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Bernstein-Walsh type inequalities in unbounded
regions with piecewise asymptotically conformal
curve in the weighted Lebesgue space

MEERIM IMASHKYZY, GULNARA A. ABDULLAYEV,
FAHREDDIN G. ABDULLAYEV

Abstract. In this work, we obtain pointwise Bernstein—Walsh-type es-
timation for algebraic polynomials in the unbounded regions with piece-
wise asymptotically conformal boundary, having exterior and interior
zero angles, in the weighted Lebesgue space.
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1. Introduction and Definitions

Let C be a complex plane, C := CU{oo}; G C C be a bounded region,
with 0 € G and the boundary L := dG be a Jordan curve, Q:=C \ G =
ext L. Denote by w = ®(z) the univalent conformal mapping of £ onto
A = {w: |w| > 1} with normalization ®(c0) = oo, lim, @ >0
and U := &1,

Fort>1, z€ C and M C C, we set:

Li:={z: |®(2)| =t} (L1 =L), Gt :=1nt Ly, Qi := ext Ly;
d(z, M) = dist(z, M) :=inf {|z = (| : (€ M}.

Let {¢; };n:l be a fixed system of distinct points on curve L located in
the positive direction. For some fixed Ry, 1 < Rp < oo, and z € GRp,,
consider a so-called generalized Jacobi weight function A (z) being defined
as follows:

h(z) =[]z =&, (1.1)
Jj=1
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where v; > —1 forall j=1,2,...,m

For a rectifiable Jordan curve L and for 0 < p < oo, let £,(h, L)
denote the weighted Lebesgue space of complex-valued functions on L.
Specifically, f € £,(h, L) if f is measurable and the following quasinorm
(a norm for 1 < p < oo and a p—norm for 0 < p < 1) is finite:

1/p
19y = Wleynny=| [ B 15@PIE | 0<p<oci2)
L
[fllo: = Hchoo(l,L)f:%SSlellLDIf(Z)\, p = oo.

We denote by ¢, n = 1,2,..., the set of all algebraic polynomials
P,(z) of degree at most n € N.

Bernstein—-Walsh Lemma [28] says that for any P, € g, and R >
1, the following

1Palle@ry < B 1Pallc (1.3)

holds. In [28] also was given some similar estimates for various norms on
the right-hand side of (1.3). Analogously estimation with respect to the
quasinorm (1.2) for p > 0 was obtained in [19] for h(z) =1 (ie., v, =0
for all j = 1,2,...,m). Moreover, in |6, Lemma 2.4| this estimate has
been generalized for h(z) # 1, defined as in (1.1) and was proved the
following:

1Ballzynpmy < B

s At =max{05y; 15 < m}. (14)

For any p > 0 we also introduce:

1/p
1Pl = (// \daz) co0<p<oo, (5)

where o, is the two-dimensional Lebesgue measure.

The Bernstein—Walsh type estimates for the quasinorm (1.5), for the
regions with quasiconformal boundary (see, below) and weight function
h(z), defined in (1.1) with v; > —2, for all p > 0 as follows

<c R HPnH (1.6)

H ”HA p(h,GR) — Ap(h,G) ]

was found in [3] (see, also [2]), where R* := 14+c3(R—1), ca > 0and ¢; :=
c1(G, p, c2) > 0 constants, independent from n and R. In [4, Theorem 1.1],
analogously estimate was studied for A,(1, G)-norm, p > 0, for arbitrary



M. ImasHKYZY, G. A. ABDULLAYEV, F. G. ABDULLAYEV 517

Jordan region and was obtained: for any P, € p,, R = 1+ % and
arbitrary R, R > Ry, the following estimate

n+%
”PnHAp(GR) <c-R HPnHAp(GRl> )

1
is true, where ¢ = (ep2_1> P [1 + O(%)] , n — oo. Note that, the c is the
sharp constant.

In [27] was given a new version of the Bernstein-Walsh Lemma: For
quasiconformal and rectifiable curve L there exists a constant c¢ =

¢(L) > 0 depending only on L such that

vn +1
[Pa(2)] < Cm 1Pl gy [R5 2 €, (1.7)
holds for every P, € gn.

In this work, continue investigated pointwise estimations in unboun-
ded region € of the type

|Pa(2)] < c2nn(G, hyp,d(z, L)) || Pall, 12(2)]" (1.8)

where ca = ¢2(G,p) > 0 is a constant independent of n, h and P,, and
(G, h,p,d(z,L)) = 00, n — 00, depending on the properties of the G
and h.

Analogous results of (1.8)-type for some norms and for different un-
bounded regions were obtained by S. N. Bernstein [28], N. A. Lebedev,
P. M. Tamrazov, V. K. Dzjadyk, I. A. Shevchuk (see, for example, [14]),
N. Stylianopoulos [27] and others. Recent results (1.8) for some regions
and the weight function h(z) defined as in (1.1) with v; > —1 were also
obtained: in [6] for p > 1 and in [22] for p > 0, for regions bounded by
piecewise Dini-smooth boundary with interior and exterior zero angles;
in 7] for p > 0 and for regions bounded by piecewise quasiconformal
boundary with interior and exterior zero angles; in [5| for p > 1 and for
regions bounded by piecewise smooth boundary with exterior zero angles
(without interior zero angles); in [8] for p > 0 and for regions bounded by
piecewise quasismooth boundary with interior and exterior zero angles
and in others.

Now, we begin to give some definitions and notations.

Let z1, z9 be an arbitrary points on | and l(z1, z2) denotes the subarc
of 1 of shorter diameter with endpoints z1 and zo. The curve I is a
quasicircle if and only if the quantity

|21 — 2| + |z — 22|

sup (1.9)

21,22€l; 2€l(z1,22) ’»Zl - 22‘
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is bounded. Following to Lesley [21], the curve [ to be said “c— quasiconfor-
mal”, if the quantity (1.9) bounded by positive constant ¢, independent
from points z1, zo and z. At the literature it is possible to find vari-
ous functional definitions of the quasiconformal curves (see, for example,
Def. 3.1, [23, p. 286—294], |20, p. 105], [9, p. 81|, [24, p. 107]).

The Jordan curve [ is called asymptotically conformal [13,24], if

|21 — 2| + |z — 22|

sup

— 1, |z1 — 22| — 0. (1.10)
z1,22€l; z€I(z1,22) |21 - 22|

We will denote this class as AC, and will write G € AC,if L := 0G € AC.

The asymptotically conformal curves occupies a special place in the
problems of the geometric theory of functions of a complex variable.
These curves in various problems has been studied by J. M. Anderson,
J. Becker and F. D. Lesley [10], E. M. Dyn’kin [15], Ch. Pommerenke,
S. E. Warschawski [25], V. Ya. Gutlyanskii, V. I. Ryazanov [16-18| and
others. According to the geometric criteria of quasiconformality of the
curves ([9, p. 81], [24, p. 107]), every asymptotically conformal curve is a
quasicircle. Every smooth curve is asymptotically conformal but corners
are not allowed. It is well known that quasicircles can be non-rectifiable
(see, for example, [12], |20, p. 104]). The same is true for asymptotically
conformal curves. -

We say that L € AC, if L € AC and L is rectifiable. A Jordan
arc ¥ s called asymptotically conformal arc, when £ is a part of some
asymptotically conformal curve.

Now, we define a new class of regions bounded by piecewise asymp-
totically conformal curves having interior and exterior cusps at the con-
necting points of boundary arcs.

Throughout this paper, ¢, cg c1, ca, ... are positive and g, €1, €2, ... are
sufficiently small positive constants (generally, different in different rela-
tions), which depend on G in general and on parameters inessential for
the argument; otherwise, such dependence will be explicitly stated.

For any k > 0 and m > k, notation ¢ = k,m means i =k, k+1,...,m.
Forany i = 1,2, ..., k = 0,1,2 and &1 > 0, we denote by f; : [0,e1] — R™
and g; : [0,e1] — R twice differentiable functions such that

£:00) = g:(0) =0, fP@)>0, ¢¥(@)>0,0<z<e.  (111)

Definition 1.1. We say that a Jordan region G € AC (fi, g;), for some

fi=fi(x), i=1,mq and g; = gi(z), i = my + 1,m, defined as in (1.11),

if L =0G = | L; is the union of the finite number of asymptotically
i=0

conformal arcs L;, connecting at the points {z;};~, € L and such that L
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is a locally asymptotically conformal arc at the zo € L\ {z;};~, and, in
the (z,y) local co-ordinate system with its origin at the z;, 1 < i < m,
the following conditions are satisfied:

a) for every z; € L, i =1,my, m; < m,

{z=o+iy: 2l <o enfi@<y < enfi@), 0<z<a} C G

{z=x+iy:|z| <ey, |y > e, 0<z <&} C &
b) for every z; € L, i =my + 1, m,
{z:x+iy:\z|<53, chigi(z) <y < chogi(z), Og:cgsg} c Q,
{z=a+iy:|z| <e3, |yl >ea, 0<z<e3} C G,

or some constants —oo < ¢}, < iy < 00, —00 < by < ch, < 00 and
11 12 21 22
es >0, s=1,4.

Definition 1.2. We say that a Jordan region G € le\é(fi,gi), fi =
fi(z), i = Lmy, gi = gi(x), i = mi+1,m, if G € AC(fi,g;) and
L := 0G is rectifiable.

It is clear from Definitions 1.2 and 1.1, that each region G € AC (f;, g;)
may have m; interior and m — m; exterior zero angles (with respect to
G) at the points {z;}/~, € L. If a region G does not have interior zero
angles (m1=0) (exterior zero angles (m;=m)), then it is written as
G € AC(0,g;) (G € AC (f;,0)). If a region G does not have such angles
(m = 0), then we will assume that G is bounded by a asymptotically
conformal curve and in this case we set AC (0,0) = AC.

Throughout this work, we will assume that the points {&};~, € L
defined in (1.1) and the points {z;};", € L defined in Definition 1.2 and
1.1 coincide. Without loss of generality, we also will assume that the
points {z;};", are ordered in the positive direction on the curve L such
that G has interior zero angles at the points {z;};, if m; > 1 and
exterior zero angles at the points {2z}, |, if m >m; +1.

2. Main Results

Now, we can state our new results. Our first result is related to the
general case. Namely, let region G has m; > 1 interior zero angles at the
points {z;};"'; and m —m; exterior zero angles at the points {2}, .-
In this case, we have the following estimate, i.e. with respect to each
points {z;};-, .
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Theorem 2.1. Let p > 0; G € AC (fi,9;), for some fi(x) = ciato,
a; >0, i =1,mq, and g;(x) = ;2P B; > 0,0 = my + 1,m; h()
defined as in (1.1). Then, for any v; > —1, i =1,m, and P, € p,, n €
N, there exists ¢y = c1(G, p,e,7i, 5i) > 0 such that:

(D TL+]. mi ;
<ol (S 3 oo i, <eon

=1 i=mi+1
(2.1)
where
EI W
np T¢ v > %ii,
5 . 24E 1 04'750
] b =R [Lazo
ne, 0<%<%i§’ g, a; =0;
n57 _1<f)/l§07
W > 24 i,
1
; nlnn)r i =24 06; — ¢,
B?ZIQ — ( \ ) Vi Bi (2.2)
nr, 0<y <2403 —¢,
ne, —1<7y<0.

Now, we assume that, i =1,2; m; =1, m = 2.

Theorem 2.2. Letp > 0; G € E(fl,QQ), for some fi(z) = cpatto,
a1 >0, and go(z) = cox' ™52, By > 0; h(2) defined as in (1.1) for m = 2.
Then, for any 1 > —1, i = 1,2, and P, € o,, n € N, there exists
co = co(G,p,e,7i, B2) > 0 such that:

P <t g ), e 0 23)
nlZ _Cde/p(Z,LR) n nlip> z R .
where
2(n=1) yo—1
n’yzj)l ’ 71>1+m’ 72>2+B2_67
7_11_ —
np<21(+62>1)5, 0<ym <1+ Q(foﬁlz)a Yo > 24 By —¢,
2(m-1)
Bn:: n p 9 71>%70<72<2+/82_67 (24)
1
nEj 0<’}’1<%,0<72<2+52_87
1
(nlnn)r, 71:%7 Y2=2+P2—¢,
ne, —1l<m<0,-1<p <0
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In particular, if a; = 0, i.e. G has only exterior zero angle at the zo,
then we have:

Theorem 2.3. Let p > 0; G € AC (0,g,), for some ga(z) = cox!tP2,
B2 > 0; h(z) defined as in (1.1) for m = 2. Then, for any v > —1, i =
1,2, and P, € gn, n € N, there exists c3 = c3(G,p,e,7,B2) > 0 such
that:

[@(2)["*
|P,(2)] < cgmBn 1Pall, s 2 € Qs (2.5)
where
[ 2T, s 1+, w2245,
i te 2§71§1+%, Y2 > 2+ B,

B, - nﬂT—:"'e’ 1> 2, 0< v <24 Bo, (2.6)

ne, 0<71 <2, 0<v2 <24 P,

(nlnn)%7 Nn=2-g7n=2+p—¢,

np, ~1<ym <0,-1<v <0

Remark 2.1. In Theorems 2.1-2.3, in the right hand sides of estimations
(2.1), (2.3), (2.5) and their corollaries there exist value d*/?(z, Lg). We
can replace d*/P(z, L) with d(z, Lg), if we consider only the values p > 1
instead of p > 0.

The sharpness of the estimations (2.1)-(2.6) for some special cases
can be discussed by comparing them with the following:

Remark 2.2. For any n € N there exist polynomials P} € g, regions
G* C C and constant ¢4 = c4(G) > 0, such that

P 2 4 |@()" Pl yoce) . Y2 € F € CTF. (27)

3. Some auxiliary results

For a@ > 0 and b > 0, we shall use the notations “a < b’ (order
inequality), if a < ¢b and “a =< b” are equivalent to cia < b < cqa for
some constants ¢, ¢1, co (independent of a and b) respectively.

The following definitions of the K-quasiconformal curves are well
known (see, for example, [9], [20, p. 97] and [26]):

Definition 3.1. The Jordan arc (or curve) L is called K— quasiconfor-
mal (K > 1), if there is a K—quasiconformal mapping f of the region
D D L such that f(L) is a line segment (or circle).
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Let F(L) denotes the set of all sense preserving plane homeomor-
phisms f of the region D D L such that f(L) is a line segment (or
circle) and let defines

Kr:=inf{K(f): fe F(L)},

where K (f) is the mazimal dilatation of a such mapping f. L is a qua-
siconformal curve, if K; < oo, and L is a K—quasiconformal curve, if
Kp < K.

Lemma 3.1. [1] Let L be a K—quasiconformal curve, zy € L, 2,23 €
QN{z:|z— 21| 2d(z1,Lyy)}; wj = ®(25), 5 =1,2,3. Then
a) The statements |z1 — za| = |21 — 23| and |w1 — wa| < |wy — ws| are
equivalent.
So are |z1 — 23] < |21 — 23| and |w1 — wa| < |wy — ws].
b) If |21 — 22| = |21 — 23], then

€1

=

Cc

21 — 23 w1 — ws

’wl—wg

ﬁi

w1 — w2 21— 22 w1 — w2

where g1 < 1, ¢ > 1, 0 < rg < 1 are constants, depending on G and
Lyy :={z =4¢(w) : |w[ =ro} .
Lemma 3.2. [21, p. 342] Let L be an asymptotically conformal curve.
Then, ® and ¥ are Lipa for all o <1 in Q and A, correspondingly.
Lemma 3.3. Let L be an asymptotically conformal curve. Then,

| (wr) = U(ws)| = Jwr — wa|FF,
for all wi,ws € A and Ve > 0.

This fact follows from Lemma 3.2. We also will use the estimation for
the U’ (see, for example, [11, Th. 2.8]):

AW (1), 1)

}\I/ (T)‘X =1

(3.1)
Let {z;}]", be a fixed system of the points on L and the weight
function h (z) defined as (1.1).

Lemma 3.4. [8], [19, h(z) = 1] Let L be a rectifiable Jordan curve; h(z)

defined as in (1.1). Then, for arbitrary P,(z) € pn, any R > 1 and
necN -
n4+

1Pallzyhny < B 7 (1Pallz, iy P> 0, (3:2)

is true, where 7y := max{O;’yZ- D= 1,m} .
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4. Proof of Theorems

4.1. Proof of Theorems 2.1-2.3

Proof. Suppose that G € ;l\é(fi,gi), for some fi(z) = ciz't®i, a; >
0, i = 1,my, and g;(z) = ¢;z' ™5, B; > 0, i =my + 1, m; h(z) be defined
asin (1.1). Let {C;}, 1 <j<m<n, bezeros of P,(z) lying on {2 and

let
T = M 2(¢;)
— Bj(z
llj :U (o (2)

boi<i<msn,

denote a Blaschke function with respect to zeros {C ¥

y
of P,(z). For any p > 0 and z € €2, let us set:

P, () p/2
n = . 4.1
6= |7 e -y
Cauchy integral representation for the unbounded region €2 gives:
1 d¢
Lgr

Since |B,,(¢)| = 1, for ¢ € L, then, for arbitrary ¢, 0 < ¢ < €1, there
exists a circle |w| = 1 + £, such that for any j = I,m the following is
satisfied: N

(Bj(xy(w)( >1-e.

Then, |B,,(¢)] > (1 — &)™ = 1 for each ¢ < n~!. On the other hand,
|®(¢)| = R > 1, for ¢ € Lg. Therefore, for any z € Qg, we have:

e ] —2w/' I
1

/2 .
= ML/ |Pn (O [dC| =: 7d(z,LR)A”'

To estimate the integral A,,, we introduce:

p/2

(4.3)

wj = D(zj), pj = argw;, Lg% :=Lg ﬂﬁj, j=1,m,
where () := \IJ(A;);

AL :{t:Reie:R>1, %TJ““ <0<‘p1;‘p2},
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and, for j =2,m —1

A;- = {t:Rew:R>1, %%Jr% §9<90j+2903'+1}‘
Then, we have:
/2
4= [P jadl. (1.4)
i=1 "

Multiplying the numerator and denominator of the integrand by h/2(¢),
after applying the Holder inequality, we obtain:

1/ 1/2
A . p ]
w < D | [ MO 1T x m ; (4.5)
= : , B 7
P\ i 1L 16—l
= - Z j}l 1
i=1
According to Lemma 3.4, for the Jz 1 we get:
na Pl i =Tom. (4.6)

Then, from (4.5) and (4.6) we have:
An P D2 T
i=1

For the integral J}'ﬂ we obtain:

(= f i e

i TLIC—
Ly 4
since the points {z]} ", are distinct on L. Then, from (4.7), we have:
2 ~.
An 2Pl D Tz (48)
i=1

where

acl dc|
ne = / T / C=zl® (4.9)



M. ImasHKYZY, G. A. ABDULLAYEV, F. G. ABDULLAYEV 525

It remains to estimate these integrals for each ¢ = 1, m. For simplicity
of our next calculations, we assume that:

i=1,2% m=1,m=2 zn=-12=1 (-1,1)CG; R=1+2,
n

and let local co-ordinate axis in Definitions 1.1 and 1.2 is parallel to
OX and OY in the OXY co-ordinate system; L = Lt U L™, where
Lt = {2€L:Imz>0}, L~ = {2z€L:Imz<0}. Let
w = {w=e?:0= %}, 2+ € U(w*) and L’ an arcs, connecting
the points zt, 2, 2~ € L; L»® := L'NL*, i =1,2. Let zy be taken as
an arbitrary point on L™ (or on L~ subject to the chosen direction). For
simplicity, without loss of generality, we assume that zo = 27 (20 = 27 ).
Analogously to the previous notations, we introduce the following: Lr =
L} U Lj, where L}, i={2 € Lg:Imz >0}, Ly := {2 € Lg : Imz < 0};
Let wp = {w=Re’:0= W}, z?%: € \If(wﬁ). We set:  z; r € L,
such that d; p = |2 — 2z r| and ¢t e L*, such that d(227R,L2 N
L*) = d(zr, L*); 2F = {¢eli: |¢—2|=cd(z, Lr)}, z;tR =
{¢eLy: |¢—zprl=cdzr Lr)}, w,fR = @(sz). Let Ly, i = 1,2,
denote arcs, connecting the points zg, 2R, 2 € Lg, Lé’f = Lﬁ,% N Lﬁ

and lfR(sz,zﬁ) denote arcs, connecting the points ZZER with zﬁ, re-

spectively and liiR’ := mes lfR(z;tR, zi), i =1,2. We denote:

sit o+ ={ceniF K-ul<adin),

S;"Ji? P {C c Lj;zi ceidir <|C— 2] < lz‘i,R)}’ ]:JZ]% = Q)(S;:E);
Si‘,i - {C e LbT . I¢ — 2] < Cidi,R}a

Sé’i P {C c [bE . cidip < |¢— 2| < lz‘i,R)}’

./—"]757:‘: = (I)(S;‘?:t)) 7’7] = 172

Taking into consideration above notations, replacing the variable 7 =
®((), according to (3.1), we have:

5 Z / [W(7)] ldr|
T e U (r) = w(w)["
75 RSk

i,7=1
2 d(¥(7), L) |dr|
= 2 [0 (7) — U (ws)[ (7] — 1)

17.]:1 1,4+ i,
FibuF

2
= Y [TFED+IFR

ij=1
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and, from (4.8), we have:

2
Ap = !\Pn||§/2ZJﬁ,z (4.10)
= P WZ[ )+ Lha(ShR)]
= ||Pn||§/22 i), =12,
=1
where
7), L) |dr|
It = S’i / L k=1,2. (4.11
nk cr) ) — () (7~ 1) (4.11)

Accordlng to (4.3) and ( 4), it is sufficient to estimate the integrals
foreachz—l 2and k=1,2.
leen the p0581b1e values of Y (1 <7 <0, 9% >0,i=1,2), we
will consider the estimates for the In’i separately.

1. Let i = 1.
1.1. For the integral I1 ReE In 1, we get:
_ d(U(r), L) |dr|
Iy = / ’ 4.12
wi I EeE G I
FUEUFR
=

. / d7] < / |d7]
U (7) — @ (wy) " |7 — wy |1 D09)

Fliurky FLRVFR
nn=D0+E) - (h) 1) (148) > 1,
< nlnn, (m-1)(1+e) =1,
n, (m-1)(1+8) <1,
for 71 > 0 and
_ d(¥(r), L) |d|
Jht o b / ) 4.13
nl + n,1 |\IJ(’7') _ \Ij(wl)rfl (|7’| — 1) ( )
PRy

A

. (=) +1)(1-2) o
ndLR71 / ldT| <= n (n) -mes <]:17’;g U ]:1:1;)
FLaVFLR

< p-H0-e) <9
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for -1 < v <0.
1.2. Analogously to the (4.12) and (4.13), for the integral Irll; +I7lz:2_v
we get:

i d(¥(r), L) |dr
bt b = ’ 4.14
n2 T ln2 = W(w)[™ (7] = 1) e

[W(7)

1,+ 1,—
Fa rYFo R

<o r| 0 | dr|
n n
- () = )" T T
e T
0D, () = 1) (148) > 1,
= nlnn, m—-1)1+¢) =1,

n, m-11+¢) <1,
for v1 > 0, and

d(¥(r), L) |d7|

I = / 4.15
we +hu ORI G N
FokUFon
1 1—¢
() [ e - e
n
Fiturky
for —1 <~ <0.
2. Let ¢ = 2. Analogously to the previous case, we obtain:
2.1.
_ d(¥(r), L) |dr|
Iy = / ’ 4.16
wl ol vO -V (-
Pl
|dT| |dT|
= n I y2—1 =n I 2271 (7 4¢)
_ () — U(wy )| P2 = w1
Frgursy |V =) Frgurny [T 02|
L2t —1
n1i+he 1/3-[32 >1-—c¢,
= Y21l 1 _
= nlnn, 13_52 =1-¢,

yo—1 _
n, 118, < 1—¢
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for 79 > 0 and

24 12— d(¥(r), L) |dr|
BIET = | et (oD 4

2,+ 2,—
FirRYFiR

< ndS M / |dr| < n - mes (fllg ufjg) <1,
FURUFDR
for v < 0.
2.9.
_ d(¥(7), L) |dT|
) Ry Lo / ’ 4.18
nz Tl W) — C(w)® (7]~ 1) (4.18)
FyhuFyy
D -1
\dr| ntR g, > 1o
=n — = nlnn ol g o
[ 125, (1+) © 4B :
stz 0w N
for v9 > 0, and
_ d(¥(r), L) |dr|
) A / ’ 4.19
nz Tl oI GED

2,4+ | £2,—
ForYF R

=n (1)1_5 / () = @ (wy)| T [dr| <0,

n
2,+ 2,—
FRYFS R

for —1 < 72 < 0. Therefore, from (4.10)—(4.19), for any p > 0, we obtain

2(m1—1) 3
n p ) 71 > 2
1
= 3
) (nin)s, =3
AP < 1 Pall 2, (h, 1) 1 2’3
ne, 0<m <3y,
nv, -1<1 <0
v2—1
np(1+l32)+€, Y2 > 2 + /82 — &,
1
(nlnn)pa ’72:2"’_52_67
1
ne, 0< v <24+ Py —c¢,

€

'n,;, _1<72§07
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if a; # 0, and

A=

—+

if a1 = 0. So, for A,

AP < 1Pall 2, (n, 1)

n v ) 71>2_€7
1
(nlnn)r, v =2-—¢,
HPnHLp(h,L) 1
ne, 0<ym <2—c¢,
ne, 1<y <0

el .
nP0+52) Yo > 2+ fo — &,

(nlnn)%, Yo =24 (3 —¢,
n%7 0< v <24 Py —c¢,
n%, -1 <9 <0,
we get
2m=1)
n e, m>14+ (1+B)’)/2>2+,32—€,

v2—1
27 e
np(1+B82) ,

2(m—1)

0<71§1+m772>2+ﬁ2_57

if a; # 0, and

AP < 1Pall 2, n, 1)

if a1 = 0.
Comparing (4.3)

P 12 |5

n-r o, M>35,0<12<2+ b —¢,
n% 0<71<3,0<7<2+p—¢,
(nlnn)% 901 2%7’72224‘52—5
| nr, —1<y <0,—1 < <0,
(-l Ya—1
nor o, >4, 72>2+527
e 2<m <14 P, 72> 2+ b,
nﬂ%lﬂ 7122,0<72<2+ﬁ27
nr, 0<v <2, 0<y2 <24 fo,
(nlnn)% M=2—-¢c7=2+p2—c¢,
n%, 1< <0,-1 <% <0,

(4.20)

and (4.20), we get:

2
An /P ‘Bm(z) (I)n—l—l(z)‘
vaR) ’

where A, taken from (4.20). The function By,(2) is analytic in ©, con-
tinuous on Q and |By,(z)] =1 on L. Then, according to the maximum
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modulus principle, we get

|Bn(2)] < 1, z € Qp,

and, so the proof is complete. ]
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