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Pseudospectral functions of various
dimensions for symmetric systems with
the maximal deficiency index
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Abstract. We consider first-order symmetric system Jy' — A(t)y =
AA(t)y with n x n-matrix coefficients defined on an interval [a,b) with
the regular endpoint a. It is assumed that the deficiency indices N4 of
the system satisfies N_ < Ny = n. The main result is a parametriza-
tion of all pseudospectral functions o(-) of any possible dimension n, <
n by means of a Nevanlinna parameter 7 = {Co(\),C1(A)}. Such a
parametrization is given by the linear-fractional transform

m-(A) = (Co(A)wi1(N) + Cr(A\)wa1 (X))~ (Co(A\)wiz2(A) + Cr(N)waz(N))

and the Stieltjes inversion formula for m,(\). We also show that the
matrix W(X) = (wi;(A))7 =1 has the properties similar to those of the
resolvent matrix in the extension theory of symmetric operators. The
obtained results develop the results by A. Sakhnovich; Arov and Dym,;
Langer and Textorius.
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1. Introduction

Let H be a finite dimensional Hilbert space, let n = dim H and let [H]
be the set of linear operators in H. We consider symmetric differential
system [6,17]

Jy — Aty = A\A(t)y, teZ, AeC, (1.1)

where J € [H], J* = J ! = —J and A(t) = A*(t) and A(t) > 0
are [H]-valued locally-integrable functions defined on an interval Z =
[a,b), —00 < a <b< 0.
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Let for definiteness dimker (J —il) > dimker (J +iI). Then without
loss of generality one may assume that H = H & H @& H with finite-
dimensional Hilbert spaces H and H and that

0 0 Iy ~ ~
J=|0 i 0 |:HeoHoH-HoHoH  (12)
Iy 0 0

System (1.1) is called a Hamiltonian system if H = {0} and hence H =
Hao H,

J=(Y M. nensHewm (1.3)
Iy 0

Recall that system (1.1) is called regular if b < oo and [||A(t)||dt <
0o, [7JA®t)|]dt < oo; otherwise it is called singular. Pseudospec-
tral functions of regular Hamiltonian systems were studied in [3, 5, 36,
37). Namely, denote by $§ = LA(Z) the Hilbert space of functions
f I — H satisfying [(A(t) f(t), f(t)) dt < co. Let Y(-,\) be the [H]-
valued operator solution of (1.1) with Y (a,\) = Iy and let Y (¢,\) =
(p(t,N), ¥(t,N\))(€ H & H,H) be the block representation of Y (¢, \).
Then according to [36] an [H]-valued operator (matrix) distribution func-
tion o(-) : R — [H] is called a pseudospectral function of the regular
Hamiltonian system (1.1) if the (generalized) Fourier transform V;, : $ —
L?(0; H) defined by

~

(Vo f)(s) = f(s) IZ/Isﬁ*ﬁ»S)A(t)f(f)dt f)es (1.4)

is a partial isometry with the minimally possible kernel ker V, = Lg :=
{fen: f(s) =0, s € R}. Moreover, o(-) is a spectral function if V, is
an isometry. Clearly the dimension n, of the matrix o(s) is n, = dim H.

A description of all pseudospectral functions is specified in the follow-

ing theorem obtained by A. L. Sakhnovich in [36] (see also [37]).

Theorem 1.1. Let system (1.1) be reqular and Hamiltonian with A(t) =
0, let

_ (wi(A) wz(A)
W(A)-(w;()\) w4(/\)>.H@H—>H69H, AeC

be the block representation of the monodromy matriz W(\) := Y (b, ) and

let () kerwyi(A) = {0}. Then for each Nevanlinna pair 7={Cy(\), C1(\)},
AeC
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C;(\) € [H], A € C4, j € {0,1}, satisfying a certain admissibility con-
dition the equalities

m(A) = (CoMwi(A) + C1(Nws(N)) ™!

X (Co(N)wa(N) + Ci(N)wa(N), AeCy (1.5)
s—0
o(s) = 61_1)1110 EE)IEO % /_(S Imm(u + ic) du (1.6)

defines a pseudospectral function o(-) and, conversely, each pseudospec-
tral function o(-) is defined by (1.5), (1.6) with some admissible Nevan-
linna pair 7 = {Co(N),C1(N)}. Moreover, in the case Lo = {0} (and
only in this case) the set of spectral functions is not empty and the above
statement holds for spectral functions.

It was also shown by D.Z. Arov and H. Dym in [3,5] that under
certain additional conditions on W () statements of Theorem 1.1 hold
with arbitrary (not necessarily admissible) Nevanlinna pairs 7 and the
correspondence between o(-) and 7 is one to one.

The above results on pseudospectral functions were developed in our
papers [32-35]. Namely, in [32,35] definitions of pseudospectral and spec-
tral functions o(-) were extended to general (regular or singular) possi-
bly non-Hamiltonian system (1.1), (1.2) (see Definition 3.2 below). It is
proved in [35] that under the natural additional conditions the dimension
ne of o(-) satisfies dim H + dim H < n, < n.

Denote by N, the linear space of solutions of (1.1) belonging to $ and
let Ny = dimN), A € C4, be the deficiency indices of the system. In [32—
35| statements of Theorem 1.1 were extended to pseudospectral functions
o(:) of any possible dimension n, for arbitrary (possibly singular and
non-Hamiltonian) symmetric system (1.1), (1.2) with arbitrary (possibly
unequal) deficiency indices Ny. In particular, according to [35] (see also
Theorem 3.12 below) the parametrization of all pseudospectral functions
o(+) of a fixed dimension n, is given by the Redheffer transform

m(A) = mo(A) + S1(A)(Co(A) — CLA)MN)TLC1(N)S2(N), A e Cy
(1.7)

of the Nevanlinna parameter 7 = {Cy(\), C1(\)} and by formula (1.6) for
the (Nevanlinna) operator function m(-), which is the Titchmarsh-Weyl
function of the system. The operator coefficients mg, S, S2 and M in
(1.7) are defined in terms of the boundary values of respective operator
solutions of (1.1) at the endpoints a and b.

In the present paper we study pseudospectral and spectral functions of
symmetric system (1.1), (1.2) with the maximal deficiency index Ny = n
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and an arbitrary deficiency index N_. The partial case here is a quasireg-
ular system, i.e., the system with N = N_ = n (clearly, each regular
system is quasiregular). For a system with Ny = n we define the mon-
odromy matrix B(A)(€ [H]), A € C,, as a singular boundary value of
Y (-, \) at the endpoint b. The main result of the paper is a parametriza-
tion of all pseudospectral and spectral functions o(-) of a given dimension
ne for general system (1.1), (1.2) with N_ < Ny = n. Unlike (1.7) such
a parametrization is given by the linear-fractional transform (1.5) with
the operator-valued coefficients w;(A) defined in terms of B(\) and by
formula (1.6). In the simplest case of the minimal ny = dim H + dim H
this result can be formulated as the following theorem.

Theorem 1.2. Let for simplicity system (1.1), (1.2) be quasiregular.

Assume that there exists only a trivial solution y = 0 of this system such

that A(t)y(t) = 0 (a.e. onZ) and y(a) € H & {0} & {0}. Let B(\) =

{Bij(\) ?,j:l be the block representation of the monodromy matriz and
wi(A) wa(A) 7

let W(A\) = (wg()\) wi(\))’ where w;(X\) € [H® H|, A € C, are

defined by

[ Bu Bio _( Bis 1B1s
wi(A) = (—z’Bgl —i(Bas — IA)) » w2(A) = (—1'323 1(Bos + 1)

i
(1.8)
B3 B >
A) = )
ws() (-%Bm —5(Ba +15)
Bss £ Bsg >
1) (-%323 — (B — 1) (1.9)

with Bij = Bj;j(\) (clearly for the Hamiltonian system W (X) = B(\)).
Then:
(1) The equality

m(A) = (Co(Nwi(A) + Cr(A)wz(N) ™
X (Co(Mwz(A) + C1(Nwa(N), A€ Cy (1.10)

together with (1.6) establishes a bijective correspondence between all Ne-

vanlinna pairs T = {Co(N),C1(N)}, Cj(X) € [H® HJ, j € {0,1}, satisfy-
ing the admissibility conditions

Jim e (i) (Coliy)wn (iy) + Crliy)ws(iy) " Ci(iy) =0 (1.11)

lim L ws (i) (Co(iy)wi (iy) + Ci(iy)ws(iy)) "' Coliy) =0,  (1.12)

y—r+o0
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and all pseudospectral functions o(s)(€ [H ® H)) of the dimension n, =
dim H +dim H.
(2) Conditions (1.11) and (1.12) can be omitted if and only if

Jtim_y(lAl = Gkl =+, 0AheHOH.  (L13)

Here x(+) is a contractive operator function defined by
x(\) = (w3(\) + iwi(N) (wz(N) —iwi(N) ™Y, A e Cy. (1.14)

(3) The set of spectral functions o(s)(€ [H & H)) either is empty
or coincides with the set of pseudospectral functions. In the latter case
statements (1) and (2) hold for spectral functions instead of pseudospec-
tral ones.

Actually statements of Theorem 1.2 with the slightly modified con-
ditions (1.11) and (1.12) are valid for systems (1.1) with N_ < Ny =n
(see Theorem 4.17 below). In the particular case of the quasiregular
Hamiltonian system Theorem 1.2 was proved in [34].

In the case of the regular system one has B(\) = Y (b, \). Therefore
for regular Hamiltonian systems (1.1) with A(¢) = 0 Theorem 1.2 yields
Theorem 1.1.

Note that admissibility conditions (1.11) and (1.12) are essentially
simpler than the similar condition in [36,37]; actually they are conse-
quences of M-admissibility conditions for symmetric operators [9,10,31].
Observe also that statement (2) of Theorem 1.2 is stronger than similar
result from [3,5] mentioned just after Theorem 1.1. More detailed com-
parison of our results for Hamiltonian systems with those from [3,5,36,37]
can be found in [34].

As is known (see e.g. [5]) for a regular Hamiltonian system the mon-
odromy matrix W(A)(= B(\)) is an entire iJ-inner operator-function.
This fact enables the authors of [5,36] to apply the method based on
the theory of reproducing kernel Hilbert spaces associated with entire
iJ-inner matrix functions. At the same time there exist singular sys-
tems with N_ < Ny = n for which W(\) is not iJ-inner function and
hence the method of [5,36] is not applicable to such systems. Therefore
our approach based on the extension theory of symmetric linear relations
seems to be more convenient for studying of pseudospectral functions of
singular symmetric systems.

Existence of scalar pseudospectral functions for the Hamiltonian sys-
tem (1.1) in the case dim H = 1 was proved by I. S. Kats (see [20]
and references therein). Existence of pseudospectral functions o(-) of
the maximal dimension n, = n was proved in [13,14,25,26]. In [25,26]
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a parametrization of all pseudospectral functions o(-) with n, = n for
regular system (1.1) is given in the form close to (1.2), (1.6) (similar
parametrization follows also from [3, Theorem 4.3]). Close result for sys-
tem (1.1), (1.2) with N_ < N, = n is obtained in our paper [33].

In the forthcoming paper we are going to apply the obtained results
to studying of spectral functions for the vector-valued Fourier transform.

2. Preliminaries

2.1. Notations

The following notations will be used throughout the paper: $, H
denote separable Hilbert spaces; [H1, Ha] is the set of all bounded linear
operators defined on H; with values in Ho; [H] := [H,H]; C4 (C_) is
the upper (lower) half-plane of the complex plane. If # is a subspace in

H, then Py (€ [H]) denote the orthoprojection in H onto H and Py 4, (€

[7:2, H]) is the same orthoprojection considered as an operator from H to
H.

In the following C[Hg, H1] is the set of all holomorphic operator-
functions K () : C4 — [Ho, H1] such that ||[K(N)|| < 1 for all A € C4,
C[H] := C[H,H] and C is the set of all C-valued functions K () holo-
morphic on C; and satisfying |[K(\)| <1, A € C;.

Recall that a linear relation T : Hg — H1 from a Hilbert space Hg
to a Hilbert space H; is a linear manifold in the Hilbert space Hg @ Hi.
If Ho = H1 =: H one speaks of a linear relation 7" in H. The set of all
closed linear relations from Hg to #; (in ) will be denoted by C(Ho, H1)
(C(H)). A closed linear operator T' from Hy to H; is identified with its
graph gr T € C(Ho, H1).

For a linear relation T € C| (Ho, H1) we denote by dom T, ranT', ker T’
and mul T the domain, range, kernel and the multivalued part of T re-

spectively. For T' € C(Ho, H1) we will denote by T—1(€ C(H1,Ho)) and

T*(€ C(H1,Ho)) the inverse and adjoint linear relations of 7" respectively.

2.2. The class R[H] of Nevanlinna operator functions

Recall that an operator function ®(-) : C4 — [H] is called a Nevan-
linna function (and is referred to the class R[H]) if it is holomorphic and
Im®(\) > 0, A € C.. We denote by R,[H] the class of all functions
®(-) € R[H] such that the operator Im®(\) is invertible for all A € C,..

The following lemma will be useful in the sequel.
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Lemma 2.1. Let M(-) € R,[H], let Ao € C4 and let
O = (M) = M) (M) + ), AeCr  (21)
Then ||C(N)|| <1, A € C4, and the equality

lim y(||h]| = [|C(iy)h|]) = +oo, heH, h#0 (2.2)

Yy—>—+00

holds if and only if

. i . —_ . . . —
ygrfoo l.yM(zy) 0 and yginooy Im(M (iy)h,h) = 400, h € H, h # 0.
(2.3)

Proof. According to [12] there exists a Hilbert space £, a symmetric
operator A in §) and a boundary triplet for A* such that M(-) is the Weyl
function of this triplet. Moreover, the operator A is densely defined if
and only if (2.3) holds. Next, according to [28] C'()) is the characteristic
function of A in the sense of [38] and by Theorem 3.3 in [38] A is densely
defined if and only if (2.2) holds. Thus both the conditions (2.2) and
(2.3) are equivalent to the dense definiteness of A and hence (2.2) is
equivalent to (2.3). O

2.3. The classes R(Ho,H1), Ry, (Ho) and R(H)

In the following Hj is a Hilbert space, H; is a subspace in Hg, Hs :=
/Ho © 7‘[1, P1 = P?-loﬂ-h and Pg = Pq.[2. Clearly,

Ho=H1 D Ho = Ha D H;.

Definition 2.2. [31] A relation § € C(Ho,H1) belongs to the class
Ac(Ho, Hy) if
2Im(h1, hg)q.[o + ||P2h0||2 <0, {ho,hl} € 6, and (9 + )\Pl)_l S [H1,H0]
for some (and hence for all) A € C_.

A function 7(-) : C; — C(Ho, H1) is referred to the class R(Ho, H1) if
—7(\) € Ac(Ho,H1), A € C4, and the operator-function (7(\) +iP;)~*
is holomorphic on C,.

Let K be a Hilbert space. For a function 7(-) : C4 — C(Ho, H1) and
a pair of operator functions Cj(-) : C4 — [H;,K], j € {0,1}, we write
T(A) = {Co(N), C1 ()} if

7(\) = {{ho, h1} € Ho & H1 : Co(MNho + C1(\)hy =0}, A e C
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Proposition 2.3. [31] The equality 7(\) = {Co(N),C1(N\)} establishes
a bijective correspondence between all functions 7(-) € R(Ho,H1) and
all pairs of holomorphic operator-functions C;(-) : C4 — [Hj, Hol, j €
{0,1}, satisfying

2Tm(C1(N)Cg1(A)) + Coz(M)Cia(A) > 0, (Co(A) —iC1(A)P1) ™! € [Hol.

(2.4)
for all X € C. Here Cy;(-), j € {0,1}, are the entries of the block
representation

Co()\) = (001 ()\), Coz()\)) :H1 P Ha — Ho (2.5)

Proposition 2.3 enables one to identify a function 7(-) € R(Ho, H1)
and the corresponding pair {Cp(-), C1(-)} (more precisely the equivalence
class of such pairs [31]).

If H; = Ho =: H, then the class R(H,H) coincides with the well-
known class R(#) of Nevanlinna C(H)-valued functions (Nevanlinna op-
erator pairs) 7(\) = {Co(N), C1(\)} with C;(-) : C4 — [H]. In this case
the class RO(H) is defined as the set of all 7(-) € R(H) such that 7(\) =
0 ={Cy,C1}, XeCy,with  =6* € C(H). Clearly, R[H] C R(H).
Definition 2.4. A function (operator pair) 7()\) = {Co(N),C1(N)} €

R(Ho) will be referred to the class Ry, (Ho) if
FO) (M3 = {{ha, §ha} : b € (= gr(31)), A€ Ci

Clearly, in the case Ho = H; =: H one has Ry (H) = R(H).
The following lemma is obvious.

Lemma 2.5. (1) The operator pair 7(\) = {60()\),5'1N(>\)} e R(Ho)

belongs to Ry, (Ho) if and only if the operator functions C;(X) admit the
representation

50()\) = (C()l()\), lCOQ()\)) : 7'[1 b 7‘[2 — Ho, (2.6)
Ci(\) = (C1(N),iCoa(N)) : H1 @ Ha — Ho, AeCyp  (2.7)

with certain operator functions Co1(N), Co2(A) and C1(X). The operator-
function B(-) € R[Ho] belongs to Ry, (Ho) if and only if it admits the
block representation

_ (BN 0
B(A)—<BQ(A) é%) cH1 @ Hy — H1 @ Hay, NECH.

(2) The equalities (2.6) and (2.7) establish a bijective correspondence
between all pairs 7(A) = {Co(N),C1(\)} € R(Ho,H1) with Co(A) of the
form (2.5) and all pairs T(A) = {Co(N), C1(N)} € Ry, (Ho).
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_In the following proposition we give a parametrization of the class
Ry, (Ho) in terms of contractive operator-functions.

Proposition 2.6. The equalities

Go) = (;517{2 iKo(\)

0 i(Kl()\)+IH1)> :Ho ®@H1 — Ho ® Ha

= o (V2h, Ka(N) .
Cl()‘)_< 0 Ki(A) = I, tHao®H1 — Ha® Ha

give a bijective correspondence between all operator-functions
(K1(A), K2(N) " belonging to C[H1,H1 @& Hs] and all pairs
T(A) = {Co(A), C1(A)} € Ry, (Ho).

Proof. One can easily verify that the equality X{ fo, f1} = {ho, h1} with

Piho = 5(f' +iPifo), Paho = P2fo,

hi = 5(f = iPifo), {fo, fi} € Ho®Ha
defines an automorphism X € [Ho @ Hi] such that ||hol|?> — ||h1]> =
2Im(f1, fo)u, + || P2fol|?. Therefore the equalities

Ki(A) = Iy, — 2iP(t(A) +iP) 7,

Ky(\) = —V2P(t(\) +iP)™Y, AeCy (2.8)
establish a bijective correspondence between all 7(\) € R(Ho, H1) and
all operator-functions (K1(\), K2(\))T € C[H1, H1DHz). It follows from
(2.3) that {fo, fi} € 7(A) if and only if

i(K1(A) + Iy ) Prfo + (K1 (A) — I, ) f1 = 0,
iKo(N)Pufo+ V2P fo + K2(A) f1 = 0.

Therefore the equalities

Co(A) = (\/%’HQ Z(Kllgi(j‘\)h{l» tHo @ HL = Ho®Ha

C1(\) = (Ka(A\), K1(\) — I )T+ Hy — Ho @ Hy

gives a bijective correspondence between all functions (K1(A), K2(A)) " €
C[H1,H1 @ Hz| and all functions 7(A) = {Co(N),C1(N)} € R(Ho, H1).
Now the statement of the proposition follows from Lemma 2.5, (2). O
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2.4. Boundary pairs for symmetric relations

As is known a linear relation A in $) is called symmetric (self-adjoint)
if A C A* (resp. A = A*). Assume that A € C() is a symmetric
relation, M\ (A) = ker (A* — A) (A € C) is a defect subspace of A and
To(A4) = ({/,AF) + f € M(A)).

Recall that a pair {Ho ® H1,['} with a linear relation I' : H @ H —
Ho @ H; is called a boundary pair for A* if domI' = A*, the abstract
Green’s identity

(f,9) = (f,9)s = (h1, 20)wy — (ho, 21)w, + i(Paho, Pao)3,

holds for every {f & f',ho ® h1}, {g® ¢, 20 ® x1} € T and a certain
maximality condition is satisfied [10, 30].
The following proposition is immediate from [30, Section 3].

Proposition 2.7. Let {Ho ® H1,T'} be a boundary pair for A* with
dimHg < oo, let Ty : H D H — Ho be the linear relations, given by
Lo = Pyygqo [ and let
Kr :=mul (mull') ={h1 € H1 : {08 0,0 h1} € '}, Kr C Hi.
(2.9)

Assume also that 71 is the orthoprojection in $ @ $ onto $H @ {0}. If
Kr = {0}, then the equalities

7+ (A) = m(To [ M(A) ™! AeCy

grMi(N) =f{ho@h: {fOA[,ho®h}eT
with some f € M\(A)}, AeCq
correctly define the holomorphic operator function v4(-) : C4+ — [Ho, 9]
(the y-field) and M (-) : C4 — [Ho, H1] (the Weyl function of the pair
{Ho ®H1,T'}). Moreover, if
Mi(A) = (M), N+(\) - Hi & Ha > Hi, A€Cy

is the block representation of M, (-), then the equality

M) Ny

M(A)z( 0 ;‘IH2>3,H1@H2—>H1@/H2, AeCy (210

0 0

defines the operator-function M(-) € Ry[Ho] and the following identity
holds

M(p) = M*(A) = (1= N)7i N7 (m), A € Co (2.11)
Remark 2.8. A boundary pair for A* and its Weyl function is a useful

generalization of the well known concept of a boundary triplet for A*
[8,19,29] and its Weyl function [11,28,29].
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3. Pseudospectral and spectral functions
of symmetric systems

3.1. Notations

For an interval Z = [a,b) C R and a finite-dimensional Hilbert space
H we denote by AC(Z; H) the set of all functions f(-) : Z — H, which are
absolutely continuous on each segment [« 8] C Z.

Assume that A(+) : Z — [H] is a locally integrable function such that
A(t) > 0 a.e. on Z. Denote by £ (Z;H) the semi-Hilbert space of Borel
measurable functions f(-) : Z — H satisfying [(A(¢) f(¢), f(t))mdt < oo
(see e.g. [15, Chapter 13.5]), by LA (Z; H) the Hilbert space of equivalence
classes in £%(Z;H) with respect to the semi-norm in £%(Z;H) and by
7a the quotient map from £3 (Z; H) onto L4 (Z; H).

For a finite-dimensional Hilbert space K we denote by £4[K,H] the
set of all Borel measurable operator-functions F'(+) : Z — [KC, H] such that
F(t)h € LA(Z;H), h € K. Moreover, we let £3 [H] := L% [H, H]

In the following for an operator-valued distribution function o(-) :
R — [H] we denote by £%(c;H) the semi-Hilbert space of Borel-mea-
surable functions g(-) : R — H such that [;(do(s)g(s),g(s)) < oo and
by L?(o;H) the Hilbert space of all equivalence classes in £2(o;H) with
respect to the seminorm [|-|[ z2 ;) (see e.g. [15, Chapter 13.5]). Moreover,
we denote by 7, the quotient map from £2(o;H) onto L?(o; H).

3.2. Symmetric systems

Let H and H be finite dimensional Hilbert spaces and let
H:=HoH®H, n:=dimH.

A first order symmetric system of differential equations on an interval
= [a,b), —00 < a < b < 00, (with the regular endpoint a) is of the form

Jy' — At)y = AA(t)y, te€Z, XeC, (3.1)

where J is the operator (1.2) and A(-) and A(-) are [H]-valued functions
on Z integrable on each compact interval [a, 8] C Z and such that A(t) =
A*(t) and A(t) > 0 (a.e. on Z). In the case A(t) = 0 system (3.1) is
called canonical.

A function y € AC(Z; H) is a solution of 5y5tem (3.1) if equality (3.1)
holds a.e. on Z. An operator function Y (-, \) : Z — [KC, H] is an operator
solution of (3.1) if y(t) = Y (¢, \)h is a solution of (3.1) for every h € K
(here K is a Hilbert space with dim K < o0).
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Let Ny, A € C, be the linear space of all solutions of the system
(3.1) belonging to £%(Z;H). According to [22,27] the numbers Ny =
dim Ny, X € C4, do not depend on X in either C; or C_. These numbers
are called the formal deficiency indices of the system [22]. Clearly Ny <
n.

In the following for an operator solution Y'(-,\) € L[, H] of (3.1)
we denote by Y()) the linear operator from K to Ny given by

(YR () =Y, Nh, hek. (3.2)

For any A € C the space N} of all solutions y of (3.1) with A(¢)y(t) =
0 (a.e. on Z) is a subspace of Ny; moreover, N} does not depend on .
The space N' = NJ, X € C, is called the null manifold of the system [22].

As is known [7,20,27,30] system (3.1) gives rise to the maximal linear
relations Tmax and the minimal relation Ty, in EZA(I; H). Moreover, the
equalities Tinax = (TA @ TA) Tax and Tinin = (7A @ TA) Tiin define the
maximal and minimal relations Tyax and Tin in LzA(I; H) respectively.
It turns out that Ty, is a closed symmetric linear relation in LQA(I; H)
and T7. = Tax. Observe also that the Lagrange’s identity

(f7 Z)A - (yag)A = [y,Z]b - (Jy(a),z(a)), {y, f}’ {Zag} € Tmax (3'3)

holds with [y, 2], := %in%(Jy(t), 2(t)), y, z € dom Tmax-
—
With each subspace § C H we associate the subspace 6* C H given
by
0 =He Jd={heH: (Jhk)=0, k €0}

Moreover, we denote by Sym(H) the set of all subspaces # in H satisfying
0 C 6* or, equivalently, (Jh,k) =0, h,k € 0.

3.3. Pseudospectral and spectral functions

In what follows we put $ := L3 (Z;H) and denote by $, the set of
all f € $ with the following property: there exists 7€ 7 such that for
some (and hence for all) function f € f the equality A(t)f(t) = 0 holds
a.e. on (Bf, b).

With each subspace ¢ € H one associates a linear relation Tyx € C| (%)
given by

TGX = {{WAZ% TFAf} : {y7 f} € TmaX7 y((l) € HX
and [y, z]p =0, z € dom Tiax}- (3.4)

The following assertion is obvious.
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Assertion 3.1. The multivalued part mulTyx of Tyx is the set of all
f € $ such that for some (and hence for all) f(-) € f there exists a
solution y of the system

Jy — Alt)yy = A(b)f(t), teT (3.5)
satisfying the relations

A()y(t) =0 (a.e. on I), y(a)€ 0 and [y, z]p = 0, 2z € dom Tax-
(3.6)

Let € be a subspace in H. Moreover, let the following assumption
(A0) be satisfied:

(A0) Hj is a subspace in H, K = Ky € [Hj,H] is an operator such
that ker Ky = {0} and KpHj, = 6 and Yk (-, \)(€ [Hf, H]) is an operator
solution of (3.1) with Yx(a,\) = K, X € C.

With each fé ) one associates the function f() : R — H[, given by

7s) = /I Yt 9)AW S0 dt, [() € J. (3.7)

Definition 3.2. [35] A distribution function o(-) : R — [H{] is called a
pseudospectral function of the system (3.1) (with respect to the operator
K = Kjy) if f € L%(o; Hy) for all f € $ and the operator V f := 7, f, f €
9, admits a continuation to a partial isometry V,, € [$), L?(o; H})] with
ker Vo, = mul Tjx.

If V admits a continuation to an isometry V, € [§, L?(o; HJ)], then
o(+) is called a spectral function.

The operator V, is called the (generalized) Fourier operator corre-
sponding to o(-).

Remark 3.3. (1) Definition 3.2 is motivated by the fact that a pseu-
dospectral function possesses a useful extremal property (for more details
see [35]).

(2) It follows from [35, Proposition 3.12] that a pseudospectral (in par-
ticular spectral) function o(-) with respect to the operator Ky € [H), H]
is uniquely characterized by the subspace 6 and does not depend in fact
on a choice of Hj, and Kjy.

Proposition 3.4. [35] If mul Ty« # {0}, then the set of spectral func-
tions is empty; otherwise the sets of spectral end pseudospectral functions
(wit respect to Kg) coincide.
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3.4. Decomposing boundary pairs

Definition 3.5. [6,17] System (3.1) is called definite if N = {0} or,
equivalently, if for some (and hence for all) A € C there exists only a
trivial solution y = 0 of this system satisfying A(t)y(¢t) = 0 (a.e. on 7).

Definition 3.6. [35] Let 6 be a subspace in H. System (3.1) is called
O-definite if the conditions y € N and y(a) € 6 yield y = 0.

Remark 3.7. (1) Clearly, H-definiteness is the same as definiteness.

(2) If system is definite, then obviously it is #-definite for any 6 €
H. Hence 0-definiteness is generally speaking a weaker condition then
definiteness.

(3) If ker A(t) = 0 (a.e. on Z), then obviously system (3.1) is definite
and by Assertion 3.1 mul T}y;, = mul Ty = {0} (that is Ty, is a densely
defined operator). Therefore in this case for any 6 the sets of spectral
and pseudospectral functions (with respect to Kjy) coincide.

Lemma 3.8. [2,30] For any system (3.1) with N_ < Ny there exist a
finite dimensional Hilbert space Hy, a subspace Hy C Hy and a surjective
linear operator

™~

F;; = ( 6b7 b llb)T : domﬁnax — ﬁb ® ﬁ— ) Hb (38)
such that for all y, z € dom Tiax the following identity is valid:

[y, 2ls = (Copy, T1p2) — (T1py, Tov2) + i(Pyy Tovys Py Topz) + i(Thy, Th2)
- (3.9)
(here Hi- = Hy, © Hp). Moreover,

dimH, = Ny —dim H —dim H,  dimH, = N_ — dim H — dim H
(3.10)

Note that I'}y is a singular boundary value of a function y € dom Tpax
at the end point b (for more details see |2, Remark 3.5]).

Below within this section we suppose the following assumptions:

(A1) 6 is a subspace in H and 6* € Sym(H). Moreover, system (3.1)
is f-definite and satisfies N_ < N,.

(A2) H; is a subspace in H, HlL = H © Hy, Hy is a subspace in H
given by

Ho=H&®H®H, = H & H & Heo H. (3.11)

and U € [H] is an operator satisfying U*JU = J and UHy = 6 (existence
of such an operator follows from [35, Lemma 3.1]).

(A3) Hy, and H,, C Hp are finite dimensional Hilbert spaces and I'}
is a surjective linear operator (3.8) satisfying (3.9) (see Lemma 3.8).
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Proposition 3.9. [30,35] Assume that I'y : dom Tiax — H is the linear
operator given by T'yy = U~ ty(a), y € dom Thax, and
Ty = (T4, T2, T, T3, 1) : dom Tax — Hi- ® Hy ®H & Hy & Hi-
S—— S——
H H
(3.12)

18 the block representation of I'y. Moreover, let Hy and Hi C Ho be finite
dimensional Hilbert spaces and let I : dom Tmax — H;, j € {0,1}, be
linear operators given by

Ho=HifoH o HoMH, Hi=H®H &HoH, (3.13)

) = (—T1,, —T%,, (T — %), Thy) " : dom Trax — Hi* ® Hy ® H ©® Hy
(3.14)
Ty = (T4, T2, L(T0 +T4), —T7,) " : dom Trnax — Hi" @ Hy ® H & H,,.
(3.15)

Then a pair {Ho & H1,I'} with a linear relation I' : H & H — Ho & Hi
defined by

I'={ray®7af,Toy ® Ty} {y, f} € Tomax} (3.16)
is a boundary pair for Tyax such that Kp = {0} (for Kr see (2.9)).

A boundary pair for Tiax from Proposition 3.9 is called a decomposing
boundary pair.

3.5. Parametrization of pseudospectral and spectral functions

Let {Ho @ H1,T'} be the decomposing boundary pair for Tiax, let
M, = M, (\), X € C4, be the Weyl function of this pair and let

My My Mz My

Moy Moy Moz Moy 1 PNy
M, = Hyr o HHOHDH
+ M3z Msza Mszz Msy L ! 2
My My Myz My Ho
S HieH & HaMN, (3.17)
Hi

be the block representation of M, with entries Mj;, = M;,()). Note, that
the operator functions My, are defined explicitly in terms of the boundary

values of respective operator solutions of (3.1) at the endpoints a and b
(see [35, Proposition 4.13]).
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Next assume that Ho and 7:[1 C 7:[0 are finite dimensional Hilbert
spaces given by

HQZHl@ﬁ@ﬁb, 7‘.[1:H1@ﬁ@7'[b (3.18)
and let Ho = Ho © Hy. Clearly Ho = Hbl(: 7—~[b © Hp) and hence
Ho = H1 @ Hi- (3.19)

Using the entries Mj, = Mjj()\) from (3.5) we introduce the holomorphic
operator-functions mg = mo(\)(€ [Hy]), S1 = S1(A\)(€ [Ho, Hp)), S2 =

Sy(N)(€ [Ho, Ho]) and M = M(N)(€ [Ho]), A € Cq, by setting

My Mo Mg 0

M M Mg —1iT ~
21 22 23 54 H :HILEBHl@HEBHl

TOZ N My Mgy My 0
0 —%lm, O 0 Ho
> HoH o HoH (3.20)
Ho
%12 %13 %14
Sy = Miz ™ —23511?1 sz : Hy @ H S Hy,
—Ig, 0 0 Ho
S HoH & HoH (3.21)
Ho
My Moo Moas —Ipy,
So=|Msi Mz Mgz+3ilg 0 |:HfoH ®HoH
My My Mys 0 Hy
— H, ® HoH, (3.22)
Ho
My Mas May

M= | Mz Mz M3y Hi®HoH, — HioHoH,
Mys My M44+%PHIJ; - .

Ho Ho
(3.23)

In (3.22) and (3.23) the operators My;(A), j € {1, ..., 4}, acting by
definition (3.5) to H; are considered as acting to H (recall that Hy C H,y,
and Hp = Hp ® HbL).
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It follows from Proposition 4.9 and Lemma 4.14, (2) in [35] that Ty«
is a symmetric extension of Ty, and M(-) is the operator function (2.10)
of a certain boundary triplet IT = {Ho®H1, 0,1} for (Tyx)*. Therefore
M(-) € Ru[Ho].

Definition 3.10. An operator pair

7 =7(\) = {Co(N). CL(V)} € Ry, (Ho), A€ T, (3.24)
with holomorphic operator functions C;(-) : Cy — [Ho], j € {0,1}, is
called a boundary parameter.

It follows from (3.10) that in the case Ny = N_ (and only in this
case) Hy = Hp, Ho = H1 =:H and 7 € R(H).
Definition 3.11. A boundary parameter 7 of the form (3.24) is called

admissible if

L ip.
S Py gty

Jim Py M) (Coliy) — Caliy) M)~ Coliy) | Ha = 0 (3.26)

(Coliy) — Ci(iy)M(iy)) *Ci(iy) | H1 =0  (3.25)

In the following with the operator U from the assumption (A2) we
associate the operator U = Uy € [Hy, H| given by

U=Uy:=U | H (3.27)

Clearly ker U = {0} and UH, = 6.

A parametrization of all pseudospectral and spectral functions o(-)
(with respect to U € [Hp,H]) in terms of a boundary parameter 7 is
given by the following theorem.

Theorem 3.12. Let the assumptions (A1)—(A3) be satisfied, let Ho and
H, be finite-dimensional Hilbert spaces (3.18) and let mo(-), S1(-), Sa(-)
and M(-) be the operator-functions (3.20)~(3.23). Then:

(1) The set of pseudospectral functions o(-) of the system (3.1) (with
respect to U € [Hy, H]) is not empty and the equalities

mz(A) = mo(A) + S1(A)(Co(N) — CLVMOA)) FCL(A)S2(N), X e Cy
(3.28)

oL :
o7(s) = 61520 yl_lgrl(); /_5 Im msz(z + iy) dx (3.29)

establish a bijective correspondence o(s) = oz(s) between all admissible
boundary parameters T defined by (3.24) and all pseudospectral functions
o(+) (with respect to U ).
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(2) The following statements are equivalent:

(a) all boundary parameters T are admissible;

(b) statement (1) is valid for arbitrary boundary parameters;

(c) mul Ty« = mul T,

(d) lim ZM(iy) = 0 and lim y-Tm(M(iy)h,h) = +o0, 0 #

Yy——+00 Yy—>—+00

(3) The set of spectral functions of the system (3.1) (with respect to
U € [Hy, H]) is not empty if and only if mul Tyx = {0}. If this condition
1s satisfied, then the sets of spectral and pseudospectral functions of the
system (3.1) coincide and hence statements (1) and (2) are valid for
spectral functions (instead of pseudospectral ones).

Proof. (1) It follows from (3.5) and (3.22) that So(MNHy € Hi C Ho.
Therefore the equality

Sy (Aho = Sa(M\ho(€ Hi), ho € Hy, X e Cy (3.30)

correctly defines the operator function Sy(N) € [Ho, H1]. Moreover, let
M (X) € [Ho, H1] be given by the matrix in the right hand side of (3.23)
with Myy in place of Myy + %PHg_. Then due to the decomposition (3.19)

of Ho one has

Sy(N) = <S2éA)> :Ho — H1 ® Hi,
. M. () . )
M) = (ip—?_( ) ) Ho — H1 &My (3.31)
2 'HofHa‘

and according to [35, Theorem 5.5] the equality

mz(A) = mo(A) + S1(A)(Co(A) — CLA)M(A) ' CL(N)S2(N), e Cy
(3.32)

together with (3.29) gives a bijective correspondence between all operator
pairs

7 =7(\) = {Co(\),C1(\)} € R(Ho, H1) (3.33)
satisfying the conditions

lim L Py 5 (Coliy) — Ci(iy) My (iy)) ' Ci(iy) = 0 (3.34)

Yy—r+0o0

lim LM, (iy)(Co(iy) — Ci(iy) M (iy)) "' Co(iy) [ Hi =0  (3.35)

Yy—>+00
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and all pseudospectral functions o(-) of the system (3.1) (with respect to
U e [Ho,H])

In view of Lemma 2.5, (2) the equalities (2.5), (2.6) and (2.7) (with
”Hj instead of ;) give a bijective correspondence between all pairs
of the form (3.33) and all boundary parameters 7 of the form (3.24).
Moreover, using the second equality in (3.5) one gets

Co(A\) = CLONM) = (Cor(A), 3Coa(N) = (C1(A),iChs(N)) ( J‘g;il)

(3.36)
= Cot(N) Py, 1, + Coa(N) Py g = CLNML(A) = Co(A) = Cr(N) M (V).
Therefore
PHO,%@(A) = CLAIMO)TICIN) 1 H
= Py, 5, (Co(X) = CL(N M (N) " Cr(N);
Py, 5, M) (Co(A) = CLOVMN) T Co(N) T Ha
= M (A)(Co(N) = CLA M1 (X)) ' Co(A) | Ha

and hence the boundary parameter 7 is admissible if and only if the pair
7 satisfies (3.34) and (3.35). Next, in view of (3.36) and the first equality
n (3.5) one has

(Co(A) — CLYM(N) THC1(N)Sa2(N)

= (Co(N) = LM (X)) ~H(C1(N), iCoa(N)) (SQ(S)\))

= (Co(A) — C1(N) M4 (N) THC1(N)Sa(N).

Therefore equality (3.32) can be written in the form (3.28), which proves
the first assertion of statement (1). The second assertion is implied
by [35, Corollary 5.7].

Statement (2) follows from [35, Theorem 5.8] and representation (3.5)
of M(N).

Statement (3) is implied by Proposition 3.4. O

Remark 3.13. Note that mz(-) in (3.28) is an [Hp]-valued Nevanlinna
function (the m-function of the system, see [35]) and (3.29) is the Stieltjes
inversion formula for msz(-).

Lemma 3.14. The following' statements are equivalent:
(1) The equality lim -+M(iy) =0 holds.
y—+oo W

(2) For each boundary parameter T of the form (3.24) its admissibility
is equivalent to unique condition (3.25).
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Proof. As was shown in the proof of Theorem 3.12 a boundary parameter
7 is admissible if and only if the respective pair 7 of the form (3.33)
satisfies (3.34) and (3.35). Now the required statement follows from [35,
Proposition 5.2] and [31, Theorems 4.6 and 4.9]. O

4. Pseudospectral functions of symmetric systems
in the case N, =n

4.1. The monodromy matrix and the matrix W (\)

Within this section we consider symmetric systems (3.1) with the
maximally possible deficiency index N = n.

Lemma 4.1. If Ny = n, then there exist a subspace H C H and an
operator

Ty = (Top, Ty, T1p) " i dom Trox — H® H & H (4.1)
such that

Pyl =—%PyaTo (4.2)
raan:{hEB/f;@h/eH@ﬁ@H: PH’H/h/Z —%PH’H/h} (4.3)
[y, 2 = (JToy, Tp2) = (Copys T1p2) — (Cioys Copz) +i(Tyy, Tpz)  (4.4)

(the identity (4.3) holds for all y,z € dom Thyax). Moreover, for each
such a subspace H'

dimH =n— N_. (4.5)

Proof. Since N_ < n = N, it follows from Lemma 3.8 that there ex-
ist finite dimensional Hilbert spaces 7-lb and Hp C 7-lb and a surjective
operator I'j of the form (3.8) satisfying (3.9). Moreover, by the first
equality in (3.10) dim H, = dim H and hence one can put Hy, = H. Next
assume that H' := HbL. Then the immediate checking shows that the
operator (4.1) with T'g, = Iy, T, = fg and I'y, = T, — %PH/F{)b satis-
fies (4.2)—(4.4). The last statement of the lemma directly follows from
(3.10). O

Assume that Ny = n. Let H' be a subspace in H and let T’y be
operator (4.1) satisfying (4.2)—(4.4). Moreover, let U € [H] be an operator
such that U*JU = J and let Y7 (-, A) be the [H]-valued operator solution
of (3.1) with Y5(a,\) = U, A € C. Since Ny = n, it follows that
Y= (-, A) € LA[H], X € C4. This fact enables us to introduce the following

U
definition.
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Definition 4.2. The (holomorphic) operator function B = B(-) : C; —
[H] defined for all A € C4 by

B(A) =TpY5(\) (4.6)
will be called the monodromy matrix of the system (3.1).

Below within this subsection we suppose the following assumptions:
(B1) For system (3.1) the equality Ny = n is valid.

(B2) 6 is a subspace in H such that % € Sym(H). Moreover, the
assumption (A2) from Section 3.4 is fulfilled.

(B3) H' is a subspace in H and T’y is the operator (4.1) satisfying
(4.2)—(4.4). Moreover, B(-) is the monodromy matrix (4.6).

Assumption (B2) implies that B(-) admits the block representation

H H
Bin Bz Bis By Bis\ ——e~—\ —~—
B(A)= | Ba1 By Bss By DBos | : Hi ®@ HHoH @ Hy @ Hi
Bsy Bss Bss Bss Bss 1
~HoHOH (4.7)
—_—
H

with entries B;; = B;j(\), A € C4. Since by (4.1)
Loy B(A) = (Bi1, Bi2, ..., Bis) and I'1pB(\) = (Bs1, Bsa, ..., Bss),
it follows from (4.2) that
Py Bsi(A) = —LPy g Bi(\), j€{1,2,...,5}, AeCy. (4.8)

For each A € C4 we put

W()\) = (ZU3()\) ’UJ4()\)> : Hp ¢ Hy — Hy & Hy, (49)
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where w; = w;(A) are defined in terms of B;; = B;;(\) by

wi(A)
(4.10)
B By B3 By R
= | —iByy —1Byy *7;(323 — If[) —1Boy | : HIL ®©H &H®H
0 0 0 —In, 7
~HoHoH
—_————
Ho
wa(A)
(4.11)
Bys %314 1 B3 *‘%Bm R
= | —iBys —%iBoy i(Bas+1z) iBy |:Hi @ HieHeH
0 Iy, 0 0
~HoHoH
wg()\)
(4.12)
Bsy Bsa B33 Bsy R
= | —3Ba1 —3Bxn —4(Bs+1g) —3Byu CHi o HioHo H
0 I 0 0
S HoHoH
wa(A)
(4.13)
Bss B34 ' 1 B33 —1Bs» R
= | —3Bys —1iBoy —i(Bas—15) 1iBx |:H{ @ Hy® He H
0 0 0 —31p,
~HoHoH

Clearly, W(-) is a holomorphic operator function defined on C; with
values in [Hy @ Hp).

Let in addition to the assumptions (B1)—(B3) system (3.1) be 6-
definite and let H;, = H © H' (so that Hy = H') and

T} = (Cop, Doy Prra,T1p) | 2 dom Trax — H & H & H,, (4.14)

Using (4.2)—(4.4) one can easily check that I'} is a surjective operator sat-
isfying (3.9) and hence assumptions (A1)—(A3) in section 3.4 are satisfied
(with I' of the form (4.14)). Therefore by Proposition 3.9 the equalities

(3.13)—(3.15) (with H, = H and H, = H © H') define a decomposing
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boundary pair {Ho @ Hi1,T'} for Tinax and the Weyl function M, (-) of
this pair admits the block representation (3.5) with Hp, = H. In this case
the spaces Hy and H; take the form

Ho=HieoHoH, Hi=HoHo®H, (4.15)

and the equalities (3.20)—(3.23) define the operator functions mg, S1, Sz
and M. Moreover, the decomposition (3.19) takes the form

Ho=H1® H'. (4.16)

Proposition 4.3. Assume that system (3.1) is 0-definite. Moreover, let
Uy € [Ho, Hp] be a unitary operator given by

0 0 Iy R N
Uy = 0 Iﬁ 0 -HHeoHH >HH®H;. (4.17)
Ig, O 0 o Hy

Then for each A € C4 the operator S1(\) is invertible and the operator
function W = W () admits the block representation

_ fw1 w2
W= <w3 w4)
_ < UQSfl()\) Uosf.l()\)mo()\) ) (4.18)
—UgpM(N)STHA)  Uo(S2(A) = M(AN)STHA)mo(N) ) '

Proof. Assume that

A —1ir
Qo(\) = (_717?( ) 2 gf’HO) Ho® H » Ho® H-  (4.19)
2 Ho,Hi-
. Ni(\) Si(x :
Si(\) = <_};3 1(§ )) :Hi @ Mo — Hy @ Hi (4.20)
1
_ No(\) —Iy L
So(\) = | = ") Hy e HE - H: o #,, 421
2(A) (Sz()\) 0 0 @ Hj i ©M (4.21)

where S5()) is taken from the block representation (3.5) of S5()) and

Ni(\) = (Myy, My, M31,0)" - Hi — H{- @ Hy ® H & H, (4.22)
No(A) = (My1, Mi2, My3,0) : H @ Hy @ H® Hy — Hi.  (4.23)

Moreover, let

D = diag(31 2, I, I, Imy) € [Hi @ Hy & H © Hy).
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It follows from [33, Proposition 4.1] that the operator §1()\) is invertible
and

ST ) = @i(N), THNQ0(A) = @2(A) (4.24)
“MyWSTIO) = @), SN~ ML (NS (V2 (N) = mm@

where
(N = <U0_13)1(A) _I*Hf> :Hy & Hi- — Hi- & Ho (4.26)
Ta(\) = <U01wZ(A)D 2) L Ho @ Hi — Hi @ Ho (4.27)

*

” _ 0 . 1 1 y
’U)g()\) = (PHO Hon_l'U):i()\) *> :Ho® Hi — Hi @ H1 (428)
wa(N) = 91 ~2lu ‘Ho® Hi- — Hi ® H,
Py 3, U fwa(ND - %
(4.29)

(the entries * do not matter in further considerations). Since the oper-
ator S1(A) is invertible, it follows from (4.20) that the operator Si(\) is
invertible and

0 —Iyy

§1_1(>\> = (51—1(/\) 51—1(/\)]\71(/\)) :Ho ® Hi- — Hi" ® Ho.  (4.30)

Combining this equality with the first equality in (4.24) and (4.26) one
gets

SN = Uy twr (V). (4.31)
Clearly, the equality (3.5) can be written as

*

My(\) = (NQ(A) Mf(A)) CHit @ Ho — Hi @ Hi, (4.32)

where M, () is taken from the block representation (3.5) of M()) and
No(X) = (May, My, My1)" : H" — H1 & H & Hy. (4.33)

Next we show that

—g‘P%’H/S; (\) = PHmH,UO_lwg()\). (4.34)
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It follows from (4.30) and (4.32) that

~M(N)STIN) = <_ M, (M\)STH(N) *) '

Comparing this equality with the first equality in (4.25) and (4.28) one
gets the first equality in (4.1). Moreover, by (4.31) and (4.8)

—ip., ST\ = —%P%?H,Uo_lwﬂ/\) = — L Py 1/(B11, Bia, Bis, Bis)

3 %o, 1
= Py .s(Bs1, Baa, Bss, Baa) = Py, Uy 'ws(N),

which proves the second equality in (4.1). Now the equalities (4.1) with
taking (3.5) and (4.16) into account give

~MN)STHN) = Uy twg (V). (4.35)
Next we show that

mo(A) = N1 (N Py e = mo(N) D, S5(\) = 3N2(\) Py, g = Sa(A)D.

(4.36)
Indeed, by (3.20) and (4.22)
My * * % My
M * % ok M.
1 . 21 1 21
mo(A) — ENl()‘) Ho,Hi- — My, % % * 2 | My (IHliv 0, 0,0)
0 * % % 0
%MH x k%
1
| sMar o ox x|
o %Mgl x x x| mo(A)D
0 * ok ok

Moreover, by definition (3.30) the block representation of Sy(N) is given
by the right hand side of (3.22) (with H; instead of H;). This and (4.33)
yield

B Moy *x * Moy
S2(A) = gN2o(N) Py pri = [ Ma1 * * x| —5 [ M1 | (Iyy1, 0,0,0)
My * * My
%Mgl x ok ~
== %Mgl * ok :SQ()\)D.
§M41 x ok
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It follows from (4.30), (4.19) and the first equality in (4.36) that

~

. 2 Pro 1y ’
SN = (Sl_l()\)(mo(i) % le(/\)PHO,Hll) *)

— %PHO7H1L *
B <51_1(>\)m0()\)D *> ’ (437)

Comparing this equality with the second equality in (4.24) and (4.27)
one gets

ST Nmo(N) = Uy twa(N) (4.38)
Next we prove the equalities

Sa(A) = My (NS (Nmo(N) = Py 51 Uy wa(N) (4.39)

— 5Py ST (Nmo(N) = Py, Ug wa(N). (4.40)

It follows from (4.21), (4.32) and (4.1) that

S2(A) — My(N)SH(N)Q0(N)

- <§2<A> SN2 () Py — M+<A>Sll<x>mo<A>D> |

Combining this equality with the second equality in (4.25), (4.29) and
taking the second equality in (4.36) into account we obtain (4.39). More-
over, by (4.38) and (4.8)
— 5Py, ST Nmo(N) = =5 Py Uy twa(N)
= — %Py 1 (Bis, 3B, £ Bi3, —3Bi2)
= Py 1/(Bss, 5 Baa, 5 B33, —5Baa) = Py Uy 'wa(N),

which proves (4.40). Now the equalities (4.39) and (4.40) with taking
the block representations (3.5) of S3(\) and M () into account give

Sa(A) = M(N)STH (N)mo(A) = Uy Hwa(N). (4.41)

Finally, combining (4.9) with (4.31), (4.35), (4.38) and (4.41) we arrive
at (4.3). O

Proposition 4.4. Assume that system (3.1) is O-definite. Moreover, let
Yu(-,A) € LA[Ho,H] and ¢(-,\) € LA[Hy, H], A € C, be the operator
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solutions of the system satisfying Yy (a,\) = U(< U~ Yy (a,\) = Iy m)
and

0 0 0 0
0 0 0 —3lm

Uy =] 0 0 ilz 0 :H ®H,® Ho H,
ne 00 i

1
S HfoH oHoH & Hi. (4.42)
H

Then for all A\, u € C4 the following identities hold:
—w} (\ws(p2) + w§(Vwn (1) = (1 — X) /I Vi (6 N A () Yo (8, 1)
(4.43)

—w(Nws(1) + wiNwn () — Ty = (i — N) /Z (8, VA Yir (o),
(4.44)

w3 (\wa(p) + wi(Mwn(u) = (1 — N) / (L NA@)G(E, ) dt. (4.45)
These identities mean that for all A\, p € C4

W*(N)JoW (1) — Jo = i(pn — M) /In*(t AA(E)n(t, 1) dt, (4.46)

where
0 —ilpy,
Jo=1. and n(t,\) = (Yu(t,\), ¥(t, \)) : Hy @ Hy — H.
ZIHO 0
(4.47)

Proof. Assume that

ai(A) az(N)) mo(\) 51()\)U71 .
<a3<A> a4<A>> - <U052()\) UoM(A)OUOl>'HO@H0

— Hp & Hp, )\E(C+.

Moreover, let v (:) be the 7-field of the decomposing boundary pair
{Ho ® H1,T} for Tiax (see Proposition 3.9), let

1+ (A) = (11 (N),72(N), 313N, u(N)  HE e HHe HO H — H, A€ Cy
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be the block representation of 4 () and let y(\) (€ [Hp, $]) and 4 (A)(€
[Ho, $]) be the operator functions given by

Y0 = (1), 2N, 13(1),0): Hi @ Hie He Hi — 6 (4.48)
A = ()N W) HO Ho Hi— 6. (4.49)
By using identity (2.11) for the function M(-) of the pair {Ho ® H1,['}
one can easily prove that
ar(p) — aj(X) = (u = Mg (M), a2(p) —az(X) = (k= N5 (A3 (w)
as(p) — az(\) = (n =NV (N)F(w), 1A e Cy

Moreover, according to Proposition 4.3 equality (4.3) is valid. Therefore
by [33, Lemma 4.2]

—wi(Nws(p) + wi(Nwi(p) = (1 = NQ5(N)Qo(n), (4.50)
—wi(MNws(p) + wi(Nwi () — Tng = (1= NQT(N)Qo(n),  (4.51)
—wi(Nws(p) + wiNwa(p) = (0= NQTN)Q1, (1), 1A € Cy,

(4.52)
where
Qo(N) =FNUeSTH(A),  Q1(A) = —0(A) + Qo(N)mo(X), A e( @+.)
4.53

Next we show that

Qo(N) =maYu(A),  Qi(A) =may(A), (4.54)

where Yyr(A) and () are operators (3.2) for solutions Yy (-, \) and
(-, A). Similarly to [33, (4.37)] one proves the equality

1+ (A\) =maY5(NS81(N), AeCy, (4.55)

where §1(A) is given by (4.20) or, equivalently, by

S1(A) =
My Mo M3 My
M1 Moo Mpys Moy R
M3y Msy Msg—2l5 Msy | :Hi o HilOoHOH
0 —In 0 0 -
“I,. 0 0 0

—>H1J‘EBH169FAI@H1@H1J‘.
H
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Moreover, by (4.48) and (4.49) ¥(\) = (v+(\) | Ho)Us", () =
v+ (AN) X, where

X = diag(Iy., Iy, 1,0) € [Hi © Hy & He Hy, Hi & Hi & H & H].
Therefore in view of (4.55)

F(A) = 7aYz (N (S1(N) [ Ho)Ug™, 70(N) = 1a¥z(AN)S1 (M) X, A e Cy.
(4.56)

It follows from (4.20) that S;(A) | Ho = (S1(A), 0)T : Ho — Ho & Hi.
Therefore by the first equalities in (4.53) and (4.56)

@) =¥y (M) 570
= 7aY5(MN g m = 7aY5(N) (U Yy(a, N)). (4.57)

Moreover, combining of the second equality in (4.53) with (4.1) and the
second equality in (4.56) yields

Q1(\) = maY5 (M) (=S1 (N X + Iy mmo(N))

and the immediate calculation gives —§1()\)X+IHO,HmO()\) = U 19(a,N),
where U =14 (a, \) is given by (4.42). Hence

Q1(A\) = TaYg(M(U " (a, N). (4.58)
Since obviously
Yﬁ(tv A)(ﬁ_lYU(% )‘)) - YU(tv /\) and Yﬁ(tv A)(ﬁ_1¢(aa A)) = w(tv /\)7

it follows that Y=(A\)(U~'Yr(a,\)) = Y (A) and Yz (\)(U~'4(a,\)) =
¥(A). This and (4.1), (4.58) yield (4.54).
Next, application of [2, Lemma 3.3] to operators (4.54) gives

QNS = /IYJ(tv MA@ QI f = /z¢*(t’ A)A()f(t) dt,
fen, fO) el
Therefore the equalities (4.50)—(4.52) can be written as (4.43)—(4.45). O
The following corollary is immediate from Proposition 4.4.

Corollary 4.5. The operator function W (-) satisfies the inequality

W*(N)JoW(N) < Jo, AeCy.



V. MOGILEVSKII 249

Remark 4.6. Let H be a finite dimensional Hilbert space and let J € [H]
be a signature operator (the latter means that J* = J=! = J). As is
known (see e.g. [4]) the holomorphic operator (matrix) function U(-) :
C4+ — [H] is said to belong to the Potapov class P(J) if U*(X)JU(X) <
J, A € C,. It follows from Corollary 4.5 that W (-) € P(Jy).

4.2. Quasiregular and regular systems
The following proposition is well known (see e.g. [27]).

Proposition 4.7. For system (3.1) the following assertions are equiva-
lent:

(1) The system has mazimal formal deficiency indices Ny = N_ = n.
(2) dim Ny =n for any X € C.
(3) There exists Ao € C such that dim Ny, = dim Ny =n.

Definition 4.8. System (3.1) is said to be quasiregular if at least one
(and hence all) of the conditions (1)—(3) are satisfied.

Definition 4.9. System (3.1) is called regular if Z = [a, b] is a compact
interval (and hence the coefficients A(-) and A(:) are integrable on 7).

Remark 4.10. (1) Clearly, each regular system is quasiregular.

(2) Let system (3.1) be quasiregular and let I'y be the operator (4.1)
satisfying (4.2)—(4.4). Since by (4.5) H' = {0}, it follows that T’ is
just a surjective operator satisfying (4.4). Moreover, in this case the
monodromy matrix (4.6) is an entire operator function B(-) : C — [H].

Proposition 4.11. Assume that:

(BQ1) System (3.1) is quasiregular.

(BQ2) The assumption (B2) from Section 4.1 is satisfied.

(BQ3) T'y is a surjective operator (4.1) satisfying (4.4) and B(-) is
the monodromy matriz (4.6) with the block representation (4.1).

Then: (1) The equalities (4.9)—(4.13) define an entire function W (-) :
C — [Hp @ Hp].

(2) If in addition the system is O-definite, then the identities (4.43)—
(4.45) and (4.46) (with Jo and n(-,\) of the form (4.47)) hold for all
A€ C. Moreover,

WA JoW(A) < Jo, A€ Cy; WA JoW(A) = Jo, A ER,
(4.59)

which implies that W (-) belongs to the class U(Jy) of Jo-inner operator
(matriz) functions (for definition of this class see e.g. [4]).
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Proof. Statement (1) is obvious, wile statement (2) directly follows from
Proposition 4.4. O

For the regular system (3.1) one can put I'yy = y(b), y € dom Tmax,
in which case B()\) = Y5(b, \) is the “classical” monodromy matrix (see
e.g. [5]). An explicit construction of the operator I'y, and the monodromy
matrix B(-) for the quasiregular system is suggested in our paper [33].
Namely, let system (3.1) be quasiregular and let an operator U e [H]
satisfies U*JU = J. Then according to [33] the equality

T -1 T . o
Ty = lim Y5 (4. 0)y(t) = Hm(—J¥3(.0)Jy(t)). ¥ € dom T
(4.60)

correctly defines a surjective operator I'y : dom Tyax — H satisfying (4.4)
and the respective monodromy matrix B(-) is

B(\) = lm(~JYZ (1,0 (1. 0), A€ C (4.61)

An explicit representation of the operator function W(-) corresponding
to B(\) of the form (4.61) is given in the following proposition.

Proposition 4.12. Let under the assumptions (BQ1) and (BQ2) of
Proposition 4.11 the system be 0-definite, let B = B(\) be the mon-
odromy matriz (4.61) with the block representation (4.1) and let W(-)
be the respective operator function (4.9)-(4.13). Assume also that C =
(Cij)zz,jzl € [Ho @ Hg] is the operator matriz with the entries Cy;; € [Ho]
given by the block representations

Iy 0 0 0 0 —ilImnu
Cu=[(0 0 0 |, Cun= 0 Iz 0
0 0 —Ig Py, 0 0
0 0 Imm Pyi+5Pm, 0 0
Co = 0 Iz 0 |, Cu= 0 0 0 )
—Pgm, 0 0 0 0 —3In,

(with respect to the decomposition Hy = H & H @ Hy), n(t, \) is the
operator solution (4.47) of (3.1) and 7(t,\) = —in(t,\)JoC*. Then
W (-) admits the representation

W) = C+ A / FEOABNE N AeC. (4.62)
T
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Proof. Since by (4.46) W*(0)JoW (0) = Jp, it follows that (W*(0)Jy) ! =
W(0)Jop. This and (4.46) yield

W(A) = W(0) + iAW (0)Jo / D (LOAMGLA) AL, AEC.  (463)
T

By (4.61) B(0) = Iy and therefore in (4.1) By = Bss = mia B2 =
B3y = Iy, g, B2z = Iz, while all other entries B;; are 0. Hence by
(4.10)—(4.13) W(0) = C and the equality (4.63) yields (4.62). O

Corollary 4.13. If in addition to the assumptions of Proposition 4.12
system is Hamiltonian and Hy = H @ {0}, then equality (4.62) takes the
form

w500 = (1)
¥4 (t,0)
o [ (00 A00b e, viema, o

Yy (t,
where Yy (-, A) and (-, \)
given by

are the [H, H & H]-valued solutions of (3.1)

U 'Yy(a,\) = (Ig, 0)" : H— He H,
U(a,\) = (0,1)" : H — Heo H. (4.65)

If system (3.1) is quasiregular and the assumptions before (3.7) are
fulfilled, then for each f € $ the equality (3.7) defines a continuous
function f(-) = J/”;;v() : R — Hj,.

Proposition 4.14. Let system be quasireqular and let 8 be a subspace
in H. Assume also that:

(i) Tyx € C(H) is linear relation (3.3) and mul Tyx is the multivalued
part of Tyx (see Assertion 3.1);

(i) Y7(-, A)(€ [H]) is an operator solution of (3.1) with Yi(a,\) = Iy
and $1 C § is the set of all f € $ such that for some (and hence for all)
f() € f the following relations hold:

A(t)Yz(t,0) / Y7 (u,0)A(u) f(u) du =0 (a.e. on Z),
/ Y2 (£ 0)A(t) £(2) dt € 0%,
(iii) the assumption (A0) before (3.7) is fulfilled and

={feH: f]f;(s) =0, s€R}. (4.66)
Then mulTyx = H1 = Ha.
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Proof. Let fe $H and let

b
v =Yilt0)] [ Vi (0 A@S () du, f0) € F

The immediate checking shows that Yyr satisfies (3.5). Moreover, since
Y;(+,0) € LX[H], it follows that

b
L8z @usolPae= [1820Vi0)7 [ 7 (00w w0 dul e

* 2 1 2
< ( JalY <u,o>A<u>f<u>|du> [ sty opa < .

Hence y; € LA (Z;H) and, consequently, Yy € dom Tax. Moreover,
I‘by}v = 0, where I'y is the operator (4.60) with Y; = Y;. Therefore by
(4.4) [y}-;, zlp = 0, z € dom Tmax. Assume now that gy is a solution of
(3.5) such that 7 € dom Tmax and [y, 2], = 0, z € dom Tiax. Moreover,
let y = y§— Y. Since [U,2]p =0, z € dom Tmax, it follows from (4.4) and
surjectivity of I', that T'yy = 0. On the other hand, § € Ay and hence
y = Y1(t,0)h with some h € H. Moreover, by (4.60) I'yy = h. Therefore
h = 0, which implies 7 = 0 and Yp =7 Thus yF is a unique solution
of (3.5) such that yF € dom Tpax and [yj;, zlp = 0, z € dom Tpax. This
statement and Assertion 3.1 yield the equality mul Tyx = 9.

Next assume that f € mulTy« and f (1) € f. Then according to
Assertion 3.1 there exists a function y € dom Thyax such that {y, f} €
Tmax and (3.6) holds. For fixed s € R and h € Hj put z = z2(t) :=
Yk (t,s)h. Then {z, sz} € Thax and application of the Lagrange’s identity
(3.3) to {y, f} and {z, sz} gives

(f;2)a = 5(y, 2)a = [y, 2]p — (Jy(a), 2(a)). (4.67)

Here

(F:2)a = [ (O it 5
~ ([Yiwoamsw an) = o0

and in view of the first equality in (3.6) one has (y,z)a = 0. Moreover,
by (3.6) y(a) € 6* and z(a) = Kh € 0, which yields (Jy(a),z(a)) = 0.
Observe also that according to (3.6) [y, z], = 0. Therefore (4.67) yields
(J/‘}(s),h) =0, s € R, h € Hj,, and, consequently, ff~(s) =0, s € R
Hence f € 9o, which proves the inclusion mulTyx C £o. On the other
hand, for each pseudospectral function o(-) (with respect to Kjy) one has
o C ker V, = mul Tyx. Therefore the equality mul Tyx = $)9 is valid. O
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Arguments just before Proposition 4.14 show that for a quasiregular
system Definition 3.2 should be modified as follows.

Definition 4.15. Let system (3.1) be quasiregular, let 6 be a subspace
in H and let the assumption (A0) before (3.7) be fulfilled. A distribution
function o () : R — [Hf] is called a pseudospectral function of the system
(with respect to the operator K = Kjp) if f= ]?]‘; € L3(o;Hy) for all
f € $ and the equality Vaf = WU@V, f € 9, defines a partial isometry
(the Fourier transform) V,, € [§), L?(o; H})] with ker V,, = mul Tyx.

If V, is an isometry, then o(-) is called a spectral function.

Remark 4.16. (1) Asis known [22], each symmetric differential operator
of an even order is reduced to a certain symmetric Hamiltonian system.
For quasiregular differential operators of an even order an analog of the
monodromy matrix (4.61) was used in [16,21] for parametrization of all
Titchmarsh-Weyl functions. Observe also that formula similar to (4.13)
was obtained in [18] for Stourm-Liouville operators with the operator
valued potential.

(2) Let $; and $)2 be subspaces in §) defined in Proposition 4.14. Then
by this proposition the condition ker V, = mulTyx in Definition 4.15
of a pseudospectral function can be replaced with ker V, = §,(= 92).
Therefore for the regular canonical Hamiltonian system (3.1) in the case
6 = H & {0} our definition of the pseudospectral function coincides with
that introduced for such systems in [36]. Observe also that for such
systems the equality $; = $)9 is proved in [37, Lemma A.18].

4.3. Special cases

The results of the previous subsection are simplified in the following
four special cases:

1. The case Hyp = H. Let under the assumptions (B1)—(B3) from Sec-
tion 4.1 Hy = H. Then H; = H, Hi- = {0} and the monodromy matrix
B(-) admits the block representation

Bis(\) ~ R
Boys(\) | :HeHe&H —H®H®H.

(4.68)

Moreover, the operator function W (-) is defined by (4.9) with H instead
of Hp and in view of (4.10)—(4.13) the entries w;(\) are given in terms of
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entries B;; = B;;(A) from (4.68) by

By Bia Bis R
w1 ()\) = | —iBo —i(BQQ — Iﬁ) —1Bos | t:H®H® H
0 0 Iy ) T w
~HoHaH (4.69)
—_—
H
%313 1B —'%Bn R
wg()\) = —%ng %(322 + Iﬁ) %Bgl cH®OHOH
1y 0 0
2
~HeoHOH (4.70)
Bs, Bsy Bss R
ws(\) = | —3Ba1 —3(B+1g) —3iB;s |:HeH&H
—Iy 0 0
~HoHoH (4.71)
3Bs3 ' 1 B3 —1Bs1 R
wy(\) = | —jB2s —4(Bn—1Ig) 1Ban | H®H®H
0 0 —1Iy
—~ H®Hea H. (4.72)

Observe also that in this case U = U and the operator solutions Yu(,A) €
LA [H] and 9(-, \) € LA [H] in Proposition 4.4 satisfies Uy (a,\) = In
(that is Yi(, ) = Y5(-, A)) and U~ '(a, \) = LJ.

2. The case Hy = H & H. Let under the assumptions (B1)—(B3)
Hy = Ho H (this means that the subspace Hj is minimally possible).
Then H; = {0}, Hi" = H and hence the monodromy matrix B(-) admits
the block representation (4.68). Moreover, in view of (4.10)—(4.13) the
operator function W (-) is of the form (4.9) with entries w;(\) € [H & H]
defined in terms of entries B;; = B;;(\) from (4.68) by (1.8) and (1.9).
Note also that in this case the initial conditions for operator solutions
Yu (-, A) and ¢(-, A) of (3.1) (see Proposition 4.4) take the form

B Iy 0 B 0 0
U 'Yy, N)=|0 Is], U@ =0 2iI;],
0 0 Ig 0

(the block operators in the right hand parts act from H®H to H@ﬁ[@H).
3. The case of the Hamiltonian system. Recall that system (3.1) is

called Hamiltonian if H = H & H(< H = {0}) and the operator .J is
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given by (1.3). For the Hamiltonian system the assumptions (B1)-(B3)
from Section 4.1 takes the following form:
(HB1) The equality Ny = n is valid.
(HB2) 0 is a linear relation in H such that 6* is a symmetric relation
in H. Moreover, Hy is a subspace in H, Hll =Ho Hy,
Ho=H®H, = H{®H, & H,, HycCH,
and U € [H] is an operator such that U*JU = J and UHy = 6

(HB3)H’ is a subspace in H and T, = <£Ob> cdom Toax — HO H
1b

is the operator such that
Py Ty = —% Py g Top,
ranly, ={h@&h' € H& H: Pygh' = —LPyph}
[y, 2s = (JToy, Tp2) = (Losy, T1vz) — Ty Top2), 9,2 € dom Tinax.
If the Hamiltonian system (3.1) satisfies the assumptions (HB1)-(HB3),
then the monodromy matrix B(-) admits the block representation

B11(A) Bia(A) Bis(A) Bu(A)

B(A):<Bg1(>\) Bn(A) Bas(A) BQ4<A>>‘LI1L pmehe

H
—~H®H (4.73)
and (4.10)-(4.13) imply that the entries w;()) in (4.9) are defined by
Bii(\) Bia(\) Bis(A
wl()\):< 16( ) 1%( ) 13’_( )> ‘H{ @ H & H — H& H,
—1H, N e’ N——
Ho IHIO
(4.74)
Biua(\) iBi3(\) —LiBia()
wQ(A):( 1‘6( ) 21}3( ) 2 52( )> Hi*® H,® H, — H& H,
24 Hy
(4.75)
Ba1(\) Ba()\) Bas(A
’w3<)\)_< 26( ) 23( ) Basl )> CHioHi @ H — Ha H
—1Ipg, 0
(4.76)
Bog(A\) 1Bas(\) —1Bao(X
w4()\):< 2‘6( ) 2 25( ) 2132( )> HioH, o H, — Ho H,
Y.
(4.77)

(here B;j(\) are taken from (4.3)). If in addition Hy = H, then Hi- =
{0}, Hy = H and B(-) admits the block representation

Bi1(N\) Bia(A)

B(\) = (321()\) 322(A)> " H&H— He H. (4.78)
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In this case

wi(\) = Bon i};) (€ [H @ H)),
ip 1B
wg()\):(zéb? 2 “> (€ [H & HJ), (4.79)
w) = (B F) e o),
w4(A)=(51322 :%%;) (€ [H ® H)), (4.80)

where B;; = B;;()) are taken from (4.78).
The simplest situation takes place when Hy = H. In this case H; =
{0}, Hi* = H and B(-) admits the representation (4.78). Moreover,

W(A) = B()) = (gigi; gzg» " HoH—>HOH,  (481)

that is the operator function W (-) coincides with the monodromy matrix
B(-). Observe also that in this case the operator solutions Yy (-,\) €
LA[H,H® H] and (-, \) € LA[H, H ® H] of (3.1) (see Proposition 4.4)
are defined by the initial values (4.13).

4. The case of the differential equation of the first order. Assume that

H = {0}. Then H = H, J = ily and system (3.1) takes the form of the
first order differential equation

iy — Al)y = MA(t)y, t€Z=]la,b), NeC (4.82)

with operator-valued coefficients A(t), B(t)(€ [H]). Moreover, by [22,
Theorem 2.2| for this system N_ = n(= dim H).

Assume now that Ny = N_ = n, that is system (4.82) is quasiregular.
Since H = {0}, the class Sym(H) consists only of the trivial relation
6 = {0}. This and Remark 4.10 imply that the assumptions (B2) and
(B3) in Section 4.1 take the form:

(B2)) § = H and U € [H] is a unitary operator.

(B3’) T'p : dom Tpax — H is a surjective operator satisfying

[y, 2]y = i(Tpy, Tpz), ¥,z € dom Trax- (4.83)

Moreover, the monodromy matrix B(A) is defined by (4.6) and the ope-
rator-function W(-) (see (4.9)) is

_(wi(N) wa(N) _ (=B 1) (BN +T)
W(/\) o (u}g(A) w4()\)) - <—;(B()\) _|_I) —Qi(B()\) —I)) S [H@H}
(4.84)
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By using (4.84) and (4.43) one can easily prove that for definite system
(4.82) ||B(M)A]| > ayl|h||, h € H, with some ay > 1, X € C,.

4.4. Parametrization of pseudospectral functions

A parametrization of all pseudospectral and spectral functions of the
symmetric system with the maximal deficiency index Ny = n is given in
the following theorem.

Theorem 4.17. Let for system (3.1) the assumptions (B1)—(B3) in Sec-
tion 4.1 be satisfied, let W(-) be the operator function (4.9)—(4.13) and
let Hy be a subspace in Hgy given by

Hy = Hy & H® Hy (4.85)

with Hy = H © H'. Assume also that the system is 0-definite. Then:
(1) The equality
mz(A) = (Co(Nwi(A) + Cr(Nws ()™
% (Co(MNwa(A) + C1(Nwy(N)), AeCy (4.86)

together with the Stieltjes inversion formula (3.29) establishes a bijective
correspondence o(s) = oz(s) between all pairs

7 ={Co(),C1(\)} € Ru, (Ho) (4.87)
of operator functions CN'j() : C4 — [Hy], j € {0, 1}, satisfying

i & Pygy 1, w1 (i) (Co iy )wi (iy) + Ch(iy)ws(iy)) " Ca(iy) | Hy =0
(4.88)

i Py sy (i) (Co(iy)wn (iy) + C1(iy)ws(iy)) ™ Coliy) | Hy =0
(4.89)
and all Hy-valued pseudospectral functions o(-) (with respect to the op-
erator U of the form (3.27)). If in addition the system is quasiregular,

then in (4.87) Ry, (Hy) = R(Hp) and the conditions (4.88) and (4.89)
take the form

i Lwy (i) (Co(iy)wi (iy) + Cr(iy)ws(iy)) ' Culiy) =0 (4.90)

lim  Lws (i) (Co(iy)wi (iy) + Cr(iy)ws(iy)) "' Coliy) =0,  (4.91)

Yy—r—+00

In this case V,$) = L2(o; Hy) if and only if ¥ € R°(Hy).
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(2) Condition (4.89) in statement (1) can be omitted if and only if

lim iwg(ly)wl (iy) =0

y—+oo W

(3) The following statements are equivalent:

(a) all pairs (4.87) satisfy (4.88) and (4.89);

(b) statement (1) is valz’d for an arbitrary pair (4.87);

(¢) mulTyx = mulT,

(d) hm —wg(zy)wl (zy) =0 and yETmy-Im(wg(iy)wfl(iy)h, h) =
—00, O 75 h € H.

(e) for some (and hence any) fized Ao € C4 the operator function
X(A) = (w3(A) + Aowi (A) (wz(X) = Aowr(A) ™', AeCy.  (4.92)
satisfies the condition

Jim gl = xhl) = +o0, 0 AhEHa  (193)

(4) If in addition mul Tyx = {0}, then statements (1) and (2) are valid
for spectral functions (instead of pseudospectral ones). For quasiregular
systems the condition mulTyx = {0} is equivalent to $H1(= $H2) = {0},
where $1 and Ho are defined in Proposition 4.14.

Proof. (1) Let Ho and H; be given by (4.15). Then according to ar-
guments before Proposition 4.3 the assumptions (A1)—(A3) are satisfied
(with T} of the form (4.14)) and hence the equalities (3.20)(3.23) define
the operator functions mg, Si, Se and M. Moreover, W(A) admits the
representation (4.3) and the standard calculations (see e.g. [34, Theorem
6.16]) imply that for each boundary parameter 7 = {Co()),C1(N)} €

RH1 (Ho) the equality (3.28) can be written as
m=(A) = (CoN)wi(A) + Cr(\wz(\))
(CoNwa(N) + C1(Nws(N), AeCy. (4.94)
with

Co\) = UpCo(NUFY,  Ci(N) = UeC1(NU; Y, AeCy (4.95)

(here Uy is given by (4.17)). Since UyH1 = H, the equalities (4.95) give
a bijective correspondence between all boundary parameters 7 and all
pairs 7 of the form (4.87). Moreover, since by (4.3)

M) = =Us  ws(Nw (Ao, (4.96)
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it follows that
(Co(N) = CLOIMN) ™ = Uy hwn (A (Co(MNwi(A) + Cr(Nws (X)) ™ Uo.
Therefore

Py 5, (Co(A) — CLAMMN)TICL(N) [ Ha (4.97)
= U1 P, w1 (A A)(Co(A\)wi(A )+Cl(>\) 5(\)'C1(\) [ Hi - Ut
Py, 51, MN(Co(X) = C1(AMN) 1 Co(A) T Ha
(

= —Ugi" Ptg i w3 (M) (Co(Nwi (V) + C1(Nws(A) "' Co(A) | Hi - U
with Upy = Uy | Hy € [Hl,Hl] and hence the boundary parameter 7 is
admissible in the sense of Definition 3.11 if and only if the pair T satisfies
(4.88) and (4.89). Now the required correspondence between pairs 7 and
pseudospectral functions is implied by Theorem 3.12, (1).

If the system is quasiregular, then by (4.5) H' = {0} and hence
Hy, = H, H; = Hy. Therefore EHl (Hp) = E(Ho) and the conditions
(4.88), (4.89) take the form (4.90), (4.91).

Statement (2) follows from (4.96), (4.97) and Lemma 3.14.

(3) It follows from (4.96) that statement (d) is equivalent to statement
(d) of Theorem 3.12, (2). Therefore the equivalences (a)< (b) < (c) <
(d) are consequences of this theorem. Next, in view of (4.96) the operator
function (2.1) for M(\) € Ry[Ho] is

C(\) = (—=Uy twg(Nwy * (N U — Ao ) (—Uy twg(Nwy H(N)Ug + Ao I) !
= Uy 'x(\)Uo,

where x()\) is given by (4.92). Now applying Lemma 2.1 to M()) one
gets the equivalence (d) < (e).

(4) The first assertion follows from Proposition 3.4, while the second
one is implied by Proposition 4.14. O

Remark 4.18. (1) Assume that for system (3.1) Ny = n, 6 is a sub-
space in H such that % € Sym(H) and the assumption (AO) before
Definition 3.2 is fulfilled. It follows from [35, Proposition 3.12] that in
this case Theorem 4.17 remains valid (with some obvious modifications)
for pseudospectral and spectral functions with respect to Ky in place of
U.

(2) In the extremal cases Hy = H and Hy = H & H the parametri-
sation of [HyJ-valued pseudospectral functions is given by Theorem 4.17
with coefficients w;(\) in (4.17) defined by (4.69)—(4.72) and (1.8), (1.9)
respectively.
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(3) Theorem 4.17 and identity (4.46) show that the operator-function
W () is an analog of the Nevanlinna matrix in the moment problem [1]

and the resolvent matrix in the extension theory of symmetric operators
[23].

In the following theorem we parameterize all pseudospectral functions
of the first order differential equation.

Theorem 4.19. Assume that system (differential equation of the first
order) (4.82) is quasireqular and definite. Let T'y : dom Tmax — H be a
surjective operator satisfying (4.83), let U e [H] be a unitary operator
and let B(-) be the monodromy matriz (4.6) (for the regular system one
can put B(A) = Y5(b,\), A € C). Then:

(1) The equalities

mr(A) = 5(B(\) = KN)"H(BM) + K(\), AeCy (4.98)
5—0
ok (s) = 61—1320 yl_i)rfrlo % /6 Immg(x + iy) dx (4.99)

establish a bijective correspondence o(s) = o (s) between all operator-
functions K(-) € C[H] satisfying

Jim  5(Biy) = ) (B(iy) — K (i)~ (K (iy) = L) =0 (4.100)

lim L(B(iy) + In)(B(iy) — K(iy)) "' (K(iy) + ) =0 (4.101)

Yy—r—+00

and all [H]-valued pseudospectral functions o(-) (with respect to the op-

erator U ). Moreover, the admissibility conditions (4.100) and (4.101)
can be omitted if and only if mul Ty, = mul Tyax o7, equivalently, if and

only if

Jtim g (Bl ~ [l = +00, 0 h € Ho, (4.102)

(2) If in addition mulTy;, = {0}, then statement (1) is valid for
spectral functions (instead of pseudospectral ones).

Proof. Tt follows from Proposition 2.6 that the equalities
Co\) =i(N(\) + Iy), Ci(\)=N\)—1Ig, AeC, (4.103)

give a bijective correspondence between all functions N(-) € C[H] and
all pairs 7(A\) = {Cp(A),C1(N)} € R(H). Moreover, (4.103) and (4.84)
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yield
CoNwi(A) + Cr(Nws(A

= (N +D(BA) ~1) -5 )+1)
= 5((N(\) +30)B(\) = BN(A) + 1)) = 5(N(A) +31)(B(\) — K(X));
(CoMwi(A) + CrNws(X) ™" = 2(B(\) = K(A) 7' (V) +31) 7%

— ~—
+
'\‘ N~—
N~—

|
S
—
=
>

|
~
N~—
—
oy
—~
>
~—

|
~
N~—

K(\) = (N(X) +31)" (3N(/\) +1)
= BN\ + DN\ +30)7, AeC.. (4.105)

Therefore the operator-function mg(A) := mz(\) defined by (4.17) ad-
mits the representation (4.98) with K (\) of the form (4.4).
Let X, Jg € [H @ H] be the operators defined by

3y I I 0
_ 1 (3m Im _ (Im
X=% (IH 3IH> , Ju <0 —IH> ‘
Then X*JgyX = Jg and according to [24] the equality (4.4) gives a

bijection N(A) — K () of the set C[H] onto itself. Moreover, the inverse
bijection K(\) — N(X) is

N\ = (K(\) —30)7YI -3K()\), MeC,. (4.106)
and the following equalities hold
(N(A) +31) 7' = [T - 3K(\) + 3(K(\) — 3I)]"H(K(\) — 31)

=
—_
>
|
w
~
~—
L
=
—_
— \>_// ~—
|
~
~—
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Therefore the conditions (4.90) and (4.91) admit the representations
(4.100) and (4.101).

Next, in view of (4.84) for Ag = % one has y(\) = B~1(\), where x())
is given by (4.92). Now the required statements follow from Theorem

4.17.
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