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Abstract. We systematize and analyze some results obtained in Subset
Combinatorics of G groups after publications the previous surveys [1-4].
The main topics: the dynamical and descriptive characterizations of
subsets of a group relatively their combinatorial size, Ramsey-product
subsets in connection with some general concept of recurrence in G-
spaces, new ideals in the Boolean algebra Pg of all subsets of a group
G and in the Stone-Cech compactification 3G of G, the combinatorial
derivation.
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1. Introduction

In this paper, we systematize and analyze some results obtained in
Subset Combinatorics of Groups after publications the surveys [1-4].
The main topics: the descriptive and dynamical characterizations of sub-
sets of a group with respect to their combinatorial size, Ramsey-product
subsets in connection with some general concept of recurrence, new ide-
als in the Boolean algebra P of all subsets of G and in the Stone-Cech
compactification SG of GG, the combinatorial derivation.

In these investigations, the principal part play ultrafilters on a group
G. On one hand, ultrafilters are using as a tool to get some purely
combinatorial results. On the other hand, the Subset Combinatorics of
Groups allows to prove new facts about ultrafilters, in particular, about
the Stone-Clech compactification SG of G. In this connection, we recall
some basic definitions concerning ultrafilters.

A filter F on a set X is a family of subsets of X such that
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e )¢ F, X eF,
e A, Be F = A(Be€F,
e Ac FLACC = CeF.

The family of all filters on X is partially ordered by inclusion. A filter
maximal in this ordering is called an ultrafilter. A filter F is an ultrafilter
if and only if X = A|J B implies A € F or B € F.

Now we endow X with the discrete topology and identity the Stone-
Cech compactification SX with the set of all ultrafilters on X. An ultra-
filter F is principal if there exists z € X such that F = {A C X : x € A}.
Otherwise, (| F = () and F is called free. Thus, X is identified with the
set of all principal ultrafilters and the set of all free ultrafilter on X is
denoted by X*.

To describe the topology on 3X, given any A C X we denote A =
{Fe€X:A¢cF}. Then theset {A: AC X} is a base for the topology
of X. The characteristic topological property of SX: every mapping
f: X — K, K is a compact Hausdorff space, can be extended to the
continuous mapping f? : BX — K.

Given a filter ¢ on X, the set ¢ = {p € 5X : ¢ C p} is closed in X,
and for every non-empty closed subset K of X, there is a filter ¢ on X
such that p = K.

Now let G be a discrete group. Using the characteristic property
of BG, we can extend the group multiplication on G to the semigroup
multiplication on SG in such a way that, for every g € G, the mapping
BG — G : p —> gp is continuous and, for every g € G, the mapping
B8G — BG : p —— pq is continuous.

To define the product pg of ultrafilters p and ¢, we take an arbitrary
P ¢ p and, for each x € P, pick some Q, € ¢q. Then, J,cp2Qy is
a member of pg, and each member of pg contains some subsets of this
form.

For properties of the compact right topological semigroup 8G and a
plenty of its combinatorial application see [5].

2. Diversity of subsets and ultracompanions

Let G be a group with the identity e, Fg denotes the family of all
finite subsets of G. We say that a subset A of G is

e large if G = F'A for some F € Fg;

e smallif L\ A is large for every large subset L;
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o extralarge if G\ A is small;

o thin if gA N A is finite for each g € G \ {e};

o thick if, for every F' € Fg, there exists a € A such that Fa C A;
e prethick if F'A is thick for some F' € Fg;

e n-thin, n € N if, for every distinct elements g, ..., g, € G, the set
goAN---NgyA is finite;

o sparse if, for every infinite subset X of G, there exists a finite subset

F' C X such that (), gA is finite.

Remark 2.1. In Topological dynamics, large subsets are known as
syndetic, and a subset is small if and only if it fails to be piecewise
syndetic. In [4], the authors use the dynamical terminology.

All above definitions can be unified with usage the following notion |6].
Given a subset A of a group G and an ultrafilter p € G*, we define a p-
companion of A by

Ap(A)=A"NGp={gp:9 € G, Acgp}.

Then, for every infinite group G, the following statement hold:

e A is large if and only if Ay(A) # 0 for each p € G¥;

A is small if and only if, for every p € G* and every F € Fg, we
have A, (FA) # Gp;

A is thick if and only if, there exist p € G* such that A,(A) = Gp;

A is thin if and only if, A,(A) <1 for every p € G*;

A is n-thin if and only if, A,(A) < n for every p € G*;

e A is sparse if and only if, A,(A) is finite for each p € G*.

Following [1], we say that a subset A of G is scattered if, for every
infinite subset X of A, there is p € X* such that A,(X) is finite. Equiv-
alently [7, Theorem 1], A is scattered if each subset A,(A) is discrete in
G*.

Comments. For motivations of above definitions see [1]|, for more
delicate classification of subsets of a group and G-spaces see |2, 8|.
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3. The descriptive look at the size of subsets of groups

Given a group G, we denote by Ps and Fg the Boolean algebra of
all subsets of G and its ideal of all finite subsets. We endow P with the
topology arising from identification (via characteristic functions) of Pg
with {0,1}%. For K € Fg the sets

{(XePg:KCX}, {XePg: XNK =0}

form the subbase of this topology.

After the topologization, each family F of subsets of a group G can be
considered as a subspace of P, so one can ask about the Borel complexity
of F, the question typical in the Descriptive Set Theory (see |9]). We ask
these questions for the most intensively studied families in Combinatorics
of Groups.

For a group GG, we denote by La, ELg, Sg, Ta, PTqg the sets of all
large, extralarge, small, thick and prethick subsets of G, respectively.

Theorem 3.1.For a countable group G, we have: Lg is Fy, Tq is
Gs, PTq is Gsy, Sqg and ELg are Fjg.

A subset A of a group G is called

e P-small if there exists an injective sequence (g, )new in G such that
the subsets {g,A : n € w} are pairwise disjoint;

e weakly P-small if, for any n € w, there exists g, ..., gn such that
the subsets goA, ..., gnA are pairwise disjoint;

e almost P-small if there exists an injective sequence (gn)ncw in G
such that g, A N g, A is finite for all distinct n, m;

e near P-small if, for every n € w, there exists go, ..., gn such that
giA N g;A is finite for all distinct 4,5 € {0,...,n}.

Every infinite group G contains a weakly P-small set, which is not
P-small, see [10]. Each almost P-small subset can be partitioned into
two P-small subsets [8]. Every countable Abelian group contains a near
P-small subset which is neither weakly nor almost P-small [11].

Theorem 3.2.For a countable group G, the sets of thin, weakly P-
small and near P-small subsets of G are Fy,.

We recall that a topological space X is Polish if X is homeomorphic
to a separable complete metric space. A subset A of a topological space
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X is analytic if A is a continuous image of some Polish space, and A is
coanalytic if X \ A is analytic.

Using the classical tree technique [9] adopted to groups in [12], we
get.

Theorem 3.3. For a countable group G, the ideal of sparse subsets
1s coanalytic and the set of P-small subsets is analytic in Pg.

Given a discrete group G, we identify the Stone-Cech compactifi-
cation G with the set of all ultrafilters on G and consider SG as a
right-topological semigroup (see Introduction). Each non-empty closed
subspace X of G is determined by some filter ¢ on G:

X=({2:2cp}, D={pcpG:®ecp}

On the other hand, each filter ¢ on G is a subspace of Pg, so we can
ask about complexity of X as the complexity of ¢ in Pg.

The semigroup GG has the minimal ideal K which play one of the
key parts in combinatorial applications of SG. By [5], Theorem 1.5, the
closure cl(Kq) is determined by the filter of all extralarge subsets of G.
If G is countable, applying Theorem 3.1, we conclude that cl(Kq) has
the Borel complexity Fis.

An ultrafilter p on G is called strongly prime if p ¢ cl(G*G*), where
G* is a semigroup of all free ultrafilters on G. We put X = cl(G*G*) and
choose the filter px which determine X. By [13]|, A € ¢x if and only
if G\ A is sparse. If G is countable, applying Theorem 3.3, we conclude
that ¢px is coanalitic in Pg.

Let (gn)new be an injective sequence in G. The set

{9i,9in - G, 1 0<1ig <o <...<ip <w}

is called an FP-set. By the Hindman Theorem 5.8 [5], for every finite
partition of GG, at least one cell of the partition contains an F'P-set. We
denote by FPg the family of all subsets of G containing some F P-set.
A subset A of G belongs to FP¢ if and only if A is an element of some
idempotent of SG. By analogy with Theorem 3.3, we can prove that
FPg¢ is analytic in Pg.

Comments. This section reflects the results from [14].

4. The dynamical look at the subsets of a group

Let G be a group. A topological space X is called a G-space if there
is the action X x G — X : (z,g) — xg such that, for each g € G, the
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mapping X — X : x — xg is continuous.
Given any x € X and U C X, we set

Ul ={9€G:29 €U}

and denote
O(z) ={xg:9 € G},T(z) = clO(z),

W(z) ={y € T(X) : [U], is infinite for each neighbourhood U of y}.

We recall also that x € X is a recurrent point if x € W (x).

Now we identify Pg with the space {0,1}“, endow Pg with the prod-
uct topology and consider Pg as a G-space with the action defined by

A+ Ag, Ag={ag:a € A}.
We say that a subset A of G is recurrent if A is a recurrent point in
(P, G).

All groups in this sections are supposed to be infinite.

Theorem 4.1. For a subset A of a group G, the following statements
hold

(1) A is finite if and only if W(A) = 0;

(11) A is thick if and only if G € W(A).

Theorem 4.2. For a subset A of a group G, the following statements
hold

(i) A is n-thin if and only if |Y| < n for every Y € W(A);
(ii) A is sparse if and only if each subsetY € W (A) is finite;

(iii) A is scattered if and only if, for every subset B C A there erists
Y € Fg in the closure of {BW' : b e B}.

Let (gn)new be an injective sequence in G. The set

FP(gn)new =1{9i19iy - - 9i,, 1 0 <01 <2 <...<ip<w}

is called an F P-set.
Given a sequence (by)new in G, the set

{91905 - Ginbi, 10 <y <idg < ... <in <w}
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is called a (right) piecewise shifted F P-set [7].

Theorem 4.3. For a subset A of a group G, the following statements
hold

(i) A is not n-thin if and only if there exvist F € [G]"*! and an
injective sequence (Ty)n<w n G such that Fx, C A for each n € w;

(ii) A is not sparse if and only if there exists two injective sequences
(Tn)n<w and (Yn)n<w such that xpym € A for each 0 <n <m < w;

(11i) A is not scattered if and only if A contains a piecewise shifted
F P-set;

(iv) A contains a recurrent subset if and only if there exists x € A
and an FP-setY such that xY C A.

Corollary 4.1. FEwvery scattered subset of a group G has no recurrent
points.

Remark 4.1. By [4, Theorem 2|, every scattered subset A of an
amenable group G is absolute null, i.e. u(A) = 0 for every left invariant
Banach measure ¢ on G. But this statement could not be generalized
to subsets with no recurrent points. By [17, Theorem 11.6|, there is a
subset A of Z of positive Banach measure such that (a + B) \ A # () for
any F'P-set B. By Theorem 4.3(iv), A has no recurrent subsets.

Remark 4.2. Let G be an arbitrary infinite group. In [15], we
constructed two injective sequences (Zp)new, (Yn)new in G such the set
{ZnYm : 0 <n < m < w} is scattered. By Theorem 4.3(ii), this subset is
not sparse.

Comments. This section reflects the first part of [15].

5. Ramsey-product subsets and recurrence

In this section, all groups under consideration are supposed to be
infinite; a countable set means a countably infinite set.

Let G be a group and let nf = (m1...,my) € ZF be a number vector
of length £ € N. We say that a subset A of a group G is a Ramsey -
product subset if every infinite subset X of GG contains pairwise distinct
elements z1,...,z; € X such that,

xg"”(ll) w;”é) .. xT&) cA
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for every substitution o € Sy.

Theorem 5.1. For a group G and a number vector mi = (my,...,mg) €
ZF, the following statements hold:

(i) a subset A of G is a Ramsey m—product subset if and only if
every infinite subset X of G contains a countable subset Y such that
Yty € A for any distinct elements y1, ...,y €Y.

(7i) the family o5 of all Ramsey mi-product subsets of G is a filter.

For t € Z and ¢ € G* we denote by ¢\t the ultrafilter with the base
{zt 12 € Q}, Q € q. Warning: ¢\t and ¢' are different things. Certainly,
¢\t =q' only if t € {~1,0,1}.

We remind the reader that, for a filter p on G, 3 = {p € G : ¢ C p}.

Theorem 5.2. For every group G and any number vector m =
(m1,...,my) € ZF, we have

B = c{(¢"m1) ... (¢"mi): ¢€ G*}.
Now we consider some special cases of vectors .

Proposition 5.1. For any totally bounded topological group G, any
neighborhood U of the identity e of G is a Ramsey mi-product subset for
any vector m = (myq,...,my) such that my + ...+ my = 0.

We recall that a quasi-topological group is a group G endowed with a
topology such that, for any a,b € G and € € 1,1, the mapping G — G :
x — ax®b, is continuous.

Proposition 5.2. The closure A of any Ramsey (—1,1)-product set
A in a quasi-topological group G is a neighborhood of the identity.

Proposition 5.3. Let m = (mq,...,mg) be a number vector and
s=mq+...+mg. For any Ramsey m-product subset A of a group G,
the set {x* : x € G} is contained in the closure of A in any non-discrete
group topology on G.

Proposition 5.4. Let G be the Boolean group of all finite subsets of
Z, endowed with the group operation of symmetric difference. The set

A=G\{{z,y} 2,y € 2,042 —yc{:2€7Z}}

has the following properties:
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(i) A is a Ramsey m-product for any vector m = (my,...,my) €
(2Z + 1)* of length k > 2;

(ii) A does not contain the difference BB~' of any large subset B of
G;

(iii) A is not a neighborhood of zero in a totally bounded group topol-
ogy on G.

Now we show how Ramsey (—1, 1)-product sets arise in some general
concept of recurrence on G-spaces.

Let G be a group with the identity e and let X be a G-space with the
action G x X — X, (g,z) — gx. If X = G and gz is the product of g
and x then X is called a left reqular G-space.

Given a G-space X, a family § of subset of X and A € §, we denote

Az(A)={ge G:9gB C Afor some BeF,BC A}

Clearly, e € Az(A) and if § is upward directed (A € §, A C C imply
C € F) and if § is G-invariant (A € §, g € G imply gA € §) then

As(A)={g€G:gANAcF} Az(A) = (Az(A)~"

If X is a left regular G-space and () ¢ § then Agz(A) C AA~L.

For a G-space X and a family § of subsets of X, we say that a subset
R of G is §-recurrent if Az(A) N R # () for every A € §. We denote by
Ry the filter on G with the base N{Ag (A) : A € §'}, where §' is a finite
subfamily of §, and note that, for an ultrafilter p on G, Rz € p if and
only if each member of p is F-recurrent.

The notion of an §-recurrent subset is well-known in the case in which
G is an amenable group, X is a left regular G-space and § = {A C X :
p(A) > 0 for some left invariant Banach measure g on X}. See [16-18]
for historical background.

We recall [19] that a filter ¢ on a group G is left topological if ¢
is a base at the identity e for some (uniquely defined) left translation
invariant (each left shift x — gz is continuous) topology on G. If ¢ is
left topological then ¥ is a subsemigroup of G [19]. If G = X and a
filter ¢ is left topological then ¢ = R,.

Proposition 5.5. For every G-space X and any family § of subsets
of X, the filter Rz is left topological.

Let X be a G-space and let § be a family of subsets of X. We say
that a family §’ of subsets of X is §-disjoint if AN B ¢ § for any distinct
A, Beg.
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A family §’ of subsets of X is called §-packing large if, for each A € F,
any §-disjoint family of subsets of X of the form gA, g € G is finite.

Proposition 5.6. Let X be a G-space and let § be a G-invariant
upward directed family of subsets of X. Then § is §-packing large if and
only if, for each A € §, the set Az(A) is a Ramsey (-1,1)-product set.

Applying Theorem 5.2, we conclude that Agz(A) contains all ultrafil-
ters of the form ¢~ '¢, ¢ € G*, and in the case X = G, G is amenable and
§ is the family of all subsets of positive Banach measure, we get Theorem
3.14 from [18].

Comments. The proofs of all above statements can be find in [20,21].

6. Ideals in P; and G

We recall that a family Z of subsets of a set X is an ideal in the
Boolean algebra Pg of all subsets of G if G ¢ Z and A € Z, B € I,
CCAimply AUB€eZ,C eZ. A family ¢ of subsets of G is a filter if
and only if the family {X \ A: A € ¢} is an ideal.

For an infinite group G, an ideal Z in Pg is called left (right) trans-
lation invariant if gA € T (Ag € Z) for all g € G, A € Z. If T is left and
right translation invariant then Z is called translation invariant. Clearly,
each left (right) translation invariant ideal of G' contains the ideal F¢ of
all finite subsets of G. An ideal Z in Pg is called a group ideal if F¢ C T
and if A€ Z, B €T then AB~! € T.

Now we endow G with the discrete topology and use the standard
extension of the multiplication on G to the semigroup multiplication on
BG, see Introduction.

It follows directly from the definition of the multiplication in SG that
G*, G*G* are ideals in the semigroup SG, and G* is the unique maximal
closed ideal in SG. By Theorem 4.44 from [5], the closure K (SG) of the
minimal ideal K(G) of G is an ideal, so K(SG) is the smallest closed
ideal in BG. For the structure of K(8G) and some other ideals in SG
see [5, Sections 4, 6].

For an ideal 7 in Pg, we put
TN ={pe G :G\ A€ pfor each A € T},
and use the following observations:

e T is left translation invariant if and only if Z” is a left ideal of the
semigroup GG ;
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e 7 is right translation invariant if and only if (Z)G C Z".

We use also the inverse to ”* mapping V. For a closed subset K of 3G,
we take the unique filter ¢ on G such that K = % and put

KY={G\A:Acy}.

In this section, all groups under consideration are suppose to be infi-
nite.

We denote by Smg, Scg, Spg the families of all small, scattered
and sparse subsets of a group G. These families are translation invariant
ideals in Pg (see [6, Proposition 1]), and for every group G, the following
inclusions are strict |6, Proposition 12]

Spa C Scg C Smq.

We say that a subset A of G is finitely thin if A is n-thin for some
n € N. The family FTg of all finitely thin subsets of GG is a translation
invariant ideal in Pg which contains the ideal < Tz > generated by the
family of all thin subsets of G. By [22, Theorem 1.2] and |23, Theorem 3],
if G is either countable or Abelian and |G| < X, then FTg =< T >.
By [23, Example 3|, there exists an Abelian group G of cardinality N,
such that < Tg >C F1q.

Theorem 6.1. For every group G, we have Sm{, = K(BG).
This is Theorem 4.40 from [5] in the form given in [24, Theorem 12.5].
Theorem 6.2. For every group G, Sppy = G*G*.

This is Theorem 10 from [13].
6.1. Between G*G* and G*.

Theorem 6.3. For every group G, the following statements hold:

(1) if Z is a left translation invariant ideal in P and T # Fg then
there exists a left translation invariant ideal J in Pg such that Fo C
J CZ and J C Spg;

(73) if T is a right translation invariant ideal in Pg and T # Fg then
there exists a right translation invariant J in Pg such that Fo C J C ZL;

(7i1) if G is either countable or Abelian and T is a translation invari-
ant ideal in Pq such that T # Fg then there exists a translation invariant

ideal J in Pg such that Fo C J CZ and J C Spqg.
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Theorem 6.4. For every group G, the following statements hold:

(2) if L is a closed left ideal in SG such that L C G* then there exists
a closed left ideal L' of BG such that L C L' C G*, G*G* C L/;

(ii) if R is a closed subset of G* such that R # G* and RG C R then
there exists a closed subset R' of G* such that R C R’ C G*, R'G C R;

(#i1) if G is either countable or Abelian and I is a closed ideal in
BG such that I C G* then there exists a closed ideal I' in G such that
Icl' cG* G*G*C .

For a cardinal , S, denotes the group of all permutations of .

Theorem 6.5. For every infinite cardinal x, there exists a closed
ideal I in BSy such that

(1) SESe I

(ii) if M is a closed ideal in S, and I C M C G* then either M = I
or M = S7..

Theorem 6.6. For every group G, we have FTg C Spg so G¥*G* C
FTA.
G

For subsets X,Y of a group GG, we say that the product XY is an
n-stripe if | X| =mn, n € N and |Y| = w. It is easy to see that a subset A
of G is n-thin if and only if A has no (n + 1)-stripes. Thus, p € FT} is
and only if each member P € p has an n-stripe for every n € N.

We say that XY is an (n, m)-rectangleif | X| =n, |Y|=m, n,m € N.
We say that a subset A of G has bounded rectangles if there is n € N such
that A has no (n,n)-rectangles (and so (n, m)-rectangles for each m > n).

We denote by BRg the family of all subsets of G with bounded rect-
angles.

Theorem 6.7. For a group G, the following statements hold:
(1) BR¢ is a translation invariant ideal in Pg;

(it) BRy, is a closed ideal in BG and p € BRy. if and only if each

member P € p has an (n,n)-rectangle for every n € N;

(iii) BRg C FTg.



544  RECENT PROGRESS IN SUBSET COMBINATORICS OF GROUPS

6.2. Between K(G) and G*G*.
Theorem 6.8. For a group G, the following statements hold:

(i) Sci =cl{ep: e € G*, p € BG, e = €};

(it) Sepy is an ideal in BG and p € Scgy if and only if each member
of p contains a piecewise shifted F P-set;

(ii1) Scpy is the minimal closed ideal in BG containing all idempotents

of G*.

For a group G, we put Ig,, = G*, Igny1 = G*Ig,, and note that
Ig y, is an ideal in SG.

Theorem 6.9. For every group G and n € w, we have
(Z) IG,n—i—l - IG,n
(ZZ) ch C IG,n-

For a natural number n, we denote by (G*)" the product of n copies
of n. Clearly, (G*)"*t1 C (G*)". and (G*)" C Ig .

Theorem 6.10. For every group G and n € w, we have

(i) (G¥)"+t (o)™

(i) Sciy c (GF)".

Comments. This section is an extract from [25].

7. The combinatorial derivation

Let G be a group with the identity e. For a subset A of GG, we denote
A(A)={geG:|gA[)A=odl},

observe that (A(A))™! = A(A), A(A) € AA~! and say that the map-
ping
A:Po—s Pa, A AA)

is the combinatorial derivation.

Theorem 7.1. For an infinite group G and a subset A of G, the
following statements hold
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(1) A is finite if and only if N(A) = 0;

(2) A(A) = {e} if and only if A is infinite and thin;
(3) if A is thick then A(A) = G;

(4) if A is prethick then A(A) is large.

Theorem 7.2. Every infinite group G contains a subset A such that
G = AA! and A(A) = {e}.

Theorem 7.3. Let A be a subset of an infinite group G such that A =
A~L. Then there exist two thin subsets X, Y of G such that A(XJY) =
A.

We consider also the inverse to /A, multivalued mapping V defined by
V(A)={B CG:A(B) = A}

For a family F' of subsets of a group G, we say that F is AA-complete
(V-complete) if A(A) € F (V(A) C F) for each A € F.

Theorem 7.4. For every infinite group G, the following statements
hold

(1) the families of all small and sparse subsets of G is V-complete;
(2) if an ideal T in Pg is AN-complete and V-complete then T = Pg;

(8) If T is a group ideal in Pg, T # Pg, then T is A-complete and T
is contained in the ideal of all small subsets of G.

Comments. More information on combinatorial derivation in [26-28].
In particular, Theorem 6.2 from [26] shows that the trajectory A —
N(A) — A?(A) —s ... of a subset A of G could be surprisingly com-
plicated: stabilizing, increasing, decreasing, periodic or chaotic. Also [26]
contains some parallels between the combinatorial and topological deriva-
tions.

References
[1] L.Protasov, Selective survey on subset combinatorics of groups // J. Math. Sci-
ences, 174 (2011), 486-514.

[2] 1. Protasov, S. Slobodianiuk, On the subset combinatorics of G-spaces // Algebra
Discrete Math., 17 (2011), 98-109.

[3] I. Protasov, S. Slobodianiuk, Partitions of groups // Math. Stud., 42 (2014),
115-128.

[4] T. Banakh, I. Protasov, S. Slobodianiuk, Densities, submeasures and partitions
of groups // Algebra Discrete Math., 17 (2014), 193-221.

[5] N. Hindman, D. Strauss, Algebra in the Stone-Cech compactification: theory and
applications, Berlin, New York: Walter de Gruyter, 1998.



546

RECENT PROGRESS IN SUBSET COMBINATORICS OF GROUPS

[6]

7]

[28]

I. Protasov, S. Slobodianiuk, Ultracompanions of subsets of a group // Comment.
Math. Univ. Carolin., 55 (2014), 257-265.

T. Banakh, I. Protasov, S. Slobodianiuk, Scattered subsets of groups // Ukr.
Math. J., 67 (2015), No. 3, 347-356.

Te. Lutsenko, I. Protasov, Sparse, thin and other subsets of groups // Intern. J.
Algebra Comp., 19 (2009), 491-510.

A. Kechris, Classical Descriptive Set Theory, Springer, 1995.

T. Banakh, N. Lyaskovska, Weakly P-small not P-small subsets in groups //
Intern. J. Algebra Comput., 19 (2008), 1-6.

I. Protasov, K. Protasova, Around P-small subsets of groups // Carpath. Math.
Publ., 6 (2014), 337-341.

T. Banakh, N. Lyaskovska, On thin-complete ideals of subsets of groups // Ukr.
Math. J., 63 (2011), No. 6, 216-225.

M. Filali, Ie. Lutsenko, I. Protasov, Boolean group ideals and the ideal structure
of BG // Math. Stud., 30 (2008), 1-10.

T. Banakh, I. Protasov, K. Protasova, Descriptive complezity of the sizes of sub-
sets of groups // Ukr. Mat. J., 69 (2017), No. 9, 1280-1283.

I. Protasov, S. Slobodianiuk, The dynamical look at the subsets of a group //
Appl. Gen. Topol., 16 (2015), No. 2, 217-224.

H. Furstenberg, Poincare recurrence and number theory // Bull. Amer. Math.
Soc., 5 (1981), No. 3, 211-234.

N. Hindman, Ultrafilters and combinatorial number theory // Lecture Notes in
Math., 571 (1979), 119-184.

V. Bergelson, N. Hindman, Quotient sets and density recurrent sets // Trans.
Amer. Math. Soc., 364 (2012), 4495-4531.

I.Protasov, Filters and topologies on groups // Math. Stud., 3 (1994), 15-28.

I. Protasov, K. Protasova, On recurrence in G-spaces // Algebra Discrete Math.,
23 (2017), No. 2, 80-85.

T. Banakh, I. Protasov, K. Protasova, Ramsey-product subsets of a group //
Math. Stud., 47 (2017), 145-149.

Te. Lutsenko, I. Protasov, Thin subsets of balleans // Appl. Gen. Topology, 11
(2010), 89-93.

I. Protasov, S. Slobodianiuk, Thin subsets of groups // Ukr. Math. J., 65 (2013),
1384-1393.

I. Protasov, T. Banakh, Ball Structures and Colorings of Graphs and Groups //
Math. Stud. Monogr. Ser, 11, Lviv: VNTL Publisher, 2003.

I. Protasov, K. Protasova, Ideals in PG and BG // ArXiv: 1704.02494-1.

I. Protasov, The combinatorial derivation // Appl. Gen. Topology, 14 (2013),
171-178.

1. Protasov, The combinatorial derivation and its inverse mapping // Central
Europ. J. Math., 11 (2013), 1276-1281.

J. Erde, A note on combinatorial derivation // arxiv: 1210. 7622.



I. V. ProT1Aasov, K. D. PROTASOVA Y. ¥

CONTACT INFORMATION

Igor V. Protasov Faculty of Computer Science and
Cybernetics of Taras Shevchenko
National University of Kyiv,
Kyiv, Ukraine
E-Mail: i.v.protasov@gmail.com

Ksenia D. Faculty of Computer Science and
Protasova Cybernetics of Taras Shevchenko
National University of Kyiv,
Kyiv, Ukraine
FE-Mail: ksuha@freenet.com.ua



