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On the some properties of the orthogonal
polynomials over a contour
with general Jacobi weight

FAHREDDIN G. ABDULLAYEV, GULNARE A. ABDULLAYEV

Abstract. In present work, we continue the study the growth of
the orthogonal polynomials over a contour with weight function in the
weighted Lebesgue space, when the contour and the weight function
having some singularities. We study case, when interference of weight
and contour is not satisfied, for piecewise smooth contour with interior
zero angles. Also we investigated case of more general contours.
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1. Introduction

Let C be a complex plane, C := C U {o0}; L C C be a closed rec-
tifiable Jordan curve, G := intL, with 0 € G, Q := extL. Let h(z)
nonnegative, summable on a L and nonzero except possible on a set of
measure zero function. The systems of polynomials {K,,(2)}, K,(z) =
anZ"+ ..., deg K, =n,n=0,1,2,..., satisfying the condition

[ Ko e = { g
L
are called orthonormal polynomials for the pair (L, h). These polynomials
are determined uniquely if the coefficient a,, > 0.

These polynomials were first studied by G. Szegd [33,34]. V. I. Smir-
nov [32], P. P. Korovkin [19] and Ya. L. Geronimus [16] was investigated
these polynomials under the various conditions on the weight function
h(z) and contour L. In [37], P. K. Suetin was investigated many properties
of the polynomials { K, (z)}, -, for sufficiently smooth contour and weight
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2 ON THE SOME PROPERTIES OF THE ORTHOGONAL POLYNOMIALS...

function h(z) wich is zero or infinite at finite number points on contour L.
A. L. Kuz'mina [20] and G. Fauth [14] have considered some properties of
the polynomials { K, (z)},-, for piecewise analytic contour L with finite
number corners. In [38], P. K. Suetin obtain several estimates for the rate
of growth of the polynomials {K,(z)} 7, on the contour L, depending of
the singularites of the weight function h(z) on L and of the contour L.

Let a rectifiable Jordan curve L, has a natural parametrization z =
2(s),0 < s < |L| :=mesL. Itissaid tobe L € C(1,a), 0 < o < 1, if 2(s)
is continuously differentiable and 2’(s) € Lip a. Let L belong to C(1, a)
everywhere except for a single point z; € L, i.e., the derivative 2/(s)
satisfies the Lipschitz condition on the [0,|L|] and 2(0) = z2(|L|) = =1,
but 2/(0) # 2/(|L|). Assume that L has a corner at z; with exterior angle
wim, 0 < w; <2, and denote the set of such curves by C(1, a,wy).

Denoted by w = ®(z), the univalent conformal mapping of Q onto
A = {w: |w| > 1} with normalization ®(c0) = oo, lim, @ >0
and W:= &1 Fort>1, we set

Lt = {z : |®(2:)| = t}, L1 = L, Gt = intLt, Qt = 6.’13tLt.

Let {z; };n:1 be the fixed system of distinct points on curve L. For some

fixed Ry, 1 < Ry < oo, and 2 € Gg,\G, consider generalized Jacobi
weight function h (z), which is defined as follows:

h(z) = ho(2) [ ] 12 = %", (1.1)
j=1

where ; > —1, for all j = 1,2,...,m, and hg is uniformly separated
from zero in L, i.e. there exists a constant co(L) > 0 such that for all
AS GRo

ho(z) > CO(L) > 0.

P. K. Suetin |38| investigated this problem for K, (z) with the weight
function h(z) defined as in (1.1) and for the curve L € C(1,,w;). He
showed that the condition of “pay off” singularity curve and weight func-
tion at the points z; can be given as following:

(I+m)wr =1, (1.2)
and, under this conditions, for K, (z) provided the following estimation:
|Kn(2)| < c(L)Vn+1, z € L, (1.3)

where ¢(L) > 0 is a constant independent on 7.
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In [38], author also investigated the case, where (1 +v1)w; # 1. It is
shown, if the singularity of a curve and weight function at the points z;
satisfy the following condition:

(I4+m)w <1 (1.4)
Then for |K,(z)|, the following estimation is true

|Kn(2)] < ci(D) [(n+ 1) + ]2 — 2| Vn+1], z€ L, (1.5)
where

1 1 1
51 2( + 1) wi, 01 5 (Wl 71>,

and ¢;(L) > 0 is the constant independent on n.

In this work we study the estimations of the (1.5)-type under the
condition (1.4), for more general contours of the complex plane and we
obtain the analog of the estimation (1.5) for more general case. In parallel,
we also study the growth of arbitrary algebraic polynomials with respect
to their seminorm in the weighted Lebesgue space, under the condition
of (1.4)-type.

2. Definitions and Main Results

Throughout this paper, c,co,c1,ca,... are positive and g, e1,¢€2,. ..
are sufficiently small positive constants (generally, different in different
relations), which depends on G in general and, on parameters inessential
for the argument; otherwise, such dependence will be explicitly stated.

Let g, denotes the class of arbitrary algebraic polynomials P, (z) of
degree at most n, n € N:= {1,2,...} U{0}.

Without loss of generality, the number Ry in the definition of the
weight function, we can take Ry = 2. Otherwise the number n can be

€0

choosen n > [m} , where g, 0 < ¢g < 1, some fixed small constant.

Let 0 < p < 0. For a rectifiable Jordan curve L, we denote

1/p
1Ple, = = 1Pl = | [ PP IE ) L 0<p< o0,
L
1Balle, + =Pl p) == ax |Pn(2)], p=o0.
Clearly, |-[|z, is a quasinorm (i.e. a norm for 1 < p < oo and a p—norm
for 0 <p<1).
Throughout this work, notation ¢ = k,m means ¢ = k,k+ 1,...,m,

for any k > 0 and m > k.
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Let z = ¢(w) be the univalent conformal mapping of B :=
{w: |w| < 1} onto the G normalized by ¥ (0) = 0, ¢/(0) > 0. By [28,
p. 286-294|, we say a bounded Jordan region G is called k-quasidisk,
0 < k < 1, if any conformal mapping ¢ can be extended to a K-
quasiconformal, K = i—z, homeomorphism of the plane C on plane C. In
that case, the curve L := G is called a k-quasicircle. The region G (curve
L) is called a quasidisk (quasicircle), if it is k-quasidisk (k-quasicircle)
for some 0 < k < 1.

We denoted the class of k-quasicircle by Q(k), 0 < k < 1, and
denote by L € Q, if L € Q(k), for some 0 < k < 1. It is well-known that

the quasicircle may not even be locally rectifiable ( |21, p. 104]).

Definition 2.1. We say that L € @(n), 0<r<1,if L €Q(k) and L
is rectifiable. Analogously, L € Q, if L € Q(k), for some 0 < k < 1.

In [8] was obtained the following result for L € Q(k), 0 < k < 1:

Theorem A. Let p > 0. Suppose that L € @(m), for some 0 <k <1
and h(z) defined in (1.1) for v; =0, for all j =1, m. Then, for any n €
N, there exists ¢c1 = c1(L,p) > 0 such that:

+rK

14k
1Pl < crtn+ 1) [Pl oy - (2.1)

Thus, Theorem A provides an opportunity to observe the growth of
|P,(2)| on the curve L. Note that, Theorem A for L := {z:|z| =1}
(i.e. kK = 0) provided in [18|. The other classical results are similar to
(2.1) we can find in [35]. The evaluations of (2.1)-type for 0 < p <
00, h(z) = 1 (or h(z) # 1) was also investigated in [23,24, 30, 36], [26,
p. 122-133], [13, Theorem 6], [2-8] and others (see also the references cited
therein), for different Jordan curves having special properties. There are
more references regarding the inequality of (2.1)-type, we can find in
Milovanovic et al. [25, Sect. 5.3].

Now, we will define a more general class of curves with another char-
acteristic.

Definition 2.2. We say that L € Qq, 0 < o < 1, 4 L € Q and
®c Lipa, z € Q.

We note that the class ), is sufficiently wide. A detailed account on
it and the related topics are contained in [22,29,39] and the references
cited therein. We consider only some cases:

Remark 2.1. a) If L = 0G is a Dini-smooth curve [29, p. 48], then
Le Ql-
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b) If L = 0G is a piecewise Dini-smooth curve and largest exterior
angle at L has opening am, 0 < o <1, [29, p. 52], then L € Q,.

¢) If L = 0G is a smooth curve having continuous tangent line then
Le@, foral 0<a<l.

d) If L is quasismooth (in the sense of Lavrentiev), that is, for every
pair z1, zo € L, if s(z1,22) represents the smallest of the lengths of
the arcs joining z; to zo on L,there exists a constant ¢ > 1 such
that s(z1,20) < c|21 — 22|, then ® € Lipav for v = 3(1—2 arcsin)~!
[39].

e) If L is “c-quasiconformal” (see, for example, [22]), then & €

. _ x ey .
Lip o for a = r—arein D)’ Also, if L is an asymptotic conformal curve,

then ® € Lip a for all 0 < a <1 [22].

Definition 2.3. It is said that L € @a, O<a<l,if L €Qq and L is
rectifiable.

If the weight function h, has “singularities” at the points {z;};~, , i.e.,
v; # 0 for all i = 1, m, then we have the following:

Theorem B. ([|27]) Let p > 0. Suppose that L € Qa, for some
% < a <1 and h(z) defined asin (1.1). Then, for any v; > —1, i =1,m,
and P, € pn, n € N, there exists co = ca(L,p,;, ) > 0 such that

341 N ,
| Pl o, < can?Pi HPan,,(h,L) ,  where 7 :=max{0, v;, i = 1,m}.
(2.2)
Therefore, according to 2.1, we can calculate « in the right parts of
estimations (2.2) for each case.

Now, let’s introduce “special” corners on the curve L, thus spoiling its
) )
“smoothness”.

Definition 2.4. We say that L€ Q[v], 0 <v <2, if

a) L €Q,

b) For ¥z € L, there exists ar:=1r(L,z) >0 and v :=v(L,z), 0 <
v < 2, such that for some 0 < 6y < 2 a closed maximal circular
sector S(z;r,v) := {C (=241 Gy <0< b+ V} of radius r
and opening vt lies in G with vetrex at z.

It is well known that each quasicircle satisfies the condition b). Nev-
ertheless, this condition imposed on L gives a new geometric characteri-
zation of the curve. For example, if the contour L* defined by

. 1
L* = [O,i]U{Z:ZZezeﬂ, 2<9<2}U[170]7
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then the coefficient of quasiconformality & of the L* does not obtained so
easily, whereas L* € @) [%] .

Analogously, we say that L € @[V] ,O0<v<2,if LeQv],0<v<
2, and L is rectifiable.

Definition 2.5. We say that L € @a 2T 75 R | BRI Z PN A
2, 0 < a < 1, if there exists a system of points {(;};~, € L, such that
L e @[1/1] for any points (; € L, i = 1,m, and ® € Lipa, 0 < a < 1,
for z € Q\{¢}.

It is clear from Definition 2.5, that each contour L € Qq U1y ey Uml,
0<vi,...,vm <2, 0<a<1,i=1m,mayhave singularities (corners)
at the pomts {¢G:}2, € L. If a contour L does not have such singularities,
ie. ify; =1, zflmthenltlswrlttenasLEQa[] Qo

Throughout this work, we will assume that the points {z};~, € L are
defined in (1.1) and {¢;};%, € L are defined in Definitions 2.3 coincides.
Without the loss of generality, we also will assume that the points {z;};~,
are ordered in the positive direction on the curve L.

In [9] we prove the following:

Theorem C. Let p > 0. Suppose that L € Qg V1, ..y U], for some
0<vi,...,vm < 1, 2 < a < 1; h(z) defined as in (1.1). Then, for
any P, € pn, n € N, there exists c3 = c3(L,p, i, Vi, ) > 0 such that

yi+1

|Po(2i)| < es(n+1) » L) (2.3)

and )
1Pl < csn+1)er [[Pallg nr) s (2.4)

if
1
i +l= ——m— 2.

N = e (2.5)

satisfies for each points {z;}i-,.

Corollary C. Suppose that L € @a V1, yUm], for some 0 <
VieeooyUm < 1, 5=— < o < 1; h(z) defined as in (1.1). Then, for any
K, € pn, n€N, there exists ¢4 = c4(L, i, vi, ) > 0 such that

1K (2)] < ca(n +1)72 - (2- Vi) (2.6)

and 1
[Knllz, <ca(n+1)2, (2.7)

if (2.5) satisfies for each points {z;}i .
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Comparing Theorem C with Theorem B (for case 7, = 0, ¢ = 1,m),
it is seen that, if the equality (2.5) is satisfied, then the growth of rate
of the polynomials P,(z) (consequently K,(z)) on L does not depend
on whether the weight function h(z) and the boundary contour L have
singularity or not. The condition (2.5) is called the condition of “interfer-
ence of singularities” of weight function h and contour L at the “singular”
points {z;};-; .

Now, we begin state our new results. Our first results is related to
the general case. For simplify our calculations, we take i = 1.

Theorem 2.1. Let p > 0. Suppose that L € Q, (1], for some 0 <1y <1
and ﬁ < a <1; h(z) defined as in (1.1) and

m+1< 5 (2.8)

(2—11)’

at the point z1. Then, for every z € L and P, € p,, n € N, there exists
cs = cs5(L,p, 1,11, ) > 0, such that

1P (2)] <5 |(n+1)* + |z — 217 (n + 1)1/17&} HPnHLp(h,L) , (2.9

and
Pa(e1)] < es(n+ 1 1Pl oy (2.10)
where 1+ 1 1+
4! 71
- 92— - . 2.11
°1 D 2=n) o 2a(2 — 1) 2 (2.11)

Corollary 2.2. Under the comditions of Theorem 2.1, we have:
1Ko (2)| < 5 |(n+1)% + |z — 217 (n+ 1)1/ (2.12)

where s1 (for p=2) and o1 denines as in (2.11)

Since o > ﬁ, (2.8) will be satisfied when —1 < v; < 0. Here and
from (2.9), (2.12), we see that, the order of the height of P, (K,) in point
z1 and points z € L, z # z1, where h(z) — oo and curve L does not have
singularity, acts itself identically. Thus, the conditions (2.8) can be called
“algebraic pole” conditions of the order A\; =1 — a(2 — v1)(1 4+ 71).

In case, if L and h(z) have two singular points simultaneously, then

(2.12) can be written as:
|Kn(2)| <cglz—21|7" (n+1)°2+ ¢ |z — 22172 (n + 1) (2.13)
+eglz— 21| |z — 22| (n+ 1)V, z e L,

for some constants ¢; = ¢;(L, v, v, ), j = 6,7,8, where s;,04, @ = 1,2,
are defined as it is in (2.11) for p = 2, respectively.
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Corollary 2.3. If L € C(1,a,w1), 1 <w; <2, and the condition
m+1w <1

satisfies at the point z1, then we have:

|Kn(2)] < o5 [(n+ 1) + [z — 2| VR +1], (2.14)
where

81:%(14-71)&)1, 01:;<:1—1—’yl>. (2.15)

Estimation (2.14) coincides from the result by P. K. Suetin [38, The-
orem 2|. So, the Corollary 2.2 generalizes the result [38, Theorem 2| for
1 < 11 < 2 and extends this result to the more general curves of the
complex plane.

Theorem 2.1 is true under the condition 0 < v; < 1. On the other
hand, from ﬁ < a < 1 we see that the 1 = 1 — ¢ true only for
a > 1—¢g,VYe > 0. Therefore, for the value 1 < 11 < 2, we can consider
only curves L such that ®(z) € Lip(1—¢), Ve > 0, 2 € Q. For this
purpose, let’s give a following definition.

Let S be rectifiable Jordan curve or arc and let z = z(s), s €
[0, |S]], |S|:=mes S, denote the natural representation of S.

Definition 2.6. We say that a Jordan curve or arc S € Cy, if S has a
continuous tangent 0(z) := 0(z(s)) at every point z(s).

When we consider the arc, at the endpoints we will understand the
existence sided tangents.

Now, we will define a new class of curves L, which have a exterior
corners (with respect to G) at the points {z;};~, € L.

Definition 2.7. We say that a Jordan curve L € PCy(A1, A, ..., Apm),
0 < XN <2, 4=1,m, if L consists of the union number of finite
Cy (smooth)-arcs {L;}I~, , where they have exterior (with respect to G)
Nim—angles, 0 < X; < 2, at the corner points {z};, € L, where two arcs
meet.

According to the “three-point” criterion |1, p. 100|, every piecewise
smooth curve (without cusps) is quasicircle.
In this case, we have the following:

Theorem 2.4. Let p > 0. Suppose that L € PCy(A\1), for some 0 <
A1 < 2; h(z) defined as in (1.1). Then, for any P,, n € N, there exists
cog = co(L,p,¥1,A1,€) > 0 such that

y1+15
P

A
[Pa(z1)] < co(n+1) 7 " [Pl nry (2.16)
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and

1
[Pa(2)] < ¢ [(n+1)" +]z = 2" (n+ D7 I Pall g,y 2 € L

(2.17)
if
1
y+1<—, (2.18)
A
where
1+m+ 1 1+m
= A =— — . 2.19
51 » 1, 01 o 5 ( )
T Mte if 0< A <2, )
and A\ := { 9. i A =2, for arbitrary small € > 0.
Corollary 2.5. Under the conditions of Theorem 2.4,
’Yl+1'):
Kn(21)] < co(n+ 1), (2.20)
and
1Kn(2)] < ¢ [(n FUS A 2=z (04 1)%+6] Lzel,  (2.21)
if
1
y+1<—, (2.22)

A1
where s1 (for p=2) and o1 defines as in (2.11).

The number € > 0 on the right sides of the estimations (2.16), (2.17)
and, consequently, (2.20), (2.22) can be removed. For this, we introduce
the following definitions:

Definition 2.8. (/29, p. 48] (see also [12])) We say that a Jordan curve
or arc S called Dini-smooth (DS), if it has a parametrization z = z(s),

0 < s <|S|, such that 2'(s) # 0, 0 < s < |S| and ’Z/(SQ) —z/(sl)‘ <

g(s2 — s1), 81 < s2, where g is an increasing function for which

1
M.7coo.
0/d<

X

Now, we shall define a new class of curves, which at the finite number
points have exterior corners and interior cusps simultaneously.
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Definition 2.9. We say that a Jordan curve L € PDS(A1, A2, ..., A\m),
0< N <2, i=1,m, if L = 0G consists of a union of finite number of
Dini-smooth arcs {Lj};.nzo, connecting at the points {zj}gnzo el sth
that for every z; € L, i = 1,m, they have exterior (with respect to G)
angles \im, 0 < X\; <2, at the corner z;.

In this case, we have the following:

Theorem 2.6. Let p > 0. Suppose that L € PDS(\1), for some 0 <
A1 < 2; h(z) defined as in (1.1). Then, for any P,, n € N, there exists
c10 = c10(L, p,7vi) > 0 such that

1+1

.
|Pa(z1)] < cro(n+ 1) 5 | Pall g,y » (2.23)
and

[Pu(2)] < cro | (n+ 1% + 12 = 21 (0 4+ DV 1Pall gy s = € L

(2.24)
if
1
y+1<—, (2.25)
A1
where 1+ 1 1+
71 N
- A = — . 2.26
51 15 7= o 5 (2.26)
Corollary 2.7. Under the conditions of Theorem 2.6
K (z1)] < cro(n+1)" 2, (2.27)
and
|Kn(2)] <cio[(n+ 1) + |z — 21| Vn+1], z €L, (2.28)
if
1
Yi+1l<—, (2.29)

A
where s1 (for p = 2) and o1 defines as in (2.26).

Note that, C(1,, A1) C PDS(A1) C PCy(A1) for each fixed 0 < A\ <
2 and PCy(A1) C Qo [M], for each fixed 0 < A\; < 1. In this, (2.28) and
(2.29) coincides with (1.2) and (1.3). Thus, the Corollary 2.7 generalizes
the corresponding result in [38].

The sharpness of the estimations (2.1), (2.2), (2.3), (2.4) and others
estimations for P, (z) for some special cases can be discussed by compar-
ing them with the following results:
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Remark 2.2. For any n € N, there exists a polynomials P} € g,
weight functions h* and the constants c190 = c19(L) > 0 such that, for
L :={z:|z| =1} we have:

1 *
1Pz = cro(n+ )7 [Pyl 2 e, 1 -

3. Some auxiliary results

For a > 0 and b > 0, we shall use the notations “a < b (order
inequality), if a < ¢b and “a =< b” are equivalent to cja < b < cqa for
some constants ¢, c¢1, ¢o (independent of a and b) respectively.

The following definitions of the K-quasiconformal curves are well-
known (see, for example, [1], [21, p. 97] and [31]):

Definition 3.1. The Jordan arc (or curve) L is called K -quasiconformal
(K > 1), if there is a K-quasiconformal mapping f of the region D D L
such that f(L) is a line segment (or circle).

Let F(L) denotes the set of all sense preserving plane homeomor-
phisms f of the region D O L such that f(L) is a line segment (or
circle) and lets define

Ky :=inf {K(f): fe F(L)},

where K (f) is the mazimal dilatation of a such mapping f. L is a qua-
siconformal curve, if Kj < oo, and L is a K-quasiconformal curve, if
Ky < K.

According to [31], we have the following;:

Corollary 3.1. If S € Cpy, then S is (1 +¢) — quasiconformal for
arbitrary small € > 0.

Remark 3.1. It is well-known that, if we are not interested with the co-
efficients of quasiconformality of the curve, then the definitions of “quasi-
circle” and “quasiconformal curve” are identical. However, if we are also
interested with the coefficients of quasiconformality of the given curve,
then we will consider that if the curve L is K-quasiconformal, then it is

.. . _ K?2-1
Kk-quasicircle with kK = 75— I

According the this Remark 3.1, for simplicity, we will use both terms,
depending on the situation.
For z € C and M C C, we set

d(z, M) = dist(z, M) :=inf{|z — (] : (€ M}.

For 0 > 0and z € Clet usset: B(z,0) :={(:|¢ —z| <d},Q(z,0) :=Qn
B(z,9).
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Lemma 3.2. ([1]) Let L be a K-quasiconformal curve, z1 € L, zo, 23 €
QN B(z1,d(z1, Ly, )); wj = ®(25), j =1,2,3. Then

a) The statements |z1 — zo| < |21 — 23] and |w; — wa| =X |wy — ws| are
equivalent, and similarly so are |z1 — 29| < |21 — 23| and |wy — wa| <
|w1 — UJ3| .

b) If |21 — 22| X |21 — 23], then
€

=

w1 — W3 Z1 — %3 wl—wgc

j ‘

w1 — w2 21 — %2 w1 — wa2

where 1 = e1(L) < 1, ¢ = ¢(L) > 1, 1 < r9 < 1 are constants,
depending on L and Ly, := {z = ¢(w) : |lw| =ro}.

Corollary 3.3. Under the assumptions of Lemma 3.2, if z3 € Lp, ,
Ry > 1, then

2 —2
lwy — w2|K = |z — 22| 2wy — w2!K .
Corollary 3.4. If L € Cy, then
lwy — w2\1+€ = |z — 22| X |wy — w2!1_67
for all e > 0.

Let {z;};_, be a fixed the system of the points on L and the weight
function h (z) defined as (1.1).
Recall that for

1
0<d; <do :zimin{|zi—zj|:i,j:1,2,...,m,i7§j},

we put Q(z;, 6;) = QN{z:]z—2z] <6;}; d := min J;, Q) =

1<j<m

U Q(zj, 6), 2 :=Q\ Q(6). Additionally, let A; := B(Q(z}, 6)), A(8) ==
j=1

[jl@(gz(zj, 5)), A(S) = A\A(®S).
~

Throughout this work, we will take R = 1+ 2, for some fixed
0 < g9 < 1. Further, we introduce:

wj = P(z5), p; = argw;, L= Lﬁﬁj, Lg% = LpnQ, j=1,m, (3.1)
where (¥ 1= \I/(A;) and

Ay :{t:Rew, L;m §0<(p1;“p2},

Alm . :{t:Rew, (pm—12+90m <0< @m;¢1}7
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and, for j =2,m —1

A= {t = Re', 7%_1; Pl < g BIT A0 +2(pj+1 };

m . m .
L=UL;Lg=U I

j=1 j=1
The estimation for the ¥ (see, for example, [11, Th.2.8]):
d(¥ (), L)
v’ = —_—— 7 3.2
()] = S (32)

The following lemma is a consequence of the results given in [15,39].

Lemma 3.5. Let L € Co(A1,...,A\m), 0< Aj <2, j=1,m. Then

i) for any w € Ay, Jw — wiNtE 2 [T(w) = U(wy)| 2w —wiVE,
Jw — wi M W (w)] = w — wy [N

i) for any w € A\A;, (jw| — 1) < d(¥(w),L) < (Jlw] — 1)'7¢,
(jw| — 1) = W' (w)| = (|w| = 1)7F, for arbitrary small € > 0.

The following lemma is a consequence of the results given in [29], [12,
p. 32-36], and estimation (3.2) (see, for example, [11, Th. 2.8]):

Lemma 3.6. Let a Jordan curve L € PDS(A1,...,A\p), 0 < Aj < 2,
73 =1,m. Then,
i) for any w € Ay, [¥(w) — U(w;)] =< |w —w;|

[0 (w)] = |w — w7
ii) for any w € Z\Aj, U (w) — ¥(w;))] < |w—wj|, |¥(w)=<1.

Lemma 3.7. ([6]) Let L be a rectifiable Jordan curve, h(z) defined as in
(1.1). Then, for arbitrary P,(z) € pn, any R>1 and n € N, we have

n+ 1= N .
SR ||Pn||5,,(h,L) , yx=max{y;, j =1,m}, p>0.

(3.3)

1Bnall 2, ()

Remark 3.2. In case of h(z) = 1, the estimation (3.3) has been proved
in [17).

4. Proof of Theorems

Throughout proofs of all theorems, we will take n > [%} , where

€0, 0 < g9 < 1, some fixed small constant. In addition, in case when
n = 0, the number n, participating in the all inequalities below will be
changed to (n + 1).
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4.1. Proof of Theorem 2.1.

Proof. Suppose that L € C~2a [1], for some 0 < vy < 1, ﬁ <a<l,
and h(z) defined as in (1.1). For each R > 1, let w = pg(z) denotes be
a univalent conformal mapping Gr onto the B, normalized by ¢r(0) =
0, ¢’3(0) >0, and let {¢;}, 1 < j < m < n, be a zeros of P,(z) lying on
Gpr. Let

) e T 5 = T vr(2) — ¢r(()
Bmg(2): [IB]’R( ) e 1— or(G)er(2)’ (-

denotes a Blashke function with respect to zeros {(;}, 1 < j <m < n,
of P,(z) ([40)). Clearly,

‘Bm7R(z)’ =1, z € Lp, (42)
and
|Bm,r(2)| <1, z € Gg. (4.3)
For any p > 0 and z € Gpg, let us set
P, () ]p/2
T, (2) = |=— 4.4
=g (4.4

The function T}, (z) is analytic in Gg, continuous on G and does not
have zeros in Gg. We take an arbitrary continuous branch of the T), (z)
and for this branch we maintain the same designation. Then, the Cauchy
integral representation for the 7T}, (z) in G gives

T (2) = —— /Tn (©) Cdcz e (4.5)

21
Lgr

Putting z = 21, and subtracting from (4.5), we obtain:

1) - T = 5 [ 10| - 2o ]a o)
Lr
“5i/ [rewo| =)

Lgr
For arbitrary z € L, z # z1, multiplying both sides of the equality by
(z — 21)~71, we obtain

T (2) — Th(21) ’ < 217r/|Pn O
L

(z —z)01

(z — zl)l_gl

(€—2)(¢—2)

ldcf,  (4.7)
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since | By, r(¢)| = 1, for ¢ € L. By multiplying the numerator and the
denominator of the integrand by h!/ 2(¢) and by applying the Holder
inequality, we obtain

1/2

T (2) — Th(21) 1

(z — 21)°1 ‘ S o /h(C) |2 (O |dC]| (4.8)

Lr
1/2

/ ‘2—21’2*201 ’dd B i (J . ; 2)1/2

|C — 2’2 ‘C — Zl|2+')’l ot n, n, y

where

= / WO AP 1| = 1Bl 1 1 wo)

/ -
dcl.
¢ — 22 |¢ — 2 [T

Then, for z € L, from Lemma 3.7, we have

Ty (2) — Th(21)
(z — 21)71

P
]< IBE - (o) 2, =€ I\ {1}

From (4.4), we obtain

p/2 p/2

P,
GO g IPlE - (). (@10)

co | —2
o Q‘Bm,R(Zl)

According to well-known inequalities in [40, p. 121],

’PH(Z)
B, r(2)

|A+BP < 227Y(AP +|BJP), p> 1, (4.11)
|A+BF < |AP+|B|P,0<p<1, A>0, B>0,

from (4.10), we obtain

Bm R( )
B r(21)

Since |By,,r(2)| < 1, for z € L and |By, r(¢)| = 1, for ¢ € Lg, then there
exists €1, where 0 < g1 < %, such that fulfilled the following:

P (2)] < en ()] + ez | Pall, - (Jn2) P (412)

‘Bm7R(21)‘ >1—e1. (4.13)
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Then, from (4.12) and (4.13), for each z € L\ {21}, we have
P (2)] < ez |Pa (20) + 12 | Pall, - (Jn2)'?, p >0, (4.14)

By (2.3), we know the estimation for | P, (z1)| . Therefore, for completion,
we need to find an estimate of J, 2

‘Z - 21‘2720'1
ng = |<_ 2 - » ’2+'Y1 ‘dC’ : (415)
Lr !

—27I¢

Since L € @a [1], for some 0 < 11 < 1, 0 < a < 1, then, according
to [22], ¥ € Lipr; and there exists the number 6, 0 < §; < §p < diam G,
such that

1
® e Lip , 2 € Q(z1,9). (4.16)
2 — 141
We set:
Lpy @ =LpNnQ(z1,61), Lpo:=Lr\Lky; Fi;=®(Lg,); (4.17)
L1 . 1,2 1,1,
Fpi + ={r€Fg;:|t—wl|>|r—wl|}, Fgi == Fp\Fg;
LI : =L'NB(z,6), L= L"\L}; El =L}, i=1,2.
Then, from (4.9), we get:
In2 = Jm?(L}m) + Jn,2(L}z,2)’ (4.18)
where I
[z =z
|d¢| (4.19)
/J<—4|< al

for | C L. There are two possible cases: the point z may lie on L' or L2.
Suppose first, z € L. If z € L}, then w € F}, for i = 1,2. Consider the
individual cases:

1) Let z € Li.

1.1) By applying (4.11), we have

2—201

21‘

Ina( / |d¢| (4.20)
rc—zwm 7P

1 = 2+ 1 = a2
/ I T

1

_ /‘ ua / d¢|
¢ =27 ¢ = ¢ =2 1¢ =
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Lets

Lys + ={CeLk;:[C—=|>|¢—2l},

Ly = LR \LpL, FRL =000, j= 1,2,

Then, from (4.20), we get

|d(| |d(]|
/ |C 201 +2+71 + |< ‘201 +2+71 (4'21)

1
R

d(¥(r), L) |dr|
(7)) = ()7 (7] — 1)

Fry
. A (r). L) lar|
W (7) = @ (w) P72 (7] - 1)
1,2
Frs
- |dT| |dT|
= n |7_ o w|(20’1+1+’}’1)(27111) +n (201 +14+71)(2—v1)
Fl,l F1’2 |T - w|
R,1 R,1

< pQotldm)(2-m)

1.2) For any ¢ € Lk, and 2z € L} | |¢ — 21| > 41 and by (4.11), (4.16),
we obtain:

o o 2—201
Ta(Lko) < / “CK_”ZLFE_ZQW dc| (4.22)

1
Ly,

— |d(| ld¢|
= 1/ |<_Z|201 |C_Zl|2+’)’1 + i/ ‘C_Z|2|C_Z1|201+y1
dc| \d<|
< 52-‘1-’71 / |C 20’1 5201+’Yl / |C
/ d(¥(7), L) |dr| / \II(T),L) \dr] |
() = ¥ (il - () — W) (7] - 1)

If 2 € LinB(2,%), then according to [¢ — 2| > |¢ — 21| — |z — 21| >

PN
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01 — %1 = %1, from (4.22), we obtain:

JIn2

If z € L1\

IdT\

/|x1w

201

Fg o

Q\ {21}, and from (4.22), we get:

Jn,Q(L}%,Q)

=

=

2) Let z € L3.
2.1) According to |( — 21| < |z — 21|, by (4.16), we obtain:

PN

IA

PN

/

1
R,1

/

R,1

Jn,2(L}%,1)

IdTI

/|qu

R,1

201

[ ot

2 201—1 92
7“<&> /'”“““(&
1

7), L) |dT]

\\11 —

Fro

(w)[*

/ T), L) |dT|
\‘1’ — U(w)[?
\dT! L

— < na
\T—w\

ldr] _
Fl |T - w| Fl
R,1

2—201

_ / |z — 21]
J 1C==1¢ -
LR,I

(¢ — 2| + ¢ = =]

Zl|2+’71 ‘ C’

d
=Pl
|d¢| / |d¢|
[ e ¢ =22 |¢ — =P
|d¢| |d¢|
|C_ 201+2+’yl /K 201+2+’Yl
ﬂw(%)uﬂ
[W(7) = W(w) 57 (7] — 1)
d(¥(r), L) |dr|
[W(7) — W (w2257 (|7 - 1)

(4.23)

) / ldr| < n - ’FI{EQ‘ < n.
1

(zl, 2) then | —z| > |7'—w] , since ® € Lipa, z €

(4.24)
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|dT| |dT|
n (201+1+"/1) Tn I — w1|(2al+1+71)(2—u1)

r [Tl 12

A

< pRotldm)(2-m)

Therefore, in this case we have
Jn2(Lh) < nGorttm)@ov), (4.25)

2.2) For any ¢ € Lk, and 2z € L} , |¢ — 21| > 6; and analogously to
the case 1.2), in this case, we obtain:

21‘2—201
n2 R2 / ‘dd
¢ — ZI ¢ — = [P

(dmmL )32 / |d¢|
~ 4.26
- 2+71 |< _ Z|2 ( )

/I‘I’ ))|C|1l:|‘—1 /‘I’ |dT‘ (w)]
|d7]
n/ —w

1
FR,2

IA

Q=

IA

By combining the estimations (4.12), (4.14)—(4.26), finally we obtain
a1
|Pn (Z)’ < ci13 ‘Pn (Zl)’ + c12 HP"”ﬁp “ner, p > 0.
and, then the proof of (2.9) is completed. O

4.2. Proof of Theorem 2.4

Proof. Analogously to beginning of proof of the Theorem 2.1, in this
case, from (4.1)—(4.14), we obtain:

Pa (20l 2 |1Pallg, - Tnzs z€ L. (4.27)

|d¢|
p_/IC e (4.28)

where
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By using the notations (3.1) and setting § := c¢1d; g for some ¢; > 1,
where dj g 1= d(z1, L}%),

= mesL}%,i, i =1,2, we have:

R,i
/ |d(| / |dC| / |d(|
g 1= =
g K-zl T APt [¢ — 2
Lpq
where
cidi, R
’dC| - ds < 1 _
i Capm S ) e S
di,r ’
Lk
/ ]dC| - / ds < 1
|C_Z |2+’y1 - g2tm — d}}'n'
cidi R

According these estimations, from (4.27) and (4.28), we get:

1Py (21)] = (4.29)

@ [ Pnllz, -

On the other hand, by Lemma 3.5, for 0 < A; < 2, and [11], for arbitrary
continuum with simple connected complement, we have:

1
dig = Ay (4.30)

Mte, H0< A <2,
2, if A\ =2,

Now, we will begin to proof of (2.18). Analogously to beginning of
proof of the Theorem 2.1, in this case, from (4.1)—(4.14), we get:

where Xl = { for arbitrary small € > 0.

P (2)] < ez |Pa ()| + iz | Pall, - (Jn2)' P p>0, z€L, (4.31)

where

2201
s = dcl. .
; /fc—zwm e ! )

Therefore, for the proof of (2.18), sufficiently to evaluate the integral
(4.32).
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Lets denote by:

l}%,l D= LlR N Q(Zl,cldl,R), c1 > 1,
ljl%’Q = L}{ N (Q(Zl, 51) \ Q(Zl, c1dy R))
lrs + =Lp\(lp1Ulks); Fr;i=®(g,),
l% o =I! M B(Zl, c1dy R) 12 = Ll ( (21, 51)\3(21, Cldl,R)) ,
I3« = LN\({Uuly); Ff =), j=1,2,3.
Then
|dC| = Jn72(lR7~)7
’C Z| (= ‘2+Aﬂ j=1 ’
where
2—201

Z .
/ o e G

Lets

s+ ={Celp;:I¢—al>1¢-2l},

o =lp\lpy, FRlh=0(y)), i=1,2, j=1,2,3.

Then, according to (4.11), for each j = 1,2, 3, we get:

2—201

|z — 1]
= ’dq (4.34)
1/ |<— 2 o Z1|2+'Yl

=27

(¢ —2[+]¢—x [P
/ ¢ =2 |¢ — 2T a

. / |d¢\ / dc|
= A== AP S (= 2P s P

. jd¢| |d¢\
- |< 201 +2+’Y1 |C 201 +2+71

So, we need to evaluate the integrals Jng(l ) for any z € L and
for each 1 = 1,2, j = 1,2,3. There are two p0551ble cases: the point z
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may lie on L' or L?. Suppose first, z € L'. If z € ljl-, then w € Fjl, for
j=1,2,3. Consider the individual cases:
1) Suppose first that z € I{. According Lemma 3.5, from (4.34) we

get:

1 1 |dd| |dd]|
Jn2(lp1Ulga) 2 / [ + / € = o Poreo
1,1, ;1,1 1,2, ;1,2 A1
I UlR 5 RAY'R 2
(4.35)

d d
- < rz‘q | \c—’f\‘ﬁ“
iU, 1

5 5,
1 1

/ 0 / s +— =2n't5

ih sh sh dh (2. k) df,lR

,2

1 1,2
lRl lR2

IA

d(z,

and

1 |d¢| |d¢]
Jn’2(lR73)< / |C 201+2+’Yl /K 201+2+'Yl <4'36)

1 12
R R3
< ! [ 101+ iy [ 1401 = ] <1
= Do T2+ 2o1+2+ = |lr3l =4
(01 — crdy )™ 7111,1 o
R,3

2) Suppose first that z € I3. Analogously, we get:

1 1 |d(]| 9
Jn2(lp1Ulg) = / Pz / T

lll ll 1,2 l1,2

_ [

+1 +1
K ’)\1 1,2 ‘C_le)\l
lRl ZR 1UZR2
(51 61
< ds . ds
- =+l =1
Sl Chayt
d(z, l}%,l) di,r
1 1
= + 0 <nlte



F. ABDULLAEV, G. ABDULLAEV 23

and

1 |dd| |dd|
J”’2(ZR»3) = /K ’201+2+71 +/ ¢ — |2U1+2+’Y1
R}
R7

01 d
< [ 4 Mgm / dc] (4.38)
d(z, lR)
1
<+ |lgs] = nHE

d* (z, l}%,l)

3) Suppose first that z € I3. In this case, according Lemma 3.5, we
obtain:

1 |d¢] |d¢]
In2(lpy1) = /|C— 3112471 /C NEReaar

R,1 R,1
d d
L+1 L1
Lt ’C—Z‘ ! L2 |C_Zl‘ !
R1 R1
c1di,r
1 / ds
. e [
(01 — crdy ) > H2Hm e Gxrtl
g die
1
< — =<a'te
by
dir

|d(]| |dC\
" 2 R 2 / K 201 +2+’Yl ’C 201 42471 (4'40)

o1
d d d ds
e | s [ |
l}%}z ‘C Z’ ! l}%?z ‘C_le ! ’C Z‘ ! di.r s

c1 01

d d 1 1
[
s™M s™M d*(z, 1L ,)

- d
d(Z, Uk ,) di,r ; L,R

IA
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where Z € 13 fixed point such that | — 2| = |¢ — 2] for ¢ € ljl?ilQ

2—201

Z1’

Tna(lhs) < / dc| (4.41)
|<—zrm a7

C1
< (dzcm;L )220 / |d(| < / ds < 1 < i,
§m ¢ — 2|2 52~ d(z, lhs)

(=, l}{,?’)

Combining the estimations (4.32)—(4.41), we get:
Jna 20T Ve > 0. (4.42)

From estimations (4.29), (4.30), (4.31) and (4.42) we complete the proof
of (2.18). 0

4.3. Proof of Theorem 2.6.

The proof of the this Theorem it is follows from of the proof of The-
orem 2.4, by using Lemma 3.6, instead Lemma 3.5.

4.4. Proof of Remark 2.2.
Proof. a) Let’s L := {z:|z| =1}, h*(z) =1 and Pi(2) = > (j + 1)27.

Then, L € él;
B <Y |G+ 1| =

On the other hand,

Therefore,

1Pz, = (n+1)2(n+2) |yp*HL21L)_\/(”+1)(n22)(2n+3)

.

Then,

rmmm:¢“ 2 B eyai 2 e VAIP esa
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4.5. Proof of Corollary 2.3

Proof. If L € C(1,,wy), 1 < wy < 2, then the curve L = 9G has a
interior (with respect to G) (2 — w;)— angle at the z;. Therefore L €

Qa {ﬁ] for @« = 1 by Remark (2.1). Then, according to [22], ¢ €

Lip(2—w1), and so, by [22], ® € Lz’pwil. Therefore, In this case, for p = 2
from (2.9) and (2.12), we get the proof. O

References

[1] F. G. Abdullayev, V. V. Andrievskii, On the orthogonal polynomials in the do-
mains with K-quasiconformal boundary // Izv. Akad. Nauk Azerb. SSR, Ser.
FTM, 1 (1983), 3-7.

[2] F. G. Abdullayev, On the some properties on orthogonal polynomials over the
regions of complex plane 1 // Ukr. Math. J., 52 (2000), No. 12, 1807-1817.

[3] F. G. Abdullayev, On the interference of the weight boundary contour for orthog-
onal polynomials over the region // J. of Comp. Anal. and Appl., 6 (2004), No. 1,
31-42.

[4] F. G. Abdullayev, N. P. Ozkartepe , On the Behavior of the Algebrai ¢ Polynomi
al in Unbounded Regi ons with Piecewise Dini-Smooth Boundary // Ukr. Math.
J., 66 (2014), No. 5, 579-597.

[5] F. G. Abdullayev, C. D. Giin , On the behavior of the algebraic polynomials in
regions with piecewise smooth boundary without cusps // Ann. Polon. Math., 111
(2014), DOI: 10.4064/ap111-1-4, 39-58.

[6] F. G. Abdullayev, N. P. Ozkartepe, C. D. Giin, Uniform and pointwise polynomial
inequalities in regions without cusps in the weighted Lebesgue space // Bulletin
of Thilisi ICMC, 18 (2014), No. 1, 146-167.

[7] F. G. Abdullayev, N. P. Ozkartepe, On the growth of algebraic polynomials in the
whole complex plane // Journal of Korean Math. Soc., 52 (2015), No. 4, 699-725.

[8] F. G. Abdullayev, N. P. Ozkartepe, Uniform and pointwise polynomial inequal-
ities in regions with cusps in the weighted Lebesque space [/ Jaen Journal on
Approximation, 7 (2015), No. 2, 231-261.

[9] F. G. Abdullayev, The interference condition of the weight and contour for or-
thogonal polynomials over a contour I, (2016) (submitted).

[10] L. Ahlfors, Lectures on Quasiconformal Mappings,Princeton, NJ, Van Nostrand,
1966.

[11] V. V. Andrievskii, V. I. Belyi, V. K. Dzyadyk, Conformal invariants in construc-
tive theory of functions of complex plane, Atlanta, World Federation Publ. Com.,
1995.



26 ON THE SOME PROPERTIES OF THE ORTHOGONAL POLYNOMIALS...

[12]

[13]

[14]

V. V. Andrievskii, H. P. Blatt, Discrepancy of Signed Measures and Polynomial
Approximation, Springer Verlag, New York Inc., 2010.

V. V. Andrievskii, Weighted Polynomial Inequalities in the Complex Plane //
Journal of Approximation Theory, 164 (2012), No. 9, 1165-1183.

G. Fauth, Uber die Approzimation analytischer Funktionen durch Teilsum-
menihrer Szego-Entwicklung // Mitt. Mathem. Semin. Giessen, 67 (1966), 1-83.

D. Gaier, On the convergence of the Bieberbach polynomials in regions with cor-
ners // Constructive Approximation, 4 (1988), 289-305.

Ya. L. Geronimus, Polynomials Orthogonal on a Circle and Interval, IX, Tafeln.
Oxford, 1960.

E. Hille, G. Szegd, J. D. Tamarkin, On some generalization of a theorem of
A.Markoff // Duke Math., 3 (1937), 729-739.

D. Jackson, Certain problems on closest approzimations // Bull. Amer. Math.
Soc., 39 (1933), 889-906.

P. P. Korovkin, Sur les polynomes orthogonaux le long d’un contour rectifiable
dans le cas de la présence d’un poids // Rec. Math. [Mat. Sbornik] N.S., 9(51)
(1941), No. 3, 469-485.

A. L. Kuz’'mina, Asymptotic representation of polynomials orthogonal on a
piecewise-analytic curves // Proc. “Functional Analysis and theory of Functions”,
Kazan’, (1963), 42-50.

O. Lehto, K. I. Virtanen, Quasiconformal Mapping in the Plane, Springer Verlag,
Berlin, 1973.

F. D. Lesley, Hélder continuity of conformal mappings at the boundary via the
strip method // Indiana Univ. Math. J., 31 (1982), 341-354.

D. I. Mamedhanov, Inequalities of S. M. Nikol’skii type for polynomials in the com-
plex variable on curves // Soviet Math. Dokl., 15 (1974), 34-37.

D. I. Mamedhanov, On Nikol’skii-type inequalities with new characteristics //
Doklady Mathematics, 82 (2010), 882-883.

G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics in Polynomi-
als:Extremal Problems, Inequalities, Zeros, World Scientifc, Singapore, 1994.

S. M. Nikol’skii, Approzimation of Function of Several Variable and Imbeding
Theorems, Springer-Verlag, New-York, 1975.

N. P. Ozkartepe, F. G. Abdullayev, On the interference of the weight and boundary
contour for algebraic polynomials in the weighted Lebesgue spaces I. // Ukr. Math.
J., (2016) (submitted).

Ch. Pommerenke, Univalent Functions, Go6ttingen, Vandenhoeck & Ruprecht,
1975.



F. ABDULLAEV, G. ABDULLAEV 27

[29]

[30]

31]

32]

[33]

[34]
[35]

[36]

37]

[38]

[39]

[40]

Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag,
Berlin, 1992.

I. Pritsker, Comparing Norms of Polynomials in One and Several Variables /] J.
of Math. Anal. and Appl., 216 (1997), 685-695.

S. Rickman, Characterisation of quasiconformal arcs // Ann.Acad. Sci. Fenn.,
Ser. A, Math., 395 (1966), 30 p.

V. 1. Smirnov, Sur la theorie des polynomes orthogonauzr a une variable com-
pleze // J. Leningrad Fiz.-Math. Fellow., 2 (1928), No. 1, 155-179.

G. Szegd, Uber orthogonale Polynome, die zu einer gegebenen Kurve der kom-
plexen Ebene gehoren // Mathem. Zeitschr., 9 (1921), 218-270.

G. Szegd, Orthogonal Polynomials, Fizmatgis, 1962 (in Russian).

G. Szegd, A. Zigmund, On certain mean values of polynomials // J.Anal. Math.,
3 (1954), 225-244.

P. K. Suetin, The ordinally comparison of various morms of polynomials in the
complex domain, Matematicheskie zapiski Uralskogo Gos. Universiteta, 5 (1966),
No. 4 (in Russian).

P. K. Suetin, Main properties of the orthogonal polynomials along a circle //
Uspekhi Math. Nauk, 21 (1966), No. 2(128), 41-88.

P. K. Suetin, On some estimates of the orthogonal polynomials with singularities
weight and contour // Sib. Math. J., VIII (1967), No. 3, 1070-1078 (in Russian).

S. E. Warschawski, On differentiability at the boundary in conformal mapping //
Proc. Amer. Math. Soc., 12 (1961), 614-620.

J. L. Walsh, Interpolation and Approximation by Rational Functions in the Com-
plex Domain, AMS, 1960.

CONTACT INFORMATION

Fahreddin Mersin University Faculty of Arts
Abdullayev and Science Department of Mathematics,

Mersin, TURKEY
E-Majil: fabdul@mersin.edu.tr;
fahreddinabdullayev@gmail.com

Giilnare Mersin University Higher School
Abdullayev of Technical Science,

Mersin, TURKEY
E-Mail: gabdullayeva@yandex.com



