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Shifted Darboux transformations of the
generalized Jacobi matrices, I

IvaN M. KovALYov

(Presented by I. I. Skrypnik)

Abstract. Let J be a monic generalized Jacobi matrix, i.e. a three-
diagonal block matrix of a special form. We find conditions for a monic
generalized Jacobi matrix J to admit a factorization J = £U + ol with
£ and 4 being lower and upper triangular two-diagonal block matrices
of the special form. In this case the shifted Darboux transformation
without parameter of J defined by J® = $€ + o is shown to be also a
monic generalized Jacobi matrix. Analogues of Christoffel formulas for
polynomials of the first and second kind, corresponding to the Darboux
transformation J® are found.
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1. Introduction
Let & be a linear functional defined on the linear space
stpan{/\j :j € Zy :=NU{0}} (1.1)
by the equality '
S(N) = sy, jE L. (1.2)

The numbers s; are called the j—th moment associated with the linear
functional &. The moment sequence s = {5]-};';0 has got a set of normal
indices defined by

N(s)={nj:da, #0,5 =1,2,...}, dy, =det(sisn)ijg.  (1.3)
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As follows from (1.3) n; is a normal index of s if and only if

50 .. 5]1]_1
det | --- --- £ 0. (1.4)
Snj—1 " S2n;-2

It is well known (see 7], [21]) that the sequence of monic polynomials
{P; (/\)};io is orthogonal polynomials with respect to the linear functional
S. Furthermore (see [5,7]), the sequence {Pj()\)};io is associated with
the following monic generalized Jacobi matrix

@po @0
B € D
J= (1.5)

%2 €p2 ’ : . ’

where the entries are the blocks of the special type.

As was known (see [15]), the matrix J admits the £8— factorization
J=£4, (1.6)

if and only if
P, (0) £0, (1.7)

where £ and il are lower and upper triangular block matrices. Multiplying
the matrices £ and U in reverse order, we obtain

3P =g (1.8)
is the generalized Jacobi matrix associated with a linear functional

S® (p(\) = S(Ap(\),  p()) is a polynomial. (1.9)

A sequence of the monic polynomials {Pj(p )()\)}:O . associated with the
functional &®) is called a Christoffel transform of {Pj()\)}]o.io (see [4,23]).
In this case, the transformation (1.6), (1.8) is called a Darboux transfor-
mation (without parameter) . Darboux transformation was also study
for the Stieltjes strings (see [10]). The Darboux transformation was also
studied for the Stieltjes strings (see [10]). The Darboux transformation
of the discrete analogue of the Laguerre operator was investigated in [17].

It is worth noting, when €, are 1 x 1 matrices (i.e. J is a monic
Jacobi matrices), the Darboux transformation without parameter (1.6),
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(1.8) was studied in [2]. In the case, €, are 1 x 1 or 2 x 2 matrices,
the Darboux transformation without parameter (1.6), (1.8) was studied
in [8]. The results of |2, 8] are the particular case of [15].

As was shown in [6], the monic generalized Jacobi matrices J admits
a shifted Darboux transformation (without parameter), i.e.

J=LU+al - UL+ ol =JP). (1.10)

if and only if
Py (o) # 0 (1.11)

and its diagonal blocks €, are 2 X 2 matrices. In this case, 3®) is the
monic Jacobi matrices associated with the sequence of the monic poly-

nomials {Pj(p )(/\)}OO o The polynomials Pj(p )()\) are orthogonal with re-
J:

spect to the linear functional
SPI(N) = (A —a)&(N). (1.12)

{Pj(p ) (/\)}OO . is a special case of the Christoffel transformation (see [24]).
j=

The present paper is generalization of the papers [2,6,8,15] and [16]. It
is shown that every generalized Jacobi matrix Jj, which satisfies conditions
similar to (1.11), admits an £4—factorization J + al = £, with lower-
triangular and upper-triangular two-diagonal block matrices £ and il.
It turns out that the monic generalized Jacobi matrix J®), associated
with the linear functional &®) defined by (1.12), can be represented as
3(1”) = UL + al. This monic generalized Jacobi matrix 3(1”) is called the
shifted Darboux transformation without parameter of J.

Darboux transformation of the orthogonal polynomials is actual. It
is also studied of the matrix orthogonal polynomials associated with the
some differential operator (see [3,11]).

In this paper we consider the firs part of shifted Darboux transforma-
tion of generalized Jacobi matrices, namely, the transformation without
parameter is study. The shifted Darboux transformation will be applied
to the indefinite Stieltjes moment problem. These results will be pub-
lished elsewhere.

2. Monic generalized Jacobi matrices associated with
non-quasi-definite functional

Let {s;}72, be a sequence of real moments and let & be a linear
functional defined on the linear space P = span {)\j 1j € Z+} by (1.2).
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We denote the first nontrivial moment ¢g := s,,_1, i.e. s = 0 for all
k <ny — 1. For example, if ny = 1, then s9 # 0 and £y = s¢.

Using moment sequence {s; };?‘;O, we can construct the polynomials of
the first and the second kind (see [1,5]), defined by for all j € N

o V= Py, (1
1 P Pn./\—Pn.t>
Py (\) =— On (=6, (YT 9
n]( ) dnj n;—1 5!1]' 52!‘1]'—1 an() t< A—t ( )
1 N .. Y

The polynomials P (\) and Qn;(A) are solutions of a system of dif-
ference equations (see [7,21])

bjynj—1 ()‘) - pj()‘)ynj ()‘) + ynj+1()‘) =0 (bO = 50) (22)

subject to the initial conditions
P, (\)=0, P,y(N) =1, Qun_,(N) =—1, Qun(N) =0, (2.3)

where b; € R\ {0}, p;(A) = \% +pg)71/\£f_1 +... +pgj)/\+p6j) are monic
polynomials of degree ¢; = n 1 —n; and generating polynomials of the
following generalized Jacobi matrix J, j € Z.

One can associate with the system (2.2) the so-called monic general-
ized Jacobi matrix (GJM) (see [7,8])

Q:po @O
%1 €p1 @1
J= , (2.4)

EBQ Q:p2

where the diagonal entries are companion matrices associated with the
some real polynomials p;(\) (see [18])

0 1 0 0
0 0 1
¢y, = 0 are £; x {; matrices ,
0 0 0 1
=g =i e =l

(2.5)
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D; and Bj 4 are £; x ;1 and £; 1 x{; matrices, respectively, such that

00 ---0 0 0 ---0
o= o i m =l T e #0, jezy. (26
j 00 -0 7+ 0 0 .o 0 J+ + ( )
10 -0 bjr1 0 -+ 0

The matrix J defined by (2.4)—(2.6) is called a GJM associated with
the linear functional &. Sometimes J is called a GJM associated with
the sequence {5]'};7‘;0 or the system (2.2) to emphasize connection with
polynomials p;(A) and numbers bj 1, j € Z.

The shortened GJM J|; ;) is defined by
i i
Bit1 i

¢,

D j—1
The following connection between the polynomials of the first and the

second kind and the shortened GJM’s can be found in [7]

Pnj ()\) = det()\ — J[O,j—l]) and an ()\) = bodet(/\ - 3[17]'_1}). (28)

Let us define an inner product in the space 5[20 wy—1] by

[.T, y] = (Gl‘, y)€[20 1] ’ (29)
o
where x,y € 6[207%_1}, G[OJ*H :diag(boGo, bob1G1, ..., by.. .bjflijl) and
i i -1
pt” Pl
G, = @; S i=0,j -1 (2.10)
Poo1 7
1 0

Let us set
P(A) = (Py(A), PL(A), -, Pay(N),) T

(2.11)
QM) = (Qo(N), Q1(N), -+, Qu;(N),..) T,
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where Py ;(A) = /\kPnj(/\) and Qu,1x(N) = /\anj (A), where 0 < k <
n;41 — nj. Then it follows from (2.2)-(2.6), that

(F=ADP(N\) =0 and (J—A)Q(\) =(0,...,0,b0,0,...)T. (2.12)
Lo

Definition 2.1. Let us define the m— function of the matriz J by equality
mioj—1)(A) = [(Foj—1) — M)~ 'eo, ol (2.13)
where ey = (1 o --- O)T s n; X 1 wector.

As was shown in [8, Proposition 6.1], [20, see formula (139)], [13]

J .
myg,j-1](A) = —€o et =3, Pu (2.14)
and myg j_1(A) admits the following asymptotic expansion
Mg N = =5 -3 - - 4o (%) L (215)
where the moments s; are calculated by
o) = [(3[{)J_H)keo,eo] k< 2n;—2. (2.16)

3. Shifted Darboux transformation without parameter

In this section we study the shifted Darboux transformation without
parameter of the monic generalized Jacobi matrices, which may apply
even in the case, when some P, (0) = 0, that is not true of the Darboux
transformation (without parameter) in [15]. The paper [15] is the par-
ticular case of this section ([15] has got the shift equals to zero). The
realization of the shifted Darboux transformation without parameter is
carried out using the following block lower and upper triangular matrices

Ay 0 o Do
£1 Q[l 0 0 ill ©1

e = o, | md U= 0w | G
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the diagonal blocks 2(; and {; are ¢; x £; matrices (u; # 0)

1 0 0 - 0 a1 0 -0
010 0 0 —«o 1 .o

S S T e R CE)
(gj) (()j)... (j)1 ’ 0 0l
ap ay’ ey —al —u; 0 00

the blocks £,11 and ©; are £;11 x £; and ¢; x £;41 matrices, respectively

00 --- 0 00 -+ 0

Soa=|" " 7507@:5 Do ,JEZy. (3.3

o 0 .o o [T “loo -0 B
0 0 - Ly 10 0

However, if /; = 1, then we mean
Qlj = (1) and ﬂj = (—uj); (3.4)
if gj = €j+1 = 1, then

i1 = (1) and D; = (1). (3.5)

Let us say that the matrix J — o admits an £i— factorization if
J — ad is represented in the form J — ol = £4, where £ and i are given
by (3.1)-(3.3) and a € R.

Definition 3.1. Let J be the monic generalized Jacobi matriz and let
J — ol admit the LU-factorization of the form (3.1)~(3.3). Then the
transformation

J=2U+al - UL+ al »=3FP (3.6)

is called a shifted Darboux transformation without parameter of J. The
matriz JP) is a monic generalized Jacobi matriz.

Lemma 3.1. Let J be the monic generalized Jacobi matrix associated
with the functional G and let {; :=n; 41 —n; > 1, j € Zy, where ng =0
and {n;}22, is the set of normal indices of the sequence s = {s;}32,. Let
£ and Y be defined by (3.1)~(3.3) and o € R. Then the matriz J — ol
admits the £4— factorization if and only if the system of equations

—ljp1uy = b1, (3.7)
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[j —Uu; = —a— p(()j), lp =0, Ej =1, (38)
o) = —pi, —ala’ —a)—w+ ==, =0, 4=2 (39
0 __,0  L0) () __ @ () 0 _ O
aej—l - €§—1 ’ aé—Q —a(aé_l —a) __pfi—f a€§—3 _aa€§—2 ——P£§_3, T
agj) — aagj) = —pgj), —aagj) —u;+ 1= —p(()j), lo=0, ¢ >2
(3.10)
1s solvable for all j € Z .
Proof. Consider the product £
2oty Do
L1y £1D9+ Aty A9,
LU = N (3.11)

£2ﬂ1 22@1 + Q[ZuZ

where€; 14, , £,11D; are ;1 x{; and ;1 x{; 1 matrices, respectively

Ll = : Do LD, = o 32
J+1445 0 0 - 0 J+1~3 0 0 ... 0 ( )
—lpu; O - 0 liy1 0 -+ 0

Comparing £;14; with the block B;, 1 of the matrix J, we obtain
—Liuy; = bj+1 for all j € Z+,
i.e. (3.7) holds. The blocks 2,0, are ¢; x £;1; matrices and

91j®j = @j JEZLy. (3.13)

(7) In this case we consider ¢; = 1, then
WAL = (—u;). (3.14)
Therefore, if j = 0, then we compare Aptly with €, — (o), we get
uo = o+ p. (3.15)
If j > 0, then we compare £;9; 1 + 24;4l; with the block &, — ()

and we obtain '
-y =—a—pd) (3.16)
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From (3.15) and (3.16), we have (3.8).

(1) In this case we consider ¢; = 2, then

AL = ¢ ! (3.17)
N —a(agj)—a)—uj agj)—a '

If 7 = 0, then we compare the block Aoty with &, — aly,, where Iy,
is £y x £y identity matrix and we obtain

a0 — _p

=P _a(ago)

—a) —u; = —p. (3.18)

If j > 0, then we compare the block £;0;_1 + 2;4; with the block

€y, — alp; and we get

J

) _

o ()

7 —a@? —a) —u; + 1; = —p¥. (3.19)

Due to (3.18) and (3.19), the formula (3.9) holds.

(74i) In this case we consider £; > 2, then ;il; =

—v 1

- 1

o~ 0 —oay) oy —aq), o) o)) o) @) —a

If j = 0, then we compare the block Aoy with the block &, — aly,
and we obtain

0 0 0 0 0 0 0 0
aé(j,)l = _pf(],)l ’ aé(],)g _a(aé(],)l _Oé) :_p§j),27 ae(],)‘g, - OtCléEQ = _p§j)737 Tt
9~ 0?9 ad® ;= 3

(3.20)
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If j > 0, then we compare the block £;9;_1+2(;4l; with the &, —aly,
and we obtain
0 __,G 0) () __ @ G 0 __,@)
aeLl = _peifla a) — O‘(aeil —a)= _Pgiga %;73 _Oéagj& —_Pgi?,a oy

o)~ qaf) = —p® —aa® —u; 41, = —pi.

Jj—2

(3.21)

Combining (3.20) and (3.21), we get (3.10).

Thus, we shown that if J — af admits the £4— factorization of the
form (3.1)—(3.3) then the system (3.7)—(3.10) is solvable. Conversely, if
the system (3.7)-(3.10) is solvable, then J — al = £4. This completes
the proof. O

Lemma 3.2. Let J be the GJM associated with the functional G and let
J—al = &4 be its L34 — factorization of the form (3.1))—(3.3) and let

Py, .1 (X) be polynomials of the first kind associated with J. Then
J
Py () = H ug , foralljeZ, . (3.22)
k=0

Proof. Calculating P, , (o) = det(aln, , — Jjo,5), we get

ady, — €y -y

Panrl (a) _ —%1 OéIfl' - Q:p1 . T ’ (323)

—‘Bj Oz[g —

we transform this determinant in the following way
() if 4 > 2 and k < j, then we multiply the (ng + 1)-th row by

—agk) and add to the (ngyq)-th row, the next we multiply the (ny + 2)—

th row by —agk) and add to the (ngy1)-th row,..., but we multiply the
(kg1 — 1)~th row by —(ag]:ll — «) and add to the (ngi1)-th row;

(i) if ¢, = 2 and k < 7, then we multiply the (ngy1; — 1)-th row by
—(agk) — «) and add to the (nj,1)-th row;

(#i7) if ¢, = 1 and k < j, then we don’t transform (njyq)—th row.

Using (7), (i7) and (4i7), we obtain

Epo _90

-5, ¢
Py, (a) = ! .p1 ) ) (3.24)
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where the blocks Epk are defined by

a -1

¢, = 0 -1 » b2 2 k=0,7and [p =0. (3.25)

U — [k 0 s 0
(ug — k) , be=1,
Expanding (3.24) along the columns, which have only one element equals
to —1 and others equal to zero and by [15, Lemma 3.3], we have

Ug -1
uply ug — I - /
Pnj+1 (a) = 1. ! ] ' = H Ug. (3'26)
.. .. -1 k0
uj_llj u; — [j
This completes the proof. O

Corollary 3.1. Let J be the GJM associated with the functional & and
let 3 —al = L4l be its LU — factorization of the form (3.1)—~(3.3) and let
P, (M) be polynomials of the first kind associated with §. Then

Nj+1

Py (@) =uwujq.ouy Py (), k<j and j,k € Z,. (3.27)

Theorem 3.1. Let J be the monic generalized Jacobi matrixz associated
with the functional G and let {; :=n; 41 —n; > 1, j € Zy, where ng =0
and {n;}52, is the set of normal indices of the sequence s = {s;}52, and
let Py;(A) be polynomials of the first kind associated with the sequence
s = {s;}32) and a € R. Then J — al admits the £ — factorization of
the form (3.1)—(3.3) if and only if

Py (o) #0  forall j € Z,. (3.28)
Furthermore
(0)
p(] - a’ugo = ]-7
b; 1 Pn- (a)
[ q=——dTL . = i# 2.0 (0) _ 9. 9
j+1 W ) Uy Pn].(oz) s Uo=9py —a(ay’ —a),ly = 2; (3.29)

p(()o) —aa§°> Ao > 2.

Proof. Let Py, (o) # 0 for all j € Z,, then by Lemma 3.2 the sys-
tem (3.29) is equivalent to the system (3.7)—(3.10). Consequently, by
Lemma 3.1 the matrix J — ol admits the £4—factorization of the
form (3.1)-(3.3). Conversely, let J — al admit the £4—factorization
of the form (3.1)-(3.3), then P (a) # 0 for all j € Z, (see Lemma 3.2).
This completes the proof. ]
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Theorem 3.2. Let J be the monic generalized Jacobi matrix associated
with the functional & and let J — al = £ be its £ — factorization
of the form (3.1)~(3.3). Then the matriz 3 = UL + ol is the monic
generalized Jacobi matrix.

Proof. Consider the product £ of the matrices 4 and £

UpRAo + DLy D2y
U gy WA +D,8 D12

e = . . 3.30
Up Lo WAy + DL . (3:30)

(i) Let ¢; > 2 for all j € Z,, then

S 0 --- 0
Uirn€it1i=|o 0 0 | and®D;&=1[: - ], (331
0 -+ 0 [ 0 --- 0
o --- 0 0

where 4; 1 1£541, ;L5411 are {41 x £; and £; X £; matrices, respectively.
The blocks 4;2; are £; x ¢; matrices, such that

—a 1 0 0 0

0 —a 1
sa=| 1 e e T 0 0| oAy =D, (3.32)
9iadd/] O O — 1 O 747+ J

a(J) agj) ag)_Q ag)_l—2a 1

—u; 0 0 0 0

Hence, we can rewrite the matrix J® = € + ol as follows

o D00
Bio € Doa
0
JP) = e+ ol = Bii & Do , (3.33)

1
Bao
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where the blocks Cg_ are (¢; — 1) x (¢; — 1) matrices, such that
J

0 1 0 e 0
0 0 1 . :
ngj =1 . 0 , (3.34)
o .- 0 0 1
agj) agj) e ag)q ‘12)71 -

and the blocks 5‘3%0, sBjJrl’O and sBjJrl’l are (EJ — 1) X 1, 1 x (EJ — 1) and
(¢j41 — 1) x 1 matrices, respectively

0 0

Qj,O = O s %j-f—l,o = (—uj 0o --- 0) s gBj-{—l,l = 0 s (3.35)
1 1

¢ = (), Dji=(1 0 -+ 0) —are 1x ({11 —1), j €Zy. (3.36)

Therefore, J) = € + o is the monic generalized Jacobi matrix.

(7i) Assume £;_1 > 2, 4 =1 and £ > 2, k € N. Then the matrix
JP) = Y€ + aT has the following representation

ng Do,0
1
Bio ¢ Do

W) = Bro ¢

, pe1 Dk-11 , (3.37)
Brr1r €, Dio
Bri21 ., Drrio
where
¢l Di_1 1) <[k + « 1 >
Pr—1 ) = . 3.38
<%k+1,1 Q:gk —ugly —up+a ( )

(7i1) Suppose {1 > 2, b, = ... = lgyp = 1 and b1 > 2, bk € N.
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Then we have

Q:;k—l Dr-11
Bri11 c‘:,?k
Dkrn-1,1
Bith+1,1 ngh
I+ 1
—ulp o1 —up+a 1
Wt h—1lk+h—1 loerh—Ukrn—1+ 1
“Upthlktn —Upppta
(iv) Setting ¢y = ... =4 =1 and {11 > 2, k € Z. We obtain
[1 — U+« 1
Cgo 5‘30,0 .
0 -l b—uy+ao
EBLO Q:pl = S .. 1
e D10 .
;ka Q:I(J)k ch—up 1t 1

—uglg U+«

So, from (i)~ (iv), we get that (@ = LU +al is the monic generalized
Jacobi matrices. This completes the proof. O

Remark 3.1. If J is the monic Jacobi matrix, then the £i{-factorization
of the form (3.1)-(3.3) is coincides with the LUfactorization in [2].

Remark 3.2. If J is the monic Jacobi matrix of the special form and
¢; =2 for each j € Z, then the £i-factorization of the form (3.1)—(3.3)
is coincides with the £4-factorization in [6].

Remark 3.3. If J is the monic generalized Jacobi matrix and a = 0,
then the £il-factorization of the form (3.1)—(3.3) is coincides with the
Lil-factorization in [15].

Theorem 3.3. Let J be the GJM matriz satisfying (3.28) and let J —
ol = 24l be its £4- factorization of the form (3.1)~(3.3). Let 3®) =
UL+ al be its shifted Darbouz transformation without parameter and let

JPPP(\) = APP)()), (3.39)

T
where P<P>(A)=(P(§P>(A), PPN, ..., PP, ) .
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Then

(») 1 P, (@) ) :

PP (\) = Po()\) - =2 po (A €N,

A0 =5 (R - g A ) (3.40)
PP (A =MNP(\), 0<k<l;—2 and jeLZ.

Proof. Let us introduce the following polynomials

(A—a)Py(N)

(A= —aXo=2)py(A)
Py, (a

1 1 Pay () = 75 Pro (M)

PP (\)= T UP(V)= (A=) P (N)

—« A—

(A7 =) R, (V)
P, (A~ 228 Py, (V)

1 ()

Therefore

because

1 1
~)p@) _ DU P(\) = — §(AP
J N\ =ML+« )il)\ — (\) o aLLJ (\)

= (ﬁumm) = APP)()).

So, the polynomials P}Ep )()\) can be represented by the formula (3.40).
This completes the proof. O

Remark 3.4. If /; = 1 for all j € Z,, then

P,

L(raw-lr ) ey

—

P () =

is a Christoffel formula (see [24]).

Remark 3.5. If at least one £; > 2, then the formula (3.40) is a special
case of Christoffel formula (see [24]).
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Theorem 3.4. Let J be the GJM satisfying (3.28) and let § — ol = £4
be its L3 factorization of the form (3.1)~(3.3). Let 3®) = UL + ol be
its shifted Darboux transformation without parameter and let

P —NQP(\) = Oy _1, (3.42)
where
T
QU = (QP), ..., QP ...) ond
Op—1=(0,...,0,b,0,...), if by > 1; (3.43)
or = o
~ O_
(bo,0,0,...), if b = 1.
Then
P,.(a
Q,(-S)_l()\) = an()\) - ( ) Ql‘lj 1( ) je Nv
Py (a) (3.44)
(

QY () = (W —aXQE(N), 0< k<t -2 andjeZ,.

Proof. Let us define the following polynomials

Q1(N)—aQo(N) (A=a)Qo(N)
Qma1(N)=aQu sV | | (0= 1—aro=2)Q5(3)
Qus (V)= A Qe V) | | Qnt (V)= 715 Quo ()

QP (N =4QN)=| @m+1(N)=a@n, (V) |4 (A= @)Qn, (V)

%Qm;a%x> <VH@4%@4»
@4)*&@4) @4)*3@&)

Hence

(B -A1) QP () =L + o~ N D UQ()
=U(LU+(a—N)I) Q) (3.45)
=4@+(a—N1) Q) =46y, = 0P,

So, the formula (3.44) is roved. This completes the proof. O
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Note the following fact, which is used below: if ny = 1, then
Py(a) =a— 2t = 280751 (3.46)
S0 S0

On the other hand, by Lemma 3.2, P, (a) = up, i.e.

o = B0 (3.47)
50

Theorem 3.5. Let J be the monic generalized Jacobi matriz associated
with the functional &, such that (3.28) holds and let J—ad = L4 be its L34
~ factorization of the form (3.1)~(3.3). Then the matriz 3®) = UL + ol
18 associated with the functional

SP(A) = (A —a)B(\). (3.48)
Proof. (i) Assume n; > 1. The following equalities hold
2,[1873-71160 =ep and il[o,j_l]G[O,j_”eo = boenl_g, 7 €N, (349)

where the shortened matrices Lo ;_1), o ;1] and Gjg;_1) are defined
analogously to (3.1) and (2.10). Calculating s, we get for j large enough

T T
S(\) =5 = [(3@,]-1]) 60760] = (G[OJH (3@,3'71]) 60’6())

= (€0, (Lpo,j—1thpo,j—11 + @) - - - (Lo, j—11¥0,j-1) + @) Glo,j—17€0)

k times
=(L{0,j-1£0: &ho,j-11€0,5-1+0)- - - @0 j 1110, +0) Yo, j—11Go,j-1)¢0)
k-1 times
+ (e0s (£io,j— 1o, j—1) + @) - - (Lo j—1ytho,j—1) + @) G j_17€0)-

k—1 times

Let 6[07#”,1} be associated with the matrix 3%7)].4_71_1}, where n is the

numbers of /5, such that £, > 2,0 < h < j — 1. It is defined by (2.10).
Then G j1n—11€0 = boen, —2. Using (3.49), we obtain

™1 L
= (((3%34_71_1}) ) 60,G[o,j+n—1}€0>
N 7 k-1 N 7\ k-1
+a (((d[o,j—u) ) 60,G[o,j—1}60> = [((df§7§+n_1}> ) 60,60]
~ T
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Therefore
SP(N) = (A — o) (). (3.50)

(#4) Suppose n; = 1. Then
2[7(;73-71]60 =€ and u[O,jfl]G[O,jfl]eo = —ugbpeg, JjE N, (3.51)

~(p)
[0,j+n—1]°

numbers of ¢, such that ¢, > 2,0 < h < j—1. The matrix G[g 1,1 I8
defined by (2.10). Then Glgj4n_1)c0 = 0

Let G[O j+n—1] be associated with the matrix J where n is the

boeg. Calculating
50

_ ™F
S(\") = 51570%0 (((3% 7)]+n 1}> > eOvG[O,jJrnl}eO)
k-1
Ta (((3[0,j—1])T> €0=G[0,j—1}60> =
k-1
+a« |:((3[0,j—1})T) 60,60}

—5/,?’)1—1—045;C 1= 6(p)()\k D+ as(\F ).

Hence

SPI(A) = (A — a)S(N). (3.52)
Due to (3.50) and (3.52), the formula (3.48) is proved. This completes
the proof. O

Corollary 3.2. Let the moment sequences {s;}32, and {5 }]OOO be as-

sociated with the matrices J and JP), respectwely Then

5§p) =541 — Q55 (353)

Thus, we obtain that the monic generalized Jacobi matrix J® =
(e}

UL + al is associated with the moment sequence s®) = {55-1) )} - Con-
]:

sequently, we can define the set of normal indices of the sequence s®)
by

S
J
/\/'(5(7’))2{115 (p) 750} ) =det| -o- oo o | (359)
) 5P )
n;.p )fl zn§p )72
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Proposition 3.1. Let N(s) be a set of normal indices associated with
the monic generalized Jacobi matriz J and let J — ol = £ be its £
— factorization of the form (3.1)—~(3.3). Then the set of normal indices
associated with the monic generalized Jacobi matriz 3P = &4 + o is

NEP)=N@E)U{nj—1:5eN > 2}. (3.55)

Proof. Let the monic GJM J admits the £il — factorization of the form
(3.1)-(3.3), then, by Theorem 3.1, P, () # 0. Calculating

50 51 5nj
P, (o) = — , 3.56
nj( ) dl‘lj sﬂ]’—l 5I‘lj 52nj—1 ( )
1 o o'V

we multiply the k—th column by —« and add it to the k£ + 1-th column,

k = 0,n; — 1, then we obtain
1) if €9 > 1, then

1
P (o) = —
n]( ) dnj 511]'*1 ﬁnj — Ofﬁnjfl ce 5231]‘*1 - a52nj72
) 0 0 (3.57)
(~1)md)
dy, 7
2) if £y = 1, then
Py = (=2 ) T ED g0 g (3:58)
nj 51 — asg dn]- ";p) ' '

By Proposition 3.15 in [15], we get (3.56). This completes the proof. [

Corollary 3.3. Let N(s) and N (s®)) be sets of normal indices associ-
ated with the matrices 3 = 84+ ol and J®) = UL + o, respectively. If
i1 =mn;—n;_1>2andng =0, for all j € N. Then

N(s(p)) :{nl_lanlanQ_lanQV“}' (359)

Corollary 3.4. Let N(s) and N (s®)) be sets of normal indices associ-
ated with the matrices 3 = 84+ ol and J®) = UL + o, respectively. If
i1 =mn;—n;_1=1andng =0, for all j € N. Then

N(s) = N(sP). (3.60)
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Proposition 3.2. Let J be the monic generalized Jacobi matriz as-
sociated with the linear functional &, such that (3.28) holds and let
J—al = 24 be its L4 — factorization of the form (3.1)—(3.3). Let m(\)
and m(p)()\) be the m— functions of the matrices J and 3P, respectively.
Then

m%,)ﬂn—u()‘) = (A —a)mp,j_1(}), (3.61)

where n s the number of ¢; of the matriz J, such that ¢; > 2 and i =
0,5 —1.

Proof. Let n be the number of £; > 2, wherei = 0,5 — 1 and let é[O,j—l—n—l]

be associated with Jfg)ﬂn_l]. It is defined by (2.10).

1) Let ny > 1. Then sy = 0, G 0.i+n—11€0 = bpen, —2 and the equalities
[0,j+n—1] 1
(3.49) hold. Calculating

-1
(A=a)mjp ;-1 (A)= (A—a) [(3[%,3-_1] - )\> €0, 60}
-1
__ {(Q[Twuu[ﬂju fa—\) ((sg,ji”u[{)’jw ta— )\) €0, eo}
-1
+ |:(£[j(;’j_1]u[j(;’j_l] (3[1(;’j_1] _)\) e(), e():|

- -1
= —50 + (60’ (Los-1tho -1+ = X) S[o,j—llu[o,j—l}G[o,j—lleO)

= (607 Lios-1) (Mog-1Cog-n+a -2 %—2)

—1
_ ~(p) T ~ ()
- <<<‘5[g,j+n1]) - )‘> eo’G[O’H””eO) =000y (V-

51 — Q5

(7i) Let ny = 1. Then é[O,j—}—n—l]eO = bpeg and the equalities

(3.51) hold. Computing

-1
()\ — Oé)m[()’j,l}()\) = 50+ |:(3[7(-‘)7]1} _)\> €0, 'Q[O,jl]u[o,jl]e(]]
-1
= —S0 + ((3?07]-1} - A) eOag[O,jl}u[O,j1]G[0,j1]€0>

51 — QS — —1
= —50 + —1 50—0 (e(), 2[07]',1} (11[07]-,1}2[07]-,1} + o — )\) eo>

T -1
= —50 + <<3%}]+n1]) —)\> 60,60] =—50 + mfg)jJrnil]()\).
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Thus, we have
mfgzj-f'n—l]()\) = (A —a)mpj_1(A) + 50
So, the formula (3.61) is proved. This completes the proof. O

Corollary 3.5. Let J be the monic Jacobi matriz and let J(p) be the
shifted Darbouz transformation without parameter of J. Then

(A = @)Qn; N Po, NP = QPN Py, (M) = 50 PP (N). (3.62)

Proof. Due to the representation (2.14)

Qn, (V) o) QP M)
- )\ = e B d P . )\ = — J .
mjo,j-1)(A) P (V) and - myg s, qy(A) Pn(f)()\) (3.63)
and by Proposition 3.2, we get (3.62). This completes the proof. O

4. Examples

In this section, we consider the some examples of the shifted Darboux
transformations. Recall some facts

Definition 4.1. A function F € N_4 if and only if
1. F is holomorphic on Cg,
2. ImF(X) >0 for all A € Cy,
8. F admits the following asymptotic expansion

sg 51 521, 1 _—
F(\) = TN e T et T O <)\2n+1> ,  AT00, (4.1)

with s; € R for all j € Z;, where A=oo means that A tends to oo
nontangentially, that is inside the sector e <argh<m—e for some € > 0.

As was known [14,25], every function F' € N_, admits the J—fraction
expansion

by __)\—CO_/\—Cl_“'
by

A—c ——
Obviously, F(A?) has the following asymptotic expansion

50 51..._ 52n —_ . e .
b\ )\2 )\Qn—l—l ’
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where 6319 = s; and §; = 0 otherwise. On the other hand, the expansion
(4.3) can be rewritten as the P—fraction (see [19])

bo b1 by
A3 — Co_)\?’ — Cl_/\3 —Co

F(\%) ~ — (4.4)

Hence, F'(\?) is associated with the monic generalized Jacobi matrix

Q:po @0
B € D
J= , 4.5
N By (45)
where the entries are defined by
010 0 0O 0 00
C,=({0 0 1],9;={0 0 0 and B 3= 0 0 0]. (4.6)
Cj 0 0 1 00 bj_|_1 0 0

Example 1la. Now we study the shifted Darboux transformation
without parameter of the GJM J associated with the function F(\3).

Let Py;(\) be the polynomials of the kind associated with the GJM
J. Let us choose some a € R, such that

Py, () # 0. (4.7)
By Theorem 3.1, J admits the £4 — factorization (3.1)-(3.3), i.e
J—al = L4, (4.8)
U Do
and U=10 L .|, (4.9)
i are defined by (4.6) 2, £J+1, il; take the form (see (3.1)- (3.3))
1 00 0 —a 1 0
A= 1 0},Lm= b0_+1 A= 0 —a 1|, (4.10)
—a? —a 1 Ju—] —u; 0 0
where ug = —cp — o and u; = Ui—l —¢; — a3, i € N. Then

9:8 Do
Bio € Doa

~(p) — —
J UL+ al B, Qﬁ(f

(4.11)
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is the shifted Darboux transformation without parameter of J (see The-
orem 3.2). Furthermore, the entries have the following form

o (0 1 (0 =2
Q:J = <_a2 —a)’ 33]70 - 1/ %JJrl,l - _biL_erl ’ (412)

Bir0=(-u; 0), ¢f=(a), Dj1=(1 0), jeZ.

By Corollary 3.2, s = {5§p>}§°0 is associated with the GJM
]:
(p)

3®) = 4g + al, where 5%) =0, 5&%1 =55, S3/19 = —05j, j € L.
Consequently, the function F(P)(\) = (A—a)F(\3) is associated with the
monic generalized Jacobi matrix J®) = 4€ + ol.

Example 1b. This example is a special case of the Example 1la.
We consider the monic Chebyshev-Hermite polynomials { Hj,(\)}72, and
study the shifted Darboux transformation without parameter of the
monic generalized Jacobi matrix J associated with {Hy(A3)}2,.

Let s = {s; };’;0 be a moment sequence corresponding to the measure

e~ dt on R, i.e.

50 = \/7_1', S25 = g(Qj — 1)” and 5251 = 0, jeN. (4.13)

Then the corresponding recurrence relation takes the form
k
)\Hk()\) = Hk+1()\) + ng,l()\), for all £ € N, (4.14)

and the corresponding polynomials of the first kind coincide with the
monic Chebyshev-Hermite polynomials

(=1 e &

et —

27 dMN

(e—V) for all j € Z., (4.15)

where z € (—o00,+00) and the polynomials H;(\) are orthogonal in
Lo(R,w(A)) with the weight function w(\) = e".

Let us consider the sequence of the polynomials {H;(\3) 320 which
satisfies the recurrence relation

k
NHL(A) = H (V) + ng,l()\?’), for k € N. (4.16)

The polynomials {H;(\%) 72 are polynomials of the first kind associated

with the monic generalized Jacobi matrix J defined by (4.5)—(4.6).
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Consequently, the moment sequence s = {s; };‘;0 associated with the
matrix J takes the form

63j = 863541 =0, 83542 =55, J€E L. (4.17)
Let us choose o € R, such that
Hi(a®)#0  forall j€Z,. (4.18)
Then J — al admits the £i-factorization (4.9)—(4.10), i.e.
J—al = Ll (4.19)
Therefore, the monic generalized Jacobi matrix
IP) = Ug + al. (4.20)

is the shifted Darboux transformation without parameter of J (see Ex-
ample 1a).
¢]
By Theorem 3.3, the polynomials {Pj(p )()\)} . of the first kind as-
]:
sociated with the matrix J®) are given by

PPN = H;(A%),  PEL(N) = AH; (),

PO = 125 (00 - B 00) . ez,

(4.21)

References

[1] N.I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.

[2] M. I. Bueno, F. Marcelldn, Darboux transformation and perturbation of linear
functionals // Linear Algebra Appl., 384 (2004), 15-242.

[3] M. Castro, F. A. Grunbaum, The Darbouz process and time-and-band limiting for
matriz orthogonal polynomials // Linear Algebra Appl. 487 (2015), 328-341.

[4] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach,
New York, 1978.

[5] M. Derevyagin, Generalized Jacobi operators in Krein spaces, J // Math. Annal.
Appl., 349 (2009), 568 582.

[6] M. Derevyagin, On the relation between Darbouz transformations and polynomial
mappings // Journal of Approximation Theory, 172 (2013), 4-22.

[7] M. Derevyagin, V.Derkach, Spectral problems for generalized Jacobi matrices //
Linear Algebra Appl., 382 (2004), 1-24.



514 SHIFTED DARBOUX TRANSFORMATIONS...

[8] M. Derevyagin, V.Derkach, Darbouz transformations of Jacobi matrices and Pdde
approzimation // Linear Algebra and Its Applications, 435 (2011), No. 12, 3056—
3084.

[9] V. Derkach, M. Malamud, The extension theory of Hermitian operators and the
moment problem [/ J.of Math.Sci., 73 (1995), No. 2 , 141-242.

[10] V. Derkach, I. Kovalyov, On a class of generalized Stieltjes continued fractions //
Methods of Funct. Anal. and Topology, 21 (2015), No. 4, 315-335.

[11] A. Duran, F. A. Grunbaum, A survey on orthogonal matrix polynomials satisfying
second order dierential equations // J. Comput. Appl. Math., 178 (2005), 169—
190.

[12] Ya. L. Geronimus, On the polynomials orthogonal with respect to a given number
sequence // Zap. Mat. Otdel. Khar’kov. Univers. i Nil Mat. i Mehan., 17 (1940),
3-18.

[13] F. Gesztesy, B.Simon, m-functions and inverse spectral analysis for finite and
semi-infinite Jacobt matrices // Journal d’Analyse Math., 73 (1997), 267-297.

[14] W. B. Jonec, W. J. Thron, Continued fraction, Addison-Wesley Company,
London-Amsterdam, 1980.

[15] 1. Kovalyov, Darboux transformation of generalized Jacobi matrices // Methods
of Funct. Anal. and Topology, 20 (2014), No. 4, 301-320.

[16] I. Kovalyov, Darbouz transformation with parameter of generalized Jacobi matri-
ces // J.Math. Sci., 222 (2017), No. 6, 703-722.

[17] 1. Kovalyov, Darboux transformation of the Laguerre operator // Complex Anal-
ysis and Operator Theory, 12 (2018), No. 3, 787-809.

[18] P. Lancaster, Theory of Matrices, Academic Press, NY, 1969.

[19] A. Magnus, Certain continued fractions associated with the Padé table // Math.
Zeitschr., 78 (1962), 361-374.

[20] M. Malamud, On a formula of the generalized resolvents of a nondensely defined
Hermitian operator // Ukr. Mat. Zh., 44 (1992), No. 12, 1658-1688.

[21] F. Peherstorfer, Finite perturbations of orthogonal polynomials // J. Comput.
Appl. Math., 44 (1992), 275-302.

[22] V. Spiridonov, A. Zhedanov, Discrete Darbouz transformations, the discrete-
time Toda lattice, and the Askey-Wilson polynomials // Methods Appl. Anal., 2
(1995), No. 4, 369-398.

[23] V. Spiridonov, A. Zhedanov, Self-similarity, spectral transformations and orthog-
onal and biorthogonal polynomials in self-similar systems, in : V.B. Priezzhev,
V.P. Spiridonov (Eds.), Proc. Internat. Workshop JINR, Dubna, 1999, pp. 349
361.



I. M. KovALYov 515

[24] G. Szego, Orthogonal Polynomials, fourth edition, AMS, 1975.

[25] H. S. Wall, Analytic Theory of Continued Fractions. D. Van Nostrand Company,
Inc., New York, N. Y., 1948.

[26] A. Zhedanov, Rational spectral transformations and orthogonal polynomials // J.
Comput. Appl. Math., 85 (1997), No. 1, 67-86.

CONTACT INFORMATION

Ivan M. Kovalyov Dragomanov National
Pedagogical University,
Kiev, Ukraine
E-Mail: i.m.kovalyov@gmail.com



