

Граничное поведение отображений в $\lambda(\varepsilon)$ -регулярных метрических пространствах

Елена С. Афанасьева, Руслан Р. Салимов

(Представлена В. Я. Гутлянским)

Аннотация. Исследуется проблема продолжения на границу кольцевых Q-гомеоморфизмов между областями в $\lambda(\varepsilon)$ -регулярных метрических пространствах. Сформулированы условия на функцию Q(x) и границы областей, при которых любой кольцевой Q-гомеоморфизм допускает непрерывное или гомеоморфное продолжение на границу.

2010 MSC. 30C65, 30C75.

Ключевые слова и фразы. Метрические пространства с мерами, граничное поведение, модуль семейства кривых, кольцевой Qгомеоморфизм, квазиконформные отображения.

1. Введение

Напомним некоторые определения. Пусть A — множество в метрическом пространстве (X, d). Полагаем

$$H^{k}(A) := \sup_{\varepsilon > 0} H_{\varepsilon}^{k}(A), \qquad (1.1)$$

$$H^{k}(A) := \sup_{\varepsilon > 0} H^{k}_{\varepsilon}(A), \qquad (1.1)$$

$$H^{k}_{\varepsilon}(A) := \inf \sum_{i=1}^{\infty} (\operatorname{diam} A_{i})^{k}, \qquad (1.2)$$

где инфимум в (1.2) берётся по всем покрытиям A множествами A_i с diam $A_i < \varepsilon$. Далее $H^k(A), k \in [0, \infty)$, обозначает k-мерную меру $Xayc\partial op\phi a$ множества A, см., напр., [1]. Напомним, что diam $A_i=$ $\sup_{x,y\in A_i} d(x,y).$

Если для некоторого множества A и $k_1 \geq 0$ выполнено условие $H^{k_1}(A) < \infty$, то $H^{k_2}(A) = 0$ для произвольного числа $k_2 > k_1$, см., напр., разд. 1 в гл. VII в [1]. Величина

$$\dim_H A := \sup_{H^k(A) > 0} k \tag{1.3}$$

Статья поступила в редакцию 1.06.2015

называется $x a y c d o p \phi o s o u$ размерностью множества A.

Кривой в метрическом пространстве (X, d) называется непрерывное отображение $\gamma : [a, b] \to X$. Ее длина есть супремум сумм

$$\sum_{i=1}^{k} d(\gamma(t_i), \gamma(t_{i-1})) \tag{1.4}$$

над всеми разбиениями $a=t_0 \leq t_1 \leq \cdots \leq t_k=b$ интервала [a,b]. Кривая γ называется *спрямляемой*, если ее длина конечна.

Пусть (X,d,μ) — метрическое пространства X с метрикой d и локально конечной борелевской мерой μ . Борелева функция $\rho:X\to [0,\infty]$ называется $\operatorname{donycmumoü}$ для семейства кривых Γ в X, пишут $\rho\in\operatorname{adm}\Gamma$, если

$$\int_{\gamma} \rho \, ds \, \ge \, 1 \tag{1.5}$$

для всех $\gamma \in \Gamma$. Здесь ds относится к мере длины на γ .

 Modynb семейства кривых Γ в области D из X конечной хаусдорфовой размерности $\alpha>1$ определяется равенством

$$M(\Gamma) = \inf_{\rho \in adm \, \Gamma} \int_{D} \rho^{\alpha}(x) \, d\mu(x). \tag{1.6}$$

Для $x_0 \in X$ и $\varepsilon > 0$, через $B(x_0,\varepsilon)$ обозначается шар $\{x \in X: d(x,x_0)<\varepsilon\}$ и $A=A(x_0,r_1,r_2):=\{x_0\in X: r_1< d(x,x_0)< r_2\},$ $0< r_1< r_2<\infty$ — кольцо.

Пусть D и D' — области с конечными хаусдорфовыми размерностями α и $\alpha'>1$ в пространствах (X,d,μ) и (X',d',μ') , соответственно, и пусть $Q:X\to (0,\infty)$ — измеримая функция. В дальнейшем для любых множеств E,F и D в X через $\triangle(E,F;D)$ обозначается семейство всех кривых $\gamma:[0,1]\to X$ с $\gamma(0)\in E,\gamma(1)\in F$ и $\gamma(t)\in D$ для всех $t\in (0,1)$.

Будем говорить, что гомеоморфизм $f: D \to D'$ является кольцевым Q-гомеоморфизмом в точке $x_0 \in \overline{D}$, если неравенство

$$M(\triangle(f(C_0), f(C_1); D')) \le \int_{A \cap D} Q(x) \cdot \eta^{\alpha}(d(x, x_0)) d\mu(x)$$
 (1.7)

выполняется для любого кольца $A = A(x_0, r_1, r_2), \ 0 < r_1 < r_2 < \infty$, любых двух континуумов (компактных связных множеств) $C_0 \subset \overline{B(x_0, r_1)} \cap D$ и $C_1 \subset D \setminus B(x_0, r_2)$ и любой борелевой функции η :

 $(r_1,r_2)
ightarrow [0,\infty]$, такой что

$$\int_{r_1}^{r_2} \eta(r) \ dr \ge 1. \tag{1.8}$$

Также говорим, что гомеоморфизм $f: D \to D'$ есть кольцевой Q-гомеоморфизм, если f является кольцевым Q-гомеоморфизмом в каждой точке $x_0 \in \overline{D}$.

Пространство (X,d,μ) называется α -регулярным по Альфорсу, если существует постоянная $C \geq 1$ такая, что

$$C^{-1}\varepsilon^{\alpha} \le \mu(B(x_0, \varepsilon)) \le C\varepsilon^{\alpha} \tag{1.9}$$

для всех шаров $B(x_0, \varepsilon)$ с центром в точке $x_0 \in X$ радиуса $\varepsilon < diam X$. Как известно, α -регулярные пространства имеют хаусдорфову размерность α , см., напр., [6, с. 61]. Пространство (X, d, μ) называется регулярным по Альфорсу, если оно α -регулярно по Альфорсу для некоторого $\alpha \in (1, \infty)$.

Говорят также, что пространство (X,d,μ) α -регулярно сверху в точке $x_0 \in X$, если существует постоянная C>0 такая, что

$$\mu(B(x_0,\varepsilon)) \le C\varepsilon^{\alpha} \tag{1.10}$$

для всех шаров $B(x_0,\varepsilon)$ с центром в точке $x_0 \in X$ радиуса $\varepsilon < \varepsilon_0$. Наконец, говорят, что пространство (X,d,μ) регулярно сверху, если условие (1.10) выполнено в каждой точке X для некоторого $\alpha \in (1,\infty)$.

Пусть $\lambda: \mathbb{R}^+ \to \mathbb{R}^+$ — непрерывно возрастающая функция, где $\mathbb{R}^+ = [0, \infty)$. Будем говорить, что пространство (X, d, μ) является $\lambda(\varepsilon)$ -регулярным сверху в точке $x_0 \in X$, если существует постоянная C > 0, такая что

$$\mu(B(x_0,\varepsilon)) \le C\lambda(\varepsilon) \tag{1.11}$$

для всех шаров $B(x_0, \varepsilon)$ с центром в точке $x_0 \in X$, радиуса $\varepsilon < \varepsilon_0$ для некоторого $\varepsilon_0 > 0$. Также будем говорить, что пространство (X, d, μ) является $\lambda(\varepsilon)$ -регулярным сверху, если условие (1.11) выполнено в каждой точке $x_0 \in X$.

Приведем некоторые топологические определения общего характера, которые будут полезны в дальнейшем. Пусть T — произвольное топологическое пространство. Напомним, что топологическое пространство связно, если его нельзя разбить на два непустых открытых множества. Компактные связные пространства называются континуумами. Топологическое пространство T называют линейно связным, если любые две точки x_1 и x_2 можно соединить кривой

 $\gamma:[a,b] \to T, \gamma(a)=x_1$ и $\gamma(b)=x_2$. Область D называется открытое линейно связное множество. Область D называется локально связной в точке $x_0 \in \partial D$, если для любой окрестности U точки x_0 найдется окрестность $V \subseteq U$ точки x_0 такая, что $V \cap D$ связно, ср. [9, c. 232]. Аналогично, говорят, что область D локально линейно связна в точке $x_0 \in \partial D$, если для любой окрестности U точки x_0 найдется окрестность $V \subseteq U$ точки x_0 такая, что $V \cap D$ линейно связно.

Следуя [9], говорим, что граница области D-cлабо плоская в точке $x_0\in\partial D$, если для любого числа P>0 и любой окрестности U точки x_0 найдется ее окрестность $V\subset U$, такая что

$$M(\Delta(E, F; D)) \ge P \tag{1.12}$$

для любых континуумов E и F в D, пересекающих ∂U и ∂V .

Аналогично, говорим, что граница области D сильно достижеима в точке $x_0 \in \partial D$, если для любой окрестности U точки x_0 , найдется компакт $E \subset D$, окрестность $V \subset U$ точки x_0 и число $\delta > 0$, такие что

$$M(\Delta(E, F; D)) \ge \delta \tag{1.13}$$

для любого континуума F в D, пересекающего ∂U и ∂V .

Граница области D называется cильно dостижимой и cлабо nло-cкой, если соответствующие свойства имеют место в каждой точке ее границы.

Предложение 1.1. Если граница области D- слабо плоская в точке $x_0 \in \partial D$, то ∂D сильно достижима в точке x_0 (см. предложение 3.1 в [9], а также предложение 13.6 в монографии [2]).

Ниже приведены вспомогательные результаты из работы [18], см. лемму 2.1 и теорему 3.2.

Лемма 1.1. Пусть область D локально линейно связна в точке $x_0 \in \partial D$, $\overline{D'}$ — компакт, $a f : D \to D'$ — кольцевой Q-гомеоморфизм в x_0 , такой что $\partial D'$ сильно достижима хотя бы в одной точке предельного множества

$$C(x_0, f) = \{ y \in X' : y = \lim_{k \to \infty} f(x_k), x_k \to x_0, x_k \in D \},$$
 (1.14)

 $Q:X o (0,\infty)$ — измеримая функция, удовлетворяющая условию

$$\int_{\varepsilon < d(x,x_0) < \varepsilon_0} Q(x) \cdot \psi_{x_0,\varepsilon}^{\alpha}(d(x,x_0)) \, d\mu(x) = o(I_{x_0,\varepsilon_0}^{\alpha}(\varepsilon))$$
 (1.15)

при $\varepsilon \to 0$ для некоторого $\varepsilon_0 \in (0, d(x_0))$, где $d(x_0) := \sup_{x \in D} d(x, x_0)$ и $\psi_{x_0,\varepsilon}(t)$ — семейство неотрицательных измеримых (по Лебегу) функций на $(0,\infty)$, таких что

$$I_{x_0,\varepsilon_0}(\varepsilon) := \int_{\varepsilon}^{\varepsilon_0} \psi_{x_0,\varepsilon}(t) dt < \infty \quad \forall \varepsilon \in (0,\varepsilon_0), \ \varepsilon_0 \in (0,d(x_0)).$$
 (1.16)

Тогда f продолжим в точку x_0 по непрерывности в (X', d').

Теорема 1.1. Пусть область D локально линейно связна во всех своих граничных точках и \overline{D} — компакт, область D' имеет слабо плоскую границу, а $f: D \to D'$ — кольцевой Q-гомеоморфизм с $Q \in L^1_\mu(D)$. Тогда обратное отображение $g = f^{-1}: D' \to D$ допускает непрерывное продолжение $\overline{q}: \overline{D'} \to \overline{D}$.

2. О поведении одного сингулярного интеграла в $\lambda(\varepsilon)$ -регулярных метрических пространствах

Варианты следующей леммы были сначала доказаны для BMO функций в \mathbb{R}^n , см. [10–12, 14, 15]. Затем для FMO функций в \mathbb{R}^n , см. [7] и в α -регулярных пространствах см. [9].

Лемма 2.1. Пусть пространство (X, d, μ) $\lambda(\varepsilon)$ -регулярно сверху, D — область в $X, x_0 \in \overline{D}$. Если для неотрицательной локально интегрируемой функции $Q: D \to \mathbb{R}^+$, выполнено условие

$$\limsup_{\varepsilon \to 0} \ \frac{1}{\mu(B(x_0,\varepsilon) \cap D)} \int\limits_{B(x_0,\varepsilon) \cap D} Q(x) \ d\mu(x) < \infty \ , \qquad (2.1)$$

mo

$$\int_{D \cap A(x_0, \varepsilon, \varepsilon_0)} \frac{Q(x) d\mu(x)}{\lambda(d(x, x_0))} = O\left(\log \frac{1}{\varepsilon}\right)$$
(2.2)

при $\varepsilon \to 0$ и некотором $\varepsilon_0 \in (0, \delta_0)$, где $\delta_0 = \min(e^{-1}, d_0)$, $d_0 = \sup_{x \in D} d(x, x_0)$.

Доказательство. Выберем $\varepsilon_0 \in (0, \delta_0)$, такое что функция Q интегрируема в $D_0 = D \cap B_0$ по мере μ , где $B_0 = B(x_0, \varepsilon_0)$, и

$$s_0 = \sup_{r \in (0, \varepsilon_0)} \frac{1}{\mu(D_r)} \int_{D_r} Q(x) \ d\mu(x) < \infty,$$

 $D_r = D \cap B(x_0, r)$. Пусть далее $\varepsilon < 2^{-1}\varepsilon_0$, $\varepsilon_k = 2^{-k}\varepsilon_0$, $A_k = \{x \in X : \varepsilon_{k+1} \le d(x, x_0) < \varepsilon_k\}$, $B_k = B(x_0, \varepsilon_k)$ и пусть N — натуральное число,

такое что $\varepsilon \in [\varepsilon_{N+1}, \varepsilon_N)$. Тогда $D \cap A(x_0, \varepsilon, \varepsilon_0) \subset \Delta(\varepsilon) := \bigcup_{k=0}^N \Delta_k$, где $\Delta_k = D \cap A_k$ и

$$\eta(\varepsilon) := \int_{\Delta(\varepsilon)} \frac{Q(x)d\mu(x)}{\lambda(d(x,x_0))} \le \sum_{k=0}^{N} \int_{\Delta_k} \frac{Q(x)d\mu(x)}{\lambda(d(x,x_0))}$$
$$\le \sum_{k=0}^{N} \frac{1}{\lambda(\varepsilon_{k+1})} \int_{B_k \cap D} Q(x) \ d\mu(x) \le s_0 \cdot \sum_{k=0}^{N} \frac{\mu(B_k \cap D)}{\lambda(\varepsilon_{k+1})}.$$

В силу $\lambda(\varepsilon)$ -регулярности сверху, имеем $\mu(B_k) \leq C \cdot \lambda(\varepsilon_k)$ и

$$\eta(\varepsilon) \le C \cdot s_0 \cdot \sum_{k=0}^{N} \frac{\lambda(\varepsilon_k)}{\lambda(\varepsilon_{k+1})} \le 2C \cdot s_0 \cdot N.$$

Так как по построению $N < \log_2 \frac{\varepsilon_0}{\varepsilon} < \log_2 \frac{1}{\varepsilon} = \frac{\log \frac{1}{\varepsilon}}{\log 2}$, то

$$\int\limits_{D\cap A(x_0,\varepsilon,\varepsilon_0)}\frac{Q(x)d\mu(x)}{\lambda(d(x,x_0))}\leq \frac{2C\cdot s_0}{\log 2}\log\frac{1}{\varepsilon}.$$

Лемма доказана.

3. О гомеоморфном продолжении на границу

В данном параграфе будут сформулированы достаточные условия для непрерывного и гомеоморфного продолжения на границу кольцевых Q-гомеоморфизмов в метрических пространствах.

Теорема 3.1. Пусть пространство (X, d, μ) $\lambda(\varepsilon)$ -регулярно сверху с условием

$$\lambda(\varepsilon) = o\left(\varepsilon^{\alpha} \log^{\alpha - 1} \frac{1}{\varepsilon}\right),\tag{3.1}$$

при $\varepsilon \to 0$, D- локально линейно связная область на границе, $\overline{D'}-$ компакт и $\partial D'$ сильно достижима. Если выполнено условие (2.1) в каждой точке $x_0 \in \partial D$, то любой кольцевой Q-гомеоморфизм $f: D \to D'$ продолжим на границу области D по непрерывности в (X', d', μ') .

Доказательство. Из условия (3.1) следует, что

$$\int_{0}^{\varepsilon_0} \frac{dt}{\lambda^{\frac{1}{\alpha}}(t)} = \infty. \tag{3.2}$$

Выбирая в лемме 1.1 функцию $\psi(t) = \frac{1}{\lambda^{1/\alpha}(t)}$ и комбинируя с заключением леммы 2.1, по правилу Лопиталя получаем, что

$$\lim_{\varepsilon \to 0} \left(\int_{\varepsilon}^{\varepsilon_0} \frac{dt}{\lambda^{1/\alpha}(t)} \right)^{-\alpha} \cdot \int_{D \cap A(x_0, \varepsilon, \varepsilon_0)} \frac{Q(x)d\mu(x)}{\lambda(d(x, x_0))} \\
\leq \lim_{\varepsilon \to 0} \left(\int_{\varepsilon}^{\varepsilon_0} \frac{dt}{\lambda^{1/\alpha}(t)} \right)^{-\alpha} \cdot c \log \frac{1}{\varepsilon} \\
= \gamma \lim_{\varepsilon \to 0} \frac{\lambda(\varepsilon)}{\varepsilon^{\alpha}} \log^{1-\alpha} \frac{1}{\varepsilon},$$

где $\gamma = \frac{c}{\alpha^{\alpha}}$. Согласно (3.1),

$$\lim_{\varepsilon \to 0} \left(\int_{\varepsilon}^{\varepsilon_0} \frac{dt}{\lambda^{1/\alpha}(t)} \right)^{-\alpha} \cdot \int_{D \cap A(x_0, \varepsilon, \varepsilon_0)} \frac{Q(x)d\mu(x)}{\lambda(d(x, x_0))} = 0.$$

Так как условие леммы 1.1 выполнено, то существует продолжение по непрерывности в точку x_0 .

Комбинируя теоремы 1.1 и 3.1, получаем следующее утверждение.

Теорема 3.2. Пусть пространство (X,d,μ) $\lambda(\varepsilon)$ -регулярно сверху, D и D' имеют слабо плоские границы, пусть также \overline{D} и $\overline{D'}$ — компакты, $Q:X\to (0,\infty)$ — функция класса $L^1_\mu(D)$ с условием (2.1) в каждой точке $x_0\in \partial D$. Если выполнено условие (3.1), то любой кольцевой Q-гомеоморфизм $f:D\to D'$ допускает продолжение до гомеоморфизма $\overline{f}:\overline{D}\to \overline{D'}$.

4. О приложениях к квазиконформным отображениям в $\lambda(\varepsilon)$ -регулярных метрических пространствах

Следуя аналогии геометрическому определению Вяйсяля, см. 13.1 в [3], говорим, что гомеоморфизм $f:D\to D'$ называется квазиконформным, если

$$K^{-1}M(\Gamma) \le M(f(\Gamma)) \le KM(\Gamma) \tag{4.1}$$

для некоторого $K \in [1, \infty)$ и любого семейства кривых Γ в D. т.е. если искажение модулей семейств кривых при отображении f ограничено. В частности, гомеоморфизм $f: D \to D'$ называем конформным, если

$$M(f(\Gamma)) = M(\Gamma) \tag{4.2}$$

для любых семейств кривых в D.

Теорема 4.1. Пусть пространство (X, d, μ) $\lambda(\varepsilon)$ -регулярно сверху c условием (3.1), D локально линейно связна, $\overline{D'}$ — компакт и $\partial D'$ сильно достижима. Тогда любое квазиконформное отображение $f: D \to D'$ продолжимо в каждую точку $x_0 \in \partial D$ по непрерывности в (X', d', μ') .

Теорема 4.2. Пусть пространство (X, d, μ) $\lambda(\varepsilon)$ -регулярно сверху с условием (3.1), D и D' имеют слабо плоские границы, пусть также \overline{D} и $\overline{D'}$ — компакты. Тогда любое квазиконформное отображение $f: D \to D'$ допускает продолжение до гомеоморфизма $\overline{f}: \overline{D} \to \overline{D'}$.

Литература

- W. Hurewicz, H. Wallman, Dimension Theory, Princeton: Princeton Univ. Press, 1948.
- [2] B. Fuglede, Extremal length and functional completion // Acta Math., 98 (1957), 171–219.
- [3] J. Heinonen, Lectures on Analysis on Metric Spaces, New York: Springer, 2001.
- [4] J. Heinonen, I. Holopainen, Quasiregular mappings on Carnot groups // J. Geom. Anal., 7 (1997), No. 1, 109–148.
- [5] J. Heinonen, A capacity estimate on Carnot groups // Bull. Sci. Math., 119 (1995), No. 1, 475–484.
- [6] J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry // Acta Math., 181 (1998), No. 1, 1–61.
- [7] A. Ignat'ev, V. Ryazanov, Finite mean oscillation in the mapping theory // Ukrainian Math. Bull., 2 (2005), No. 3, 403–424.
- [8] К. Куратовский, Топология. Т. 2, М.: Мир, 1969.
- [9] В. И. Рязанов, Р. Р. Салимов, Слабо плоские пространства и границы в теории отображений // Укр. мат. вестник, 4 (2007), No. 2, 199–234.
- [10] В. Рязанов, У. Сребро, Э. Якубов, К теории ВМО-квазирегулярных отображений // Докл. РАН, 369 (1999), No. 1, 13–15.
- [11] V. Ryazanov, U. Srebro, E. Yakubov, BMO-qasikonformal mappings // J. d'Anal. Math., 83 (2001), 1–20.
- [12] V. Ryazanov, U. Srebro, E. Yakubov, Plane mappings with dilatation dominated by functions of bounded mean oscillation // Sib. Adv. in Math., 11 (2001), No. 2, 94–130.
- [13] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, New York etc., 2009.
- [14] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Q-homeomorphisms // Contemporary Math., 364 (2004), 193–203.
- [15] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, On Q-homeomorphisms // Ann. Acad. Sci. Fenn. Ser. A1. Math., 30 (2005), 49–69.
- [16] J. Mitchell, On Carnot-Caratheodory metrics // J. Differential Geometry, 21 (1985), 35–45.

- [17] P. Pansu, Metriques de Carnot-Caratheodory et quasiisometries des espaces symetriques de rang un // Ann. of Math., 119 (1989), 1–60.
- [18] Е. С. Смоловая, Граничное поведение кольцевых Q-гомеоморфизмов в метрических пространствах // Укр. мат. журн., 62 (2010), No. 5, 682–689.
- [19] J. T. Tyson, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces // Conform. Geom. Dyn., 5 (2001), 21–73 (electronic).
- [20] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229 (1971), Berlin: Springer.

Сведения об авторах

Елена Сергеевна Афанасьева Институт прикладной математики

и механики НАН Украины

E-Mail: es.afanasjeva@yandex.ru

Руслан Радикович

Институт математики НАН Украины

Cалимов *E-Mail:* ruslan623@yandex.ru