the
investigated class of problems.

To make the smoothness properties of functions ap, p = 0, . . . , q,
more precise we introduce the space of Gevre’s functions of Roumieu
type (see [3, p. 112]):

Gη1,η2 =

{
a ∈ C∞ : ∥a∥2η1,η2

:=

∞∑
k,l=−∞

|â(k, l)|2e2η2(|k|1/η1+|l|1/η1 ) <∞
}
, η1, η2 > 0. (1.11)

Note that with η1 = 1 by (1.11) it follows that the function a(t, s) has
analytic continuations in both variables into the strip {z : z = t+is, |s| <
η2
2π} of the complex plane. Further we suppose that ap ∈ Gη1,η2 , p =
0, . . . , q, for some η1 ≥ 1 and η2 > 0.

2. Auxiliary statements

For the further presentation of our results we will use the following
notations. We introduce the n-dimensional subspaces of trigonometric
polynomials

TN = {uN : uN (t) =
∑
k∈ZN

ckek(t)},

ZN =

{
k : −N

2
< k ≤ N

2
, k = 0,±1,±2, . . .

}
. (2.1)

We denote by PN and PN,N the orthogonal projectors

PNu(t) =
∑
k∈ZN

û(k)ek(t) ∈ TN ,

PN,Na(t, s) =
∑

l,k∈ZN

â(k, l)ek(t)el(s) ∈ TN × TN ,
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and by QN and QN,N the interpolation projectors, such that QNu(t) ∈
TN , QN,Na(t, s) ∈ TN × TN and on the uniform grid we have

(QNu)(jN
−1) = u(jN−1), j = 1, 2, . . . , N,

(QN,Na)(jN
−1, iN−1) = a(jN−1, iN−1), j, i = 1, 2, . . . , N.

It is well-known (see, for example, [7, Ch.8]), that

∥u− PNu∥λ ≤
(
N

2

)λ−µ
∥u∥µ, λ ≤ µ, u ∈ Hµ, (2.2)

∥u−QNu∥λ ≤ cλ,µN
λ−µ∥u∥µ, 0 ≤ λ ≤ µ, µ >

1

2
, u ∈ Hµ, (2.3)

where cλ,µ =
(
1
2

)λ−µ
γµ and γµ =

(
1 + 2

∑∞
j=1

1
j2µ

) 1
2 .

Moreover, for any vN ∈ TN according to the inverse Bernshtein in-
equality it holds

∥vN∥µ ≤
(
N

2

)µ−λ
∥vN∥λ, λ ≤ µ. (2.4)

3. Fully discrete projection method

Let’s approximate A in the following way

AM =

q∑
p=0

Ap,M , (3.1)

where the operators Ap,M , p = 0, . . . , q, have the form

Ap,Mu(t) =

1∫
0

kp(t− s)ap,M (t, s)u(s) ds, ap,M = QM,Map (3.2)

We approximate the right-hand side of equation (1.1) as follows

fN := QNf,

where N > M . The main idea of the fully discrete projection method
(FDPM) for equation (1.1) consists in solving the equation

PNAMuM,N :=

q∑
p=0

PNAp,MuM,N = QNf, (3.3)
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where Ap,M have the form (3.2) and uM,N ∈ TN is considered as approxi-
mate solution of (1.1). Note that in virtue of (1.4) and (1.5) it holds true
that A0,M ∈ L(Hλ,Hλ−α) and Ap,M ∈ L(Hλ,Hλ−α+β), p = 1, . . . , q.

Let’s introduce the following auxiliary functions

z1 := z1(λ
′′, λν) = γλ′′+1 + γλν+1 + γλ′′+1γλν+1,

z2 := z2(λ
′′, λ) =


2|λ

′′|+|λ|+2γ|λ′′|γ|λ|, |λ′′| > 1
2 , |λ| >

1
2

2ν+|λ′′|+2γνγ|λ|, |λ′′| ≤ 1
2 , |λ| > 1/2

2|λ
′′|+ν+2γνγ|λ′′|, |λ′′| > 1

2 , |λ| ≤ 1/2

22(ν+1)γ2ν , |λ′′| ≤ 1
2 , |λ| ≤ 1/2,

z3 := z3(λ− α) = c0


2λ−α+1γλ−α, λ− α > 1

2

2λ−α+1γν , 0 ≤ λ− α ≤ 1
2

2|λ−α|γν , λ− α ≤ 0,

where

λ′′ =

{
max{λ′, ν}, λ− α > 1

2

λ′, λ− α ≤ 1
2 ,

λ′ =


λ− α, λ− α > 1

2 ,

ν, 0 ≤ λ− α ≤ 1
2 ,

|λ− α|+ ν, λ− α ≤ 0,

λν = max{|λ|, ν} and ν > 1/2 is some arbitrary parameter.
The following result is taken from [9] and describes some approxima-

tive property of the operator discretized by scheme (3.1).

Lemma 3.1 ([9]). Let the conditions (1.4)–(1.6) be satisfied and the op-

erator AM has the form (3.1). Then for allM :M ≥ 2max{(η1(λ
′′+1)
η2

)η1 ,

(η1(λν+1)
η2

)η1} and any ν > 1/2 it holds true

∥(A−AM)v∥λ−α ≤ z4e
−2η2(M

2 )
1/η1

(
M

2

)λ′′+λν
∥v∥λ,

where z4 := z4(λ, ν, α) = c2z1z2z3, c2 = (q + 1)maxp{∥ap∥η1,η2}.

Further, we rewrite the stability inequality for the operator PNA that
was established in [7].

Lemma 3.2 ( [7, Lemma 9.8.2.]). Let the conditions (1.3)–(1.6) be
fulfilled. Then for any λ ∈ R and v ∈ TN it holds true that

∥v∥λ ≤ dλ∥PNAv∥λ−α,

where dλ > 0 is some constant.
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The estimate of the accuracy for FDPM on the class of problems
(1.1)–(1.6) with unperturbed input data is established in the following
assertion (for detail see [9]).

Theorem 3.1 ([9]). Let the conditions (1.3)–(1.6) be fulfilled, and the
operator AM has the form (3.1). Then for any ν > 1/2, λ ≤ µ, µ >
α+ 1/2 and for all

M :

[
M ≥ 2max

{(
η1(λ

′′ + 1)

η2

)η1
,

(
η1(λν + 1)

η2

)η1 }
,

z4e
−2η2(M

2 )
1/η1

(
M

2

)λ′′+λν
≤ 1/2

]
it holds true that

∥u− uM,N∥λ ≤ z5

(
N

2

)λ−µ
+ 2dλz4e

−2η2(M
2 )

1/η1

(
M

2

)λ′′+λν
, (3.4)

where z5 := z5(λ) = 1 + 4dλc
′′
λ.

Following [7], we suppose that instead of the functions ap(t, s),
p = 0, . . . , q, and f(t) we are given only some their perturbations ap,ε(t, s),
p = 0, . . . , q, and fδ(t) such that in the points of uniform grids we have

M−2

( M∑
i,j=1

|ap,ε(iM−1, jM−1)− ap(iM
−1, jM−1)|2

) 1
2

≤ ε, p = 0, . . . , q,

N−1

( N∑
j=1

|fδ(jN−1)− f(jN−1)|2
)1/2

≤ δ∥f∥µ−α.

It is easy to show (see, for example, [7, p. 100]), that the mentioned
estimates are equivalent to

∥QM,M (ap − ap,ε)∥0,0 ≤ ε, p = 0, . . . , q, (3.5)

∥QN (fδ − f)∥0 ≤ δ∥f∥µ−α (3.6)

respectively. Then, taking into account the perturbation of the input
data the FDPM has the form

PNAM,εuM,N,ε,δ = QNfδ, (3.7)

where uM,N,ε,δ ∈ TN and AM,ε =
∑q

p=0Ap,ε,M , Ap,ε,Mv(t) =
∫ 1
0 k(t−s)×

QM,Map,ε(t, s)v(s) ds.
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The above described variants of FDPM (3.3) and (3.7) for M = N
are widely used for solving periodic integral equations (1.1) with condi-
tions (1.4)–(1.6) (for the detail see [7]). The distinction of our approach
to solution from classical one is that in (3.3) and (3.7) the idea of sepa-
rating discretization levels for the right-hand side and the operator will
be realized. Now our aim is to find error estimates for FDPM (3.7) with
separated discretization levels on a wide class of equations (1.1) with the
conditions (1.4)–(1.6) in the metric of the spaces Hλ, λ < µ. Moreover
we pose the problem to consider both cases, a priori and a posteriori,
for choosing the discretization levels. The a posteriori way allows us to
choose the discretization levels without precise knowledge of the smooth-
ness of the exact solution and to keep the same order of error bound as in
the a priori case. In the a priori case such approach allows to reduce the
information expenses (i.e. the volume of discrete information in view of
the values of the functions f(t) and ap(t, s) in the points of the uniform
grid) that is necessary for achieving the given accuracy in comparison
with similar estimates known earlier in [7]. This is possible due to the
separation of the discretization parameters for the right-hand side and
the operator of the equation under consideration.

To achieve the goal of our investigation we state at first some auxiliary
estimates.

Lemma 3.3. For any ν > 1/2 and λ ≥ α it holds true that

∥AM −AM,ε∥Hλ→Hλ−α ≤ z2z3(q + 1)

(
M

2

)λ′′+λν
ε.

Proof. According to Lemma 3 in [9] we have

∥Au∥λ−α ≤ z2z3∥a∥λ′′,λν∥u∥λ,

where (Au)(t) =
∫ 1
0 k(t− s)a(t, s)u(s) ds.

Now using the above estimate and inequalities (2.4), (3.5) we find

∥(AM−AM,ε)v∥λ−α ≤
q∑
p=0

∥∥∥∥∥
1∫

0

k(t−s)QM,M (ap,ε−ap)(t, s)v(s) ds

∥∥∥∥∥
λ−α

≤ z2z3

q∑
p=0

∥QM,M (ap,ε − ap)∥λ′′,λν∥v∥λ

≤ z2z3(q + 1)

(
M

2

)λ′′+λν
ε∥v∥λ,

which is the required result.
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Lemma 3.4. Let the conditions of Theorem 3.1 be fulfilled and uM,N,δ ∈
TN be the solution of the equation

PNAMuM,N,δ = QNfδ.

Then, for any λ ∈ [α, µ] and M such that

M :

[
M ≥ 2max

{(
η1(λ

′′ + 1)

η2

)η1
,

(
η1(λν + 1)

η2

)η1 }
,

max{1, dλ}z4e−2η2(M
2 )

1/η1

(
M

2

)λ′′+λν
≤ 1/2

]
, (3.8)

it holds true that

∥uM,N,δ − uM,N∥λ ≤ cλ

(
N

2

)λ−α
δ, (3.9)

where cλ = 2dλc
′′
µ.

Proof. Using Lemmas 3.1 and 3.2, inequalities (2.4) and (3.6) we find

∥uM,N − uM,N,δ∥λ ≤ dλ∥PNA(uM,N − uM,N,δ)∥λ−α
≤dλ∥PNAM (uM,N − uM,N,δ)∥λ−α+ dλ∥PN (A−AM )(uM,N− uM,N,δ)∥λ−α

≤ dλ∥QNf −QNfδ∥λ−α + dλ∥(A−AM )(uM,N − uM,N,δ)∥λ−α

≤dλ
(
N

2

)λ−α
δ∥f∥µ−α+dλz4e−2η2(M2 )

1/η1

(
M

2

)λ′′+λν
∥uM,N−uM,N,δ∥λ.

Therefrom, taking into account the condition of the lemma the estimate
yields

∥uM,N,δ − uM,N∥λ

≤ dλ

1− dλz4e
−2η2(M

2 )
1/η1 (M

2

)λ′′+λν
(
N

2

)λ−α
δ∥f∥µ−α

≤ cλ

(
N

2

)λ−α
δ.

Lemma 3.5. Let M ∈ N satisfy the condition (3.8) and moreover

M : 2ε < z1max
p

{∥ap∥η1,η2}e−2η2(M
2 )

1/η1

. (3.10)

Then, for all v ∈ TN it holds true that

∥v∥λ ≤ d′λ∥PNAM,εv∥λ−α,

where d′λ = 4dλ.
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Proof. Using Lemmas 3.1, 3.2 and 3.3 we find

∥v∥λ ≤ dλ∥PNAv∥λ−α
≤ dλ(∥PN (A−AM )v∥λ−α + ∥PN (AM −AM,ε)v∥λ−α + ∥PNAM,εv∥λ−α)

≤ dλ(z4e
−2η2(M

2 )
1/η1

(
M

2

)λ′′+λν
+ z2z3(q + 1)

(
M

2

)λ′′+λν
ε)∥v∥λ

+ dλ∥PNAM,εv∥λ−α.

Hence, due to the conditions of lemma, we obtain

∥v∥λ

≤ dλ

1− dλ(z4e
−2η2(M

2 )
1/η1 (M

2

)λ′′+λν
+ (q + 1)z2z3

(
M
2

)λ′′+λν
ε)

× ∥PNAM,εv∥λ−α ≤ 4dλ∥PNAM,εv∥λ−α,

which proves the statement.

Lemma 3.6. Let the conditions of Lemma 3.5 be fulfilled, then for any

2 ≤ N ≤ δ−
1

λ−α it holds

∥uM,N,δ − uM,N,δ,ε∥λ ≤ z6

(
M

2

)λ′′+λν
ε,

where z6 := z6(λ
′′, λ, α) = c3d

′
λ(q + 1)z2z3, and c3 = 2 + z5 + 2α−λcλ.

Proof. Using Lemmas 3.3 and 3.5 and the fact that the elements uM,N,δ ∈
TN and uM,N,δ,ε ∈ TN are solutions of the equations PNAMuM,N,δ =
QNfδ and PNAM,εuM,N,δ,ε = QNfδ respectively, we find

∥uM,N,δ − uM,N,δ,ε∥λ ≤ d′λ∥PNAM,ε(uM,N,δ − uM,N,δ,ε)∥λ−α
= d′λ∥PN (AM,ε −AM )uM,N,δ∥λ−α

≤ d′λ(q + 1)z2z3

(
M

2

)λ′′+λν
ε∥uM,N,δ∥λ. (3.11)

It remains to estimate the norm of the element uM,N,δ. So, from Theo-
rem 3.1 and Lemma 3.4 for all λ : α < λ ≤ µ, it follows

∥uM,N,δ∥λ ≤ ∥u∥λ + ∥u− uM,N∥λ + ∥uM,N − uM,N,δ∥λ

≤ ∥u∥µ +
(
z5

(
N

2

)λ−µ
+ 2dλz4(λ− α)e−2η2(M

2 )
1/η1

(
M

2

)λ′′+λν )
+ cλ

(
N

2

)λ−α
δ. (3.12)
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Therefrom due to (3.8) for all 2 ≤ N ≤ δ−1/(λ−α) it holds true that

∥uM,N,δ∥λ ≤ c3.

Then from (3.11) the statement of the lemma follows.

4. Selection of the discretization levels

Generalizing the results of the previous section we rewrite the general
error estimate of FDPM. By virtue of Theorem 3.1, Lemmas 3.4 and 3.6,
the accuracy of the method (3.7) is bounded by

∥u− uN,M,δ,ε∥λ
≤ ∥u− uM,N∥λ + ∥uM,N − uM,N,δ∥λ + ∥uM,N,δ − uM,N,δ,ε∥λ

z5

(
N

2

)λ−µ
+ 2dλz4e

−2η2(M
2 )

1/η1

(
M

2

)λ′′+λν
+ cλ

(
N

2

)λ−α
δ

+ z6

(
M

2

)λ′′+λν
ε. (4.1)

Further we consider the problem to select such discretization levels N
and M to minimize the error bound (4.1). At the same time we consider
both cases, namely smoothness parameter µ is known precisely (a priori
case) and value µ is unknown (a posteriori case).

4.1. A priori case

We group the right-hand side (4.1) in two parts:

f1(N,M) := z5

(
N

2

)λ−µ
+ 2dλz4e

−2η2(M
2 )

1/η1

(
M

2

)λ′′+λν
(decreasing for N,M → ∞) and

f2(N,M) := cλ

(
N

2

)λ−α
δ + z6

(
M

2

)λ′′+λν
ε

(increasing for N,M → ∞). It is easy to see that the minimal value of
the function f1 + f2 is attained in the points N̄ and M̄ that satisfy the
conditions

z5

(
N

2

)λ−µ
= cλ

(
N

2

)λ−α
δ,

2dλz4e
−2η2(M

2 )
1/η1

(
M

2

)λ′′+λν
= z6

(
M

2

)λ′′+λν
ε.
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This allows us to find a priori rule for choosing the discretization param-
eters N,M that depend on the smoothness parameter µ.

Further we denote by [q] the whole part of the number q and formulate
the theorem for establishing an a priori rule for choosing discretization
parameters.

Theorem 4.1. Let the conditions (1.3)–(1.6) be satisfied and for the
perturbation of the input data the inequalities (3.6) and (3.5) hold true.
Then for any ν > 1/2, λ ∈ [α, µ], µ > α + 1/2, with choosing the
discretization parameters according to the rules

M̄ =

[
2

(
1

2η2
log

z8
ε

)η1]
, (4.2)

N̄ =

[
2

(
cλδ

z5

) 1
α−µ

]
(4.3)

the error bound of the method (3.7) has the form

∥u− uN̄,M̄,δ,ε∥λ ≤ 2(cλ)
λ−µ
α−µ z

λ−α
µ−α

5 δ
µ−λ
µ−α + 2z7(λ

′′, λ, α)ε logη1(λ
′′+λν) z8

ε
,

(4.4)

z7(λ
′′, λ, α) = 2z6

(
1

2η2

)η1(λ′′+λν)
, z8(λ

′′, λν) =
z1 max{∥a∥η1,η2}

2c3
.

Proof. Direct substitution of (4.2) and (4.3) into (4.1) gives the statement
of Theorem.

Remark 4.1. Let’s check that condition (3.8) is fulfilled if M is chosen
according to (4.2). It is evident that

z8(λ
′′, λν)e

−2η2(M
2 )

1/η1

= ε.

Therefrom we obtain that (3.8) is fulfilled for any ε ≤ ε0, where

ε0 log
η1(λ′′+λν) z8(λ

′′, λν)

ε0
<

(2η2)
λ′′+λν

4c3max{1, dλ}z1z2z3
.

On the other side the condition (3.10) is fulfilled for M = M̄.

Remark 4.2. On the class of periodic integral equations (1.1) with con-
ditions (1.3)–(1.6) the fully discrete projection method (3.7) for M = N
was investigated in [7]. It was obtained that choosing the discretization
parameter as

N(ε, δ) ≍ min{δ−
1

µ−α , ε−1/(µ−λ+σmax(λ−α,|λ|,ν))}
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the order accuracy of the method equals

O(δ
µ−λ
µ−α + ε

µ−λ
µ−λ+σmax(λ−α,|λ|,ν) ),

where 0 < σ < 1 is some parameter. It is evident that in the a priori case
regarding to the parameter ε the estimate (4.4) is better by the order
then in [7].

Remark 4.3. Let us suppose that ε ≥ cδ and calculate the amount of
necessary discrete information for equation (1.1) to realize the proposed
method (3.7) with the accuracy (4.4). It is evident that in that case M
does not exceed the magnitude O(log(N)). So, for the discretization (3.2)
there should be used less then O(log2N) values of kernels ap,ε(t, s) in the
points of the uniform grid. At the same time in the monograph [7] for
the realization of the fully discrete projection method (3.7) for M = N
the order of discrete information was computed as O(N logN) . The
advantage of the method proposed in this paper in comparison with the
classical one is evident.

4.2. A posteriori rule

In the case when the parameter µ is unknown the rule (4.3) for choos-
ing N is not suitable. However there are methods that without knowledge
of the smoothness µ allow to approximate the optimal value (4.3) while
saving the error bound (4.4). One such rule is the balancing principle [5]
that we will use for the determination of the best appropriate value of
the discretization parameter. Further, we give the description of the
mentioned approach in more detail.

Let’s denote by

DN = {N : N = 1, . . . , NA, NA = [δ−
1

λ−α ]},

the set of possible values of the discretization parameter N . Then ac-
cording to the balancing principle as appropriate value of N we take the
number N̂ that satisfies the condition

N̂ = min{N : N ∈ D+
N}, (4.5)

where

D+
N =

{
N ∈ DN : ∥uN,M̄,δ,ε − uj,M̄,δ,ε∥λ

≤ 4cλ

(
j

2

)λ−α
δ + 4z7(λ

′′, λ, α)ε logη1(λ
′′+λν) z8

ε
, ∀ j > N

}
.
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Let’s introduce the additional parameter

N∗ := min{N : z5

(
N

2

)λ−µ
≤ cλ

(
N

2

)λ−α
δ}. (4.6)

Theorem 4.2. Let the conditions (1.3)–(1.6) and (3.5), (3.6) be fulfilled
and a ∈ Gη1,η2 , η1 ≥ 1, η2 > 0. Moreover the discretization parameters
M and N are selected according to (4.2) and (4.5) respectively. Then for
any ν > 1/2, λ ∈ [α, µ], µ > α+ 1/2 the error bound of FDPM (3.7) is
the following

∥u− uN̂,M̄,δ,ε∥λ ≤ z9(λ, α)δ
µ−λ
µ−α + 6z7(λ

′′, λ, α)ε logη1(λ
′′+λν) z8

ε
, (4.7)

where z9(λ, α) = 6(cλ)
λ−µ
α−µ z

λ−α
µ−α

5

(
N⋆
N⋆−1

)λ−α
.

Proof. Substituting the rule (4.2) into the estimate (4.1) leads to the
following relation

∥u− uN,M̄,δ,ε∥λ ≤ z5

(
N

2

)λ−µ
+ cλ

(
N

2

)λ−α
δ

+ 2z7(λ
′′, λ, α)ε logη1(λ

′′+λν) z8(λ
′′, λν)

ε
. (4.8)

From (4.8) and (4.6) it follows

∥uj,M̄,δ,ε − uN∗,M̄ ,δ,ε∥λ ≤ ∥uj,M̄,δ,ε − u∥λ + ∥u− uN∗,M̄ ,δ,ε∥λ

≤ z5

(
j

2

)λ−µ
+ cλ

(
j

2

)λ−α
δ ++z5

(
N∗
2

)λ−µ
+ cλ

(
N∗
2

)λ−α
δ

+ 4z7(λ
′′, λ, α)ε logη1(λ

′′+λν) z8
ε
. (4.9)

Therefrom, due to (4.6) for all j > N∗, we have

∥uj,M̄,δ,ε − uN∗,M̄ ,δ,ε∥λ ≤ 2cλ

(
j

2

)λ−α
δ + 2cλ

(
N∗
2

)λ−α
δ

+ 4z7(λ
′′, λ, α)ε logη1(λ

′′+λν) z8
ε

≤ 4cλ

(
j

2

)λ−α
δ + 4z7(λ

′′, λ, α)ε logη1(λ
′′+λν) z8

ε
. (4.10)

Taking into account the definition of the set D+
N from (4.10) we find

that N̂ ≤ N⋆ and N⋆ ∈ D+
N .
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From (4.5), (4.6), (4.8) and in virtue of definition of the set D+
N we

obtain

∥u− uN̂,M̄,δ,ε∥λ ≤ ∥u− uN∗,M̄ ,δ,ε∥λ + ∥uN̂,M̄,δ,ε − uN∗,M̄ ,δ,ε∥λ

≤ z5

(
N∗
2

)λ−µ
+ cλ

(
N∗
2

)λ−α
δ + 4cλ

(
N∗
2

)λ−α
δ

+ 6z7(λ
′′, λ, α)ε logη1(λ

′′+λν) z8
ε

≤ 6cλ

(
N∗
2

)λ−α
δ + 6z7(λ

′′, λ, α)ε logη1(λ
′′+λν) z8

ε
. (4.11)

Due to (4.3) and (4.6) we haveN⋆−1 ≤ N̄ . Then by the last inequality
from (4.11) it follows

∥u− uN̂,M̄,δ,ε∥λ ≤ 6cλ

(
N⋆ − 1

N⋆ − 1

)λ−α(N∗
2

)λ−α
δ

+ 6z7(λ
′′, λ, α)ε logη1(λ

′′+λν) z8
ε

≤ 6cλ

(
N⋆

N⋆ − 1

)λ−α(N̄
2

)λ−α
δ + 6z7(λ

′′, λ, α)ε logη1(λ
′′+λν) z8

ε
.

Therefrom, taking into account (4.3), we finally obtain

∥u− uN̂,M̄,δ,ε∥λ ≤ 6(cλ)
λ−µ
α−µ z

λ−α
µ−α

5

(
N⋆

N⋆ − 1

)λ−α
δ

λ−µ
α−µ

+ 6z7(λ
′′, λ, α)ε logη1(λ

′′+λν) z8
ε
.

The theorem is proved.

Remark 4.4. Thus our approach to solve equation (1.1) allows to re-
duce the error bounds with respect to a perturbation ε in comparison
with previous estimates in [7] for both a priori and a posteriori cases.
Moreover, applying the balancing principle for choosing the discretiza-
tion parameter gives the appropriate value for the parameter N without
additional information about the smoothness. At the same time com-
paring the estimates (4.4) and (4.7) we can conclude that the order for
the error bounds is the same.
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