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Shifted Darboux transformations of the

generalized Jacobi matrices, I

Ivan M. Kovalyov

(Presented by I. I. Skrypnik)

Abstract. Let J be a monic generalized Jacobi matrix, i.e. a three-
diagonal block matrix of a special form. We find conditions for a monic
generalized Jacobi matrix J to admit a factorization J = LU + αI with
L and U being lower and upper triangular two-diagonal block matrices
of the special form. In this case the shifted Darboux transformation
without parameter of J defined by J(p) = UL + αI is shown to be also a
monic generalized Jacobi matrix. Analogues of Christoffel formulas for
polynomials of the first and second kind, corresponding to the Darboux
transformation J(p) are found.
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1. Introduction

Let S be a linear functional defined on the linear space

P = span
{
λj : j ∈ Z+ := N ∪ {0}

}
(1.1)

by the equality

S(λj) = sj, j ∈ Z+. (1.2)

The numbers sj are called the j−th moment associated with the linear
functional S. The moment sequence s = {sj}∞j=0 has got a set of normal
indices defined by

N (s) = {nj : dnj 6= 0, j = 1, 2, . . .}, dnj
= det(si+k)

nj−1
i,k=0. (1.3)
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As follows from (1.3) nj is a normal index of s if and only if

det




s0 · · · snj−1
· · · · · · · · ·
snj−1 · · · s2nj−2


 6= 0. (1.4)

It is well known (see [7], [21]) that the sequence of monic polynomials
{Pj(λ)}∞j=0 is orthogonal polynomials with respect to the linear functional

S. Furthermore (see [5, 7]), the sequence {Pj(λ)}∞j=0 is associated with
the following monic generalized Jacobi matrix

J =




Cp0 D0

B1 Cp1 D1

B2 Cp2

. . .
. . .

. . .



, (1.5)

where the entries are the blocks of the special type.

As was known (see [15]), the matrix J admits the LU– factorization

J = LU, (1.6)

if and only if
Pnj (0) 6= 0, (1.7)

where L and U are lower and upper triangular block matrices. Multiplying
the matrices L and U in reverse order, we obtain

J(p) = UL (1.8)

is the generalized Jacobi matrix associated with a linear functional

S(p)(p(λ)) = S(λp(λ)), p(λ) is a polynomial. (1.9)

A sequence of the monic polynomials
{
P

(p)
j (λ)

}∞
j=0

associated with the

functional S(p) is called a Christoffel transform of {Pj(λ)}∞j=0 (see [4,23]).
In this case, the transformation (1.6), (1.8) is called a Darboux transfor-
mation (without parameter) . Darboux transformation was also study
for the Stieltjes strings (see [10]). The Darboux transformation was also
studied for the Stieltjes strings (see [10]). The Darboux transformation
of the discrete analogue of the Laguerre operator was investigated in [17].

It is worth noting, when Cpj are 1 × 1 matrices (i.e. J is a monic
Jacobi matrices), the Darboux transformation without parameter (1.6),
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(1.8) was studied in [2]. In the case, Cpj are 1 × 1 or 2 × 2 matrices,
the Darboux transformation without parameter (1.6), (1.8) was studied
in [8]. The results of [2, 8] are the particular case of [15].

As was shown in [6], the monic generalized Jacobi matrices J admits
a shifted Darboux transformation (without parameter), i.e.

J = LU+ αI → UL+ αI = J(p). (1.10)

if and only if
Pnj (α) 6= 0 (1.11)

and its diagonal blocks Cpj are 2 × 2 matrices. In this case, J(p) is the
monic Jacobi matrices associated with the sequence of the monic poly-

nomials
{
P

(p)
j (λ)

}∞
j=0

. The polynomials P
(p)
j (λ) are orthogonal with re-

spect to the linear functional

S(p)(λ) = (λ− α)S(λ). (1.12)
{
P

(p)
j (λ)

}∞
j=0

is a special case of the Christoffel transformation (see [24]).

The present paper is generalization of the papers [2,6,8,15] and [16]. It
is shown that every generalized Jacobi matrix J, which satisfies conditions
similar to (1.11), admits an LU−factorization J + αI = LU, with lower-
triangular and upper-triangular two-diagonal block matrices L and U.
It turns out that the monic generalized Jacobi matrix J(p), associated
with the linear functional S(p) defined by (1.12), can be represented as
J(p) = UL + αI. This monic generalized Jacobi matrix J(p) is called the
shifted Darboux transformation without parameter of J.

Darboux transformation of the orthogonal polynomials is actual. It
is also studied of the matrix orthogonal polynomials associated with the
some differential operator (see [3, 11]).

In this paper we consider the firs part of shifted Darboux transforma-
tion of generalized Jacobi matrices, namely, the transformation without
parameter is study. The shifted Darboux transformation will be applied
to the indefinite Stieltjes moment problem. These results will be pub-
lished elsewhere.

2. Monic generalized Jacobi matrices associated with

non-quasi-definite functional

Let {sj}∞j=0 be a sequence of real moments and let S be a linear

functional defined on the linear space P = span
{
λj : j ∈ Z+

}
by (1.2).
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We denote the first nontrivial moment ε0 := sn1−1, i.e. sk = 0 for all
k < n1 − 1. For example, if n1 = 1, then s0 6= 0 and ε0 = s0.

Using moment sequence {sj}∞j=0, we can construct the polynomials of
the first and the second kind (see [1, 5]), defined by for all j ∈ N

Pnj (λ)=
1

dnj

∣∣∣∣∣∣∣∣

s0 s1 · · · snj
· · · · · · · · · · · ·
snj−1 snj · · · s2nj−1
1 λ · · · λnj

∣∣∣∣∣∣∣∣
, Qnj (λ)=St

(
Pnj (λ)−Pnj (t)

λ−t

)
. (2.1)

The polynomials Pnj (λ) and Qnj(λ) are solutions of a system of dif-
ference equations (see [7, 21])

bjynj−1(λ)− pj(λ)ynj (λ) + ynj+1(λ) = 0 (b0 = ε0) (2.2)

subject to the initial conditions

Pn−1(λ) ≡ 0, Pn0(λ) ≡ 1, Qn−1(λ) ≡ −1, Qn0(λ) ≡ 0, (2.3)

where bj ∈ R\{0}, pj(λ) = λℓj +p
(j)
ℓj−1λ

ℓj−1+ . . .+p
(j)
1 λ+p

(j)
0 are monic

polynomials of degree ℓj = nj+1 − nj and generating polynomials of the
following generalized Jacobi matrix J, j ∈ Z+.

One can associate with the system (2.2) the so-called monic general-
ized Jacobi matrix (GJM) (see [7, 8])

J =




Cp0 D0

B1 Cp1 D1

B2 Cp2

. . .
. . .

. . .



, (2.4)

where the diagonal entries are companion matrices associated with the
some real polynomials pj(λ) (see [18])

Cpj =




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 1

−p
(j)
0 −p

(j)
1 · · · −p

(j)
ℓj−2 −p

(j)
ℓj−1




are ℓj × ℓj matrices ,

(2.5)
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Dj and Bj+1 are ℓj×ℓj+1 and ℓj+1×ℓj matrices, respectively, such that

Dj=




0 0 · · · 0
...

... · · · ...
0 0 · · · 0
1 0 · · · 0


,Bj+1=




0 0 · · · 0
...

... · · · ...
0 0 · · · 0

bj+1 0 · · · 0


, bj+1 6=0, j ∈ Z+. (2.6)

The matrix J defined by (2.4)–(2.6) is called a GJM associated with
the linear functional S. Sometimes J is called a GJM associated with
the sequence {sj}∞j=0 or the system (2.2) to emphasize connection with
polynomials pj(λ) and numbers bj+1, j ∈ Z+.

The shortened GJM J[i,j] is defined by

J[i,j] =




Cpi Di

Bi+1 Ci+1
. . .

. . .
. . . Dj−1
Bj Cpj



, i ≤ j and i, j ∈ Z+. (2.7)

The following connection between the polynomials of the first and the
second kind and the shortened GJM’s can be found in [7]

Pnj (λ) = det(λ− J[0,j−1]) and Qnj(λ) = b0det(λ− J[1,j−1]). (2.8)

Let us define an inner product in the space ℓ2[0,nj−1] by

[x, y] = (Gx, y)ℓ2
[0,nj−1]

, (2.9)

where x, y ∈ ℓ2[0,nj−1], G[0,j−1]=diag(b0G0, b0b1G1, . . . , b0. . .bj−1Gj−1) and

Gi =




p
(i)
1 · · · p

(i)
ℓi−1 1

... ··· ···

p
(i)
ℓi−1 ···
1 0




−1

i = 0, j − 1. (2.10)

Let us set

P(λ) =
(
P0(λ), P1(λ), . . . , Pnj (λ), . . .

)T
,

Q(λ) =
(
Q0(λ), Q1(λ), . . . , Qnj (λ), . . .

)T
,

(2.11)
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where Pnj+k(λ) = λkPnj (λ) and Qnj+k(λ) = λkQnj (λ), where 0 ≤ k <
nj+1 − nj . Then it follows from (2.2)–(2.6), that

(J− λI)P(λ) = 0 and (J− λI)Q(λ) = (0, . . . , 0, b0︸ ︷︷ ︸
ℓ0

, 0, . . .)T . (2.12)

Definition 2.1. Let us define the m−function of the matrix J by equality

m[0,j−1](λ) = [(JT[0,j−1] − λ)−1e0, e0], (2.13)

where e0 =
(
1 0 · · · 0

)T
is nj × 1 vector.

As was shown in [8, Proposition 6.1], [20, see formula (139)], [13]

m[0,j−1](λ) = −ε0
det(λ− J[1,j−1])

det(λ− J[0,j−1])
= −Qnj(λ)

Pnj (λ)
(2.14)

and m[0,j−1](λ) admits the following asymptotic expansion

m[0,j−1](λ) = −s0

λ
− s1

λ2
− · · · − s2nj−2

λ2nj−1
+ o

(
1

λ2nj−1

)
, (2.15)

where the moments sk are calculated by

sk =

[(
JT[0,j−1]

)k
e0, e0

]
, k ≤ 2nj − 2. (2.16)

3. Shifted Darboux transformation without parameter

In this section we study the shifted Darboux transformation without
parameter of the monic generalized Jacobi matrices, which may apply
even in the case, when some Pnj (0) = 0, that is not true of the Darboux
transformation (without parameter) in [15]. The paper [15] is the par-
ticular case of this section ( [15] has got the shift equals to zero). The
realization of the shifted Darboux transformation without parameter is
carried out using the following block lower and upper triangular matrices

L =




A0 0
L1 A1 0

L2 A2
. . .

. . .
. . .




and U =




U0 D0

0 U1 D1

0 U2
. . .

. . .
. . .



, (3.1)
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the diagonal blocks Aj and Uj are ℓj × ℓj matrices (uj 6= 0)

Aj=




1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · 1 0

a
(j)
1 a

(j)
2 · · · a

(j)
ℓj−1−α 1



,Uj=




−α 1 0 · · · 0

0 −α 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −α 1

−uj 0 · · · 0 0



, (3.2)

the blocks Lj+1 and Dj are ℓj+1× ℓj and ℓj × ℓj+1 matrices, respectively

Lj+1=




0 0 · · · 0
...

... · · · ...
0 0 · · · 0
0 0 · · · lj+1


, lj+1 6=0,Dj=




0 0 · · · 0
...

... · · · ...
0 0 · · · 0
1 0 · · · 0


, j ∈ Z+. (3.3)

However, if ℓj = 1, then we mean

Aj = (1) and Uj = (−uj); (3.4)

if ℓj = ℓj+1 = 1, then

Lj+1 = (lj+1) and Dj = (1). (3.5)

Let us say that the matrix J − αI admits an LU− factorization if
J− αI is represented in the form J− αI = LU, where L and U are given
by (3.1)–(3.3) and α ∈ R.

Definition 3.1. Let J be the monic generalized Jacobi matrix and let
J − αI admit the LU–factorization of the form (3.1)–(3.3). Then the
transformation

J = LU+ αI → UL+ αI →= J(p) (3.6)

is called a shifted Darboux transformation without parameter of J. The
matrix J(p) is a monic generalized Jacobi matrix.

Lemma 3.1. Let J be the monic generalized Jacobi matrix associated
with the functional S and let ℓj := nj+1 − nj ≥ 1, j ∈ Z+, where n0 = 0
and {nj}∞j=1 is the set of normal indices of the sequence s = {sj}∞j=0. Let
L and U be defined by (3.1)–(3.3) and α ∈ R. Then the matrix J − αI
admits the LU− factorization if and only if the system of equations

−lj+1uj = bj+1, (3.7)
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lj − uj = −α− p
(j)
0 , l0 = 0, ℓj = 1, (3.8)

a
(j)
1 = −p

(j)
1 , −a(a(j)1 − a)− uj + lj = −p

(j)
0 , l0 = 0, ℓj = 2, (3.9)

a
(j)
ℓj−1

=−p
(j)
ℓj−1

, a
(j)
ℓj−2

−a(a(j)ℓj−1
− a)=−p(j)ℓj−2

, a
(j)
ℓj−3

−aa(j)ℓj−2
=−p

(j)
ℓj−3

, . . . ,

a
(j)
1 − aa

(j)
2 = −p

(j)
1 ,−aa(j)1 − uj + lj = −p

(j)
0 , l0 = 0, ℓj > 2

(3.10)

is solvable for all j ∈ Z+.

Proof. Consider the product LU

LU =




A0U0 A0D0

L1U0 L1D0 + A1U1 A1D1

L2U1 L2D1 + A2U2
. . .

. . .
. . .



, (3.11)

whereLj+1Uj , Lj+1Dj are ℓj+1×ℓj and ℓj+1×ℓj+1 matrices, respectively

Lj+1Uj =




0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

−lj+1uj 0 · · · 0


,Lj+1Dj =




0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

lj+1 0 · · · 0


. (3.12)

Comparing Lj+1Uj with the block Bj+1 of the matrix J, we obtain

−lj+1uj = bj+1 for all j ∈ Z+,

i.e. (3.7) holds. The blocks AjDj are ℓj × ℓj+1 matrices and

AjDj = Dj j ∈ Z+. (3.13)

(i) In this case we consider ℓj = 1, then

AjUj = (−uj). (3.14)

Therefore, if j = 0, then we compare A0U0 with Cp0 − (α), we get

u0 = α+ p
(0)
0 . (3.15)

If j > 0, then we compare LjDj−1 + AjUj with the block Cpj − (α)
and we obtain

lj − uj = −α− p
(j)
0 . (3.16)
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From (3.15) and (3.16), we have (3.8).

(ii) In this case we consider ℓj = 2, then

AjUj =

(
−α 1

−α(a(j)1 − α)− uj a
(j)
1 − α

)
(3.17)

If j = 0, then we compare the block A0U0 with Cp0 − αIℓ0 , where Iℓ0
is ℓ0 × ℓ0 identity matrix and we obtain

a
(0)
1 = −p

(0)
1 , −α(a(0)1 − α)− uj = −p

(0)
0 . (3.18)

If j > 0, then we compare the block LjDj−1 + AjUj with the block
Cpj − αIℓj and we get

a
(j)
1 = −p

(j)
1 ,−α(a(j)1 − α)− uj + lj = −p

(j)
0 . (3.19)

Due to (3.18) and (3.19), the formula (3.9) holds.

(iii) In this case we consider ℓj > 2, then AjUj =




−α 1

−α 1

. . .
. . .

−α 1

−α 1

−αa(j)1 −uj a
(j)
1 −αa(j)2 . . . a

(j)
ℓj−3−aa

(j)
ℓj−2 a

(j)
ℓj−2−α(a

(j)
ℓj−1−α) a

(j)
ℓj−1−α




.

If j = 0, then we compare the block A0U0 with the block Cp0 − αIℓ0
and we obtain

a
(0)
ℓj−1

=−p
(0)
ℓj−1

, a
(0)
ℓj−2

−α(a(0)ℓj−1
−α)=−p(0)ℓj−2

, a
(0)
ℓj−3

− αa
(0)
ℓj−2

= −p
(0)
ℓj−3

, . . . ,

a
(0)
1 − αa

(0)
2 = −p

(0)
1 ,−αa(0)1 − uj = −p

(0)
0 .

(3.20)
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If j > 0, then we compare the block LjDj−1+AjUj with the Cpj−αIℓj
and we obtain

a
(j)
ℓj−1

=−p
(j)
ℓj−1

, a
(j)
ℓj−2

− α(a
(j)
ℓj−1

−α)=−p
(j)
ℓj−2

, a
(j)
ℓj−3

−αa(j)ℓj−2
=−p(j)ℓj−3

, . . . ,

a
(j)
1 − αa

(j)
2 = −p

(j)
1 , −αa(j)1 − uj + lj = −p

(j)
0 .

(3.21)

Combining (3.20) and (3.21), we get (3.10).

Thus, we shown that if J − αI admits the LU− factorization of the
form (3.1)–(3.3) then the system (3.7)–(3.10) is solvable. Conversely, if
the system (3.7)–(3.10) is solvable, then J − αI = LU. This completes
the proof.

Lemma 3.2. Let J be the GJM associated with the functional S and let
J − αI = LU be its LU – factorization of the form (3.1))–(3.3) and let
Pnj+1(λ) be polynomials of the first kind associated with J. Then

Pnj+1(α) =

j∏

k=0

uk , for all j ∈ Z+ . (3.22)

Proof. Calculating Pnj+1(α) = det(αInj+1 − J[0,j]), we get

Pnj+1(a) =

∣∣∣∣∣∣∣∣∣∣

αIℓ0 − Cp0 −D0

−B1 αIℓ1 − Cp1

. . .
. . .

. . . −Dj−1
−Bj αIℓj − Cpj

∣∣∣∣∣∣∣∣∣∣

, (3.23)

we transform this determinant in the following way
(i) if ℓk > 2 and k ≤ j, then we multiply the (nk + 1)–th row by

−a
(k)
1 and add to the (nk+1)–th row, the next we multiply the (nk + 2)–

th row by −a
(k)
2 and add to the (nk+1)–th row,. . ., but we multiply the

(nk+1 − 1)–th row by −(a
(k)
ℓk−1 − α) and add to the (nk+1)–th row;

(ii) if ℓk = 2 and k ≤ j, then we multiply the (nk+1 − 1)–th row by

−(a
(k)
1 − α) and add to the (nk+1)–th row;
(iii) if ℓk = 1 and k ≤ j, then we don’t transform (nk+1)–th row.
Using (i), (ii) and (iii), we obtain

Pnj+1(a) =

∣∣∣∣∣∣∣∣∣∣

C̃p0 −D0

−B1 C̃p1

. . .
. . .

. . . −Dj−1
−Bj C̃pj

∣∣∣∣∣∣∣∣∣∣

, (3.24)



500 Shifted Darboux transformations...

where the blocks C̃pk are defined by

C̃pk =








a −1
. . .

. . .

a −1
uk−lk 0 · · · 0


, ℓk ≥ 2;

(uk − lk) , ℓk = 1,

k = 0, j and l0 = 0. (3.25)

Expanding (3.24) along the columns, which have only one element equals
to −1 and others equal to zero and by [15, Lemma 3.3], we have

Pnj+1(a) =

∣∣∣∣∣∣∣∣∣∣

u0 −1

u0l1 u1 − l1
. . .

. . .
. . . −1

uj−1lj uj − lj

∣∣∣∣∣∣∣∣∣∣

=

j∏

k=0

uk. (3.26)

This completes the proof.

Corollary 3.1. Let J be the GJM associated with the functional S and
let J−αI = LU be its LU – factorization of the form (3.1)–(3.3) and let
Pnj+1(λ) be polynomials of the first kind associated with J. Then

Pnj+1(α) = ujuj−1 . . . uj−kPnj−k
(α), k ≤ j and j, k ∈ Z+. (3.27)

Theorem 3.1. Let J be the monic generalized Jacobi matrix associated
with the functional S and let ℓj := nj+1 − nj ≥ 1, j ∈ Z+, where n0 = 0
and {nj}∞j=1 is the set of normal indices of the sequence s = {sj}∞j=0 and
let Pnj (λ) be polynomials of the first kind associated with the sequence
s = {sj}∞j=0 and α ∈ R. Then J − aI admits the LU – factorization of
the form (3.1)–(3.3) if and only if

Pnj (α) 6= 0 for all j ∈ Z+. (3.28)

Furthermore

lj+1=−bj+1

uj
, uj=

Pnj+1(α)

Pnj (α)
, u0=





p
(0)
0 − a,ℓ0 = 1;

p
(0)
0 −a(a(0)1 −a),ℓ0 = 2;

p
(0)
0 −aa(0)1 ,ℓ0 > 2.

(3.29)

Proof. Let Pnj (α) 6= 0 for all j ∈ Z+, then by Lemma 3.2 the sys-
tem (3.29) is equivalent to the system (3.7)–(3.10). Consequently, by
Lemma 3.1 the matrix J − αI admits the LU−factorization of the
form (3.1)–(3.3). Conversely, let J − αI admit the LU−factorization
of the form (3.1)–(3.3), then Pnj (α) 6= 0 for all j ∈ Z+ (see Lemma 3.2).
This completes the proof.
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Theorem 3.2. Let J be the monic generalized Jacobi matrix associated
with the functional S and let J − αI = LU be its LU – factorization
of the form (3.1)–(3.3). Then the matrix J(p) = UL + αI is the monic
generalized Jacobi matrix.

Proof. Consider the product UL of the matrices U and L

UL =




U0A0 +D0L1 D0A1

U1L1 U1A1 +D1L2 D1A2

U2L2 U2A2 +D2L3
. . .

. . .
. . .



. (3.30)

(i) Let ℓj ≥ 2 for all j ∈ Z+, then

Uj+1Lj+1 =




0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 lj+1

0 · · · 0 0




and DjLj+1 =



0 · · · 0
...

. . .
...

0 · · · 0


 , (3.31)

where Uj+1Lj+1, DjLj+1 are ℓj+1× ℓj and ℓj × ℓj matrices, respectively.
The blocks UjAj are ℓj × ℓj matrices, such that

UjAj=




−α 1 0 · · · 0 0

0 −α 1
. . .

...
...

...
. . .

. . .
. . . 0 0

0 · · · 0 −α 1 0

a
(j)
1 a

(j)
2 · · · a

(j)
ℓj−2 a

(j)
ℓj−1−2α 1

−uj 0 · · · 0 0 0




,DjAj+1 = Dj. (3.32)

Hence, we can rewrite the matrix J(p) = UL+ αI as follows

J(p) = UL+ αI =




C0
p0

D0,0

B1,0 C1
p0

D0,1

B1,1 C0
p1

D1,0

B2,0 C1
p1

. . .
. . .

. . .



, (3.33)
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where the blocks C0
pj

are (ℓj − 1)× (ℓj − 1) matrices, such that

C0
pj

=




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 0 1

a
(j)
1 a

(j)
2 · · · a

(j)
ℓj−2 a

(j)
ℓj−1 − α



, (3.34)

and the blocks Dj,0, Bj+1,0 and Bj+1,1 are (ℓj − 1)× 1, 1× (ℓj − 1) and
(ℓj+1 − 1)× 1 matrices, respectively

Dj,0 =




0
...
0
1


 , Bj+1,0 =

(
−uj 0 · · · 0

)
, Bj+1,1 =




0
...
0

lj+1


 , (3.35)

C1
pj

=
(
α
)
, Dj,1 =

(
1 0 · · · 0

)
– are 1× (ℓj+1 − 1), j ∈ Z+. (3.36)

Therefore, J(p) = UL+ αI is the monic generalized Jacobi matrix.

(ii) Assume ℓk−1 ≥ 2, ℓk = 1 and ℓk+1 ≥ 2, k ∈ N. Then the matrix
J(p) = UL+ αI has the following representation

J(p)=




C0
p0

D0,0

B1,0 C1
p0

D0,1

. . .
. . .

. . .

Bk,0 C1
pk−1

Dk−1,1
Bk+1,1 C0

pk
Dk,0

Bk+2,1 C0
pk+1

Dk+1,0

. . .
. . .

. . .




, (3.37)

where
(

C1
pk−1

Dk−1,1
Bk+1,1 C0

pk

)
=

(
lk + α 1
−uklk −uk + α

)
. (3.38)

(iii) Suppose ℓk−1 ≥ 2, ℓk = . . . = ℓk+h = 1 and ℓk+h+1 ≥ 2, h, k ∈ N.
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Then we have



C1
pk−1

Dk−1,1

Bk+1,1 C0
pk

. . .
. . . Dk+h−1,1

Bk+h+1,1 C0
pk+h




=




lk+α 1
−uklk lk+1−uk+α 1

. . .
. . .

. . .

−uk+h−1lk+h−1 lk+h−uk+h−1 + α 1
−uk+hlk+h −uk+h+α



.

(iv) Setting ℓ0 = . . . = ℓk = 1 and ℓk+1 ≥ 2, k ∈ Z+. We obtain




C0
p0

D0,0

B1,0 C0
p1

. . .

. . . Dk−1,0
Bk,0 C0

pk



=




l1−u0+α 1

−u1l1 l2−u1+α
. . .

. . .
. . . 1
. . . lk−uk−1+α 1

−uklk −uk+α



.

So, from (i)–(iv), we get that J(d) = LU+αI is the monic generalized
Jacobi matrices. This completes the proof.

Remark 3.1. If J is the monic Jacobi matrix, then the LU–factorization
of the form (3.1)–(3.3) is coincides with the LU–factorization in [2].

Remark 3.2. If J is the monic Jacobi matrix of the special form and
ℓj = 2 for each j ∈ Z+, then the LU–factorization of the form (3.1)–(3.3)
is coincides with the LU–factorization in [6].

Remark 3.3. If J is the monic generalized Jacobi matrix and α = 0,
then the LU–factorization of the form (3.1)–(3.3) is coincides with the
LU–factorization in [15].

Theorem 3.3. Let J be the GJM matrix satisfying (3.28) and let J −
αI = LU be its LU– factorization of the form (3.1)–(3.3). Let J(p) =
UL+αI be its shifted Darboux transformation without parameter and let

J(p)P(p)(λ) = λP(p)(λ), (3.39)

where P(p)(λ) =
(
P

(p)
0 (λ), P

(p)
1 (λ), . . . , P

(p)
nk (λ), . . .

)T
.
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Then

P
(p)
nj−1(λ) =

1

λ− α

(
Pnj (λ)−

Pnj (α)

Pnj−1(α)
Pnj−1(λ)

)
j ∈ N,

P
(p)
nj+k

(λ) = λkPnj (λ), 0 ≤ k ≤ ℓj − 2 and j ∈ Z+.

(3.40)

Proof. Let us introduce the following polynomials

P(p)(λ)=
1

λ− α
UP(λ)=

1

λ− α




(λ−α)P0(λ)
...

(λℓ0−1−αλℓ0−2)P0(λ)

Pn1(λ)−
Pn1 (α)

Pn0 (α)
Pn0(λ)

(λ−α)Pn1(λ)
...

(λℓ1−1−αλℓ1−2)Pn1(λ)

Pn2(λ)−
Pn2 (α)

Pn1 (α)
Pn1(λ)

...




.

Therefore

J(p)P(p)(λ) = λP(p)(λ),

because

J(p)P(p)(λ) = (UL+ αI)U
1

λ− α
P(λ) =

1

λ− α
UJP(λ)

= λ

(
1

λ− α
UP(λ)

)
= λP(p)(λ).

So, the polynomials P
(p)
h (λ) can be represented by the formula (3.40).

This completes the proof.

Remark 3.4. If ℓj = 1 for all j ∈ Z+, then

P
(p)
nj (λ) =

1

λ− α

(
Pnj+1(λ)−

Pnj+1(α)

Pnj (α)
Pnj (λ)

)
(3.41)

is a Christoffel formula (see [24]).

Remark 3.5. If at least one ℓj ≥ 2, then the formula (3.40) is a special
case of Christoffel formula (see [24]).
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Theorem 3.4. Let J be the GJM satisfying (3.28) and let J− αI = LU

be its LU– factorization of the form (3.1)–(3.3). Let J(p) = UL + αI be
its shifted Darboux transformation without parameter and let

(J(p) − λ)Q(p)(λ) = Θℓ0−1, (3.42)

where

Q(p)(λ) =
(
Q

(p)
0 (λ), . . . , Q

(p)
nk (λ), . . .

)T
and

Θ(p) =





Θℓ0−1 = (0, . . . , 0, b̃0︸ ︷︷ ︸
ℓ0−1

, 0, . . .), if ℓ0 > 1;

(̃b0, 0, 0, . . .), if ℓ0 = 1.

(3.43)

Then

Q
(p)
nj−1(λ) = Qnj (λ)−

Pnj (a)

Pnj−1(a)
Qnj−1(λ) j ∈ N,

Q
(p)
nj+k

(λ) = (λk+1 − αλk)Q
(p)
nj (λ), 0 ≤ k ≤ ℓj − 2 and j ∈ Z+.

(3.44)

Proof. Let us define the following polynomials

Q(p)(λ)=UQ(λ)=




Q1(λ)−αQ0(λ)
...

Qn1−1(λ)−αQn1−2(λ)

Qn1(λ)−
Pn1 (α)

Pn0 (α)
Qn0(λ)

Qn1+1(λ)−αQn1(λ)
...

Qn2−1(λ)−αQn2(λ)

Qn2(λ)−
Pn2 (α)

Pn1 (α)
Qn1(λ)

...




=




(λ−α)Q0(λ)
...

(λℓ0−1−αλℓ0−2)Q0(λ)

Qn1(λ)−
Pn1 (α)

Pn0 (α)
Qn0(λ)

(λ−α)Qn1(λ)
...

(λℓ1−1−αλℓ1−2)Qn1(λ)

Qn2(λ)−
Pn2 (α)

Pn1 (α)
Qn1(λ)

...




.

Hence
(
J(p)−λI

)
Q(p)(λ)=(UL+ (α− λ) I)UQ(λ)

=U(LU+(α− λ) I)Q(λ)

= U (J+ (α− λ) I)Q(λ) = UΘℓ0 = Θ(p).

(3.45)

So, the formula (3.44) is roved. This completes the proof.
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Note the following fact, which is used below: if n1 = 1, then

Pn1(a) = a− s1

s0
=
as0 − s1

s0
. (3.46)

On the other hand, by Lemma 3.2, Pn1(a) = u0, i.e.

u0 =
as0 − s1

s0
. (3.47)

Theorem 3.5. Let J be the monic generalized Jacobi matrix associated
with the functional S, such that (3.28) holds and let J−αI = LU be its LU
– factorization of the form (3.1)–(3.3). Then the matrix J(p) = UL+ αI
is associated with the functional

S(p)(λ) = (λ− α)S(λ). (3.48)

Proof. (i) Assume n1 > 1. The following equalities hold

LT[0,j−1]e0 = e0 and U[0,j−1]G[0,j−1]e0 = b0en1−2, j ∈ N, (3.49)

where the shortened matrices L[0,j−1], U[0,j−1] and G[0,j−1] are defined
analogously to (3.1) and (2.10). Calculating sk, we get for j large enough

S(λk) = sk =

[(
Jk[0,j−1]

)T
e0, e0

]
=

(
G[0,j−1]

(
Jk[0,j−1]

)T
e0, e0

)

= (e0, (L[0,j−1]U[0,j−1] + α) . . . (L[0,j−1]U[0,j−1] + α)
︸ ︷︷ ︸

k times

G[0,j−1]e0)

=(LT[0,j−1]e0, (U[0,j−1]L[0,j−1]+α). . .(U[0,j−1]L[0,j−1]+α)︸ ︷︷ ︸
k−1 times

U[0,j−1]G[0,j−1]e0)

+ (e0, (L[0,j−1]U[0,j−1] + α) . . . (L[0,j−1]U[0,j−1] + α)
︸ ︷︷ ︸

k−1 times

αG[0,j−1]e0).

Let G̃[0,j+n−1] be associated with the matrix J
(p)
[0,j+n−1], where n is the

numbers of ℓh, such that ℓh ≥ 2, 0 ≤ h ≤ j − 1. It is defined by (2.10).
Then G̃[0,j+n−1]e0 = b0en1−2. Using (3.49), we obtain

=

(((
J
(p)
[0,j+n−1]

)T)k−1
e0, G̃[0,j+n−1]e0

)

+ α

(((
J[0,j−1]

)T)k−1
e0, G[0,j−1]e0

)
=

[((
J
(p)
[0,j+n−1]

)T)k−1
e0, e0

]

+ α

[((
J[0,j−1]

)T)k−1
e0, e0

]
= s

(p)
k−1 + αsk−1=S(p)(λk−1)+αS(λk−1).
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Therefore

S(p)(λ) = (λ− α)S(λ). (3.50)

(ii) Suppose n1 = 1. Then

LT[0,j−1]e0 = e0 and U[0,j−1]G[0,j−1]e0 = −u0b0e0, j ∈ N, (3.51)

Let G̃[0,j+n−1] be associated with the matrix J
(p)
[0,j+n−1], where n is the

numbers of ℓh, such that ℓh ≥ 2, 0 < h ≤ j − 1. The matrix G̃[0,j+n−1] is

defined by (2.10). Then G̃[0,j+n−1]e0 =
s1 − αs0

s0
b0e0. Calculating

S(λk) =
s1 − αs0

s0

(((
J
(p)
[0,j+n−1]

)T)k−1
e0, G̃[0,j+n−1]e0

)

+ α

(((
J[0,j−1]

)T)k−1
e0, G[0,j−1]e0

)
=

=

[((
J
(p)
[0,j+n−1]

)T)k−1
e0, e0

]
+ α

[((
J[0,j−1]

)T)k−1
e0, e0

]

= s
(p)
k−1 + αsk−1 = S(p)(λk−1) + αS(λk−1).

Hence

S(p)(λ) = (λ− α)S(λ). (3.52)

Due to (3.50) and (3.52), the formula (3.48) is proved. This completes
the proof.

Corollary 3.2. Let the moment sequences {sj}∞j=0 and {s(p)j }∞j=0 be as-

sociated with the matrices J and J(p), respectively. Then

s
(p)
j = sj+1 − αsj (3.53)

Thus, we obtain that the monic generalized Jacobi matrix J(p) =

UL+ αI is associated with the moment sequence s(p) =
{
s
(p)
j

}∞
j=0

. Con-

sequently, we can define the set of normal indices of the sequence s(p)

by

N (s(p))=

{
n
(p)
j : d

(p)

n
(p)
j

6= 0

}
, d

(p)

n
(p)
j

=det




s
(p)
0 · · · s

(p)

n
(p)
j −1

· · · · · · · · ·
s
(p)

n
(p)
j −1

· · · s
(p)

2n
(p)
j −2


 . (3.54)
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Proposition 3.1. Let N (s) be a set of normal indices associated with
the monic generalized Jacobi matrix J and let J − αI = LU be its LU

– factorization of the form (3.1)–(3.3). Then the set of normal indices
associated with the monic generalized Jacobi matrix J(p) = LU+ αI is

N (s(p)) = N (s) ∪ {nj − 1 : j ∈ N ℓj−1 ≥ 2} . (3.55)

Proof. Let the monic GJM J admits the LU – factorization of the form
(3.1)–(3.3), then, by Theorem 3.1, Pnj(α) 6= 0. Calculating

Pnj (α) =
1

dnj

∣∣∣∣∣∣∣∣

s0 s1 · · · snj
· · · · · · · · · · · ·

snj−1 snj · · · s2nj−1
1 α · · · αnj

∣∣∣∣∣∣∣∣
, (3.56)

we multiply the k–th column by −α and add it to the k + 1–th column,
k = 0, nj − 1, then we obtain
1) if ℓ0 > 1, then

Pnj (α) =
1

dnj

∣∣∣∣∣∣∣∣

s0 s1 − αs0 · · · snj − αsnj−1
· · · · · · · · · · · ·

snj−1 snj − αsnj−1 · · · s2nj−1 − αs2nj−2
1 0 · · · 0

∣∣∣∣∣∣∣∣

=

(−1)njd
(p)

n
(p)
j

dnj

6= 0;

(3.57)

2) if ℓ0 = 1, then

Pnj (α) =

(
s0

s1 − αs0

)−nj (−1)nj

dnj

d
(p)

n
(p)
j

6= 0. (3.58)

By Proposition 3.15 in [15], we get (3.56). This completes the proof.

Corollary 3.3. Let N (s) and N (s(p)) be sets of normal indices associ-
ated with the matrices J = LU+ αI and J(p) = UL+ αI, respectively. If
ℓj−1 = nj − nj−1 ≥ 2 and n0 = 0, for all j ∈ N. Then

N (s(p)) = {n1 − 1, n1, n2 − 1, n2, . . .} . (3.59)

Corollary 3.4. Let N (s) and N (s(p)) be sets of normal indices associ-
ated with the matrices J = LU+ αI and J(p) = UL+ αI, respectively. If
ℓj−1 = nj − nj−1 = 1 and n0 = 0, for all j ∈ N. Then

N (s) = N (s(p)). (3.60)
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Proposition 3.2. Let J be the monic generalized Jacobi matrix as-
sociated with the linear functional S, such that (3.28) holds and let
J−αI = LU be its LU – factorization of the form (3.1)–(3.3). Let m(λ)
and m(p)(λ) be the m−functions of the matrices J and J(p), respectively.
Then

m
(p)
[0,j+n−1](λ) = (λ− α)m[0,j−1](λ), (3.61)

where n is the number of ℓi of the matrix J, such that ℓi ≥ 2 and i =
0, j − 1.

Proof. Let n be the number of ℓi ≥ 2, where i = 0, j − 1 and let G̃[0,j+n−1]
be associated with J

(p)
[0,j+n−1]. It is defined by (2.10).

(i) Let n1 > 1. Then s0 = 0, G̃[0,j+n−1]e0 = b0en1−2 and the equalities
(3.49) hold. Calculating

(λ−α)m[0,j−1](λ)= (λ−α)
[(

JT[0,j−1]− λ
)−1

e0, e0

]

=−
[
(LT[0,j−1]U

T
[0,j−1] + α− λ)

(
(LT[0,j−1]U

T
[0,j−1] + α− λ

)−1
e0, e0

]

+

[
(LT[0,j−1]U

T
[0,j−1]

(
JT[0,j−1]−λ

)−1
e0, e0

]

= −s0 +
(
e0,
(
L[0,j−1]U[0,j−1] + α− λ

)−1
L[0,j−1]U[0,j−1]G[0,j−1]e0

)

=
(
e0,L[0,j−1]

(
U[0,j−1]L[0,j−1] + α− λ

)−1
eℓ0−2

)

=

(((
J
(p)
[0,j+n−1]

)T
− λ

)−1
e0, G̃[0,j+n−1]e0

)
= m

(p)
[0,j+n−1](λ).

(ii) Let n1 = 1. Then G̃[0,j+n−1]e0 =
s1 − αs0

s0
b0e0 and the equalities

(3.51) hold. Computing

(λ− α)m[0,j−1](λ) = −s0+
[(

JT[0,j−1]−λ
)−1

e0,L[0,j−1]U[0,j−1]e0

]

= −s0 +

((
JT[0,j−1] − λ

)−1
e0,L[0,j−1]U[0,j−1]G[0,j−1]e0

)

= −s0 +
s1 − αs0

s0

(
e0,L[0,j−1]

(
U[0,j−1]L[0,j−1] + α− λ

)−1
e0

)

= −s0 +

[((
J
(p)
[0,j+n−1]

)T
−λ
)−1

e0,e0

]
=−s0 +m

(p)
[0,j+n−1](λ).
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Thus, we have

m
(p)
[0,j+n−1](λ) = (λ− α)m[0,j−1](λ) + s0

So, the formula (3.61) is proved. This completes the proof.

Corollary 3.5. Let J be the monic Jacobi matrix and let J(p) be the
shifted Darboux transformation without parameter of J. Then

(λ− α)Qnj (λ)Pnj (λ)
(p) −Q

(p)
nj (λ)Pnj (λ) = s0P

(p)
nj (λ). (3.62)

Proof. Due to the representation (2.14)

m[0,j−1](λ) = −Qnj(λ)

Pnj (λ)
and m

(p)
[0,j+n−1](λ) = −

Q
(p)
nj (λ)

P
(p)
nj (λ)

(3.63)

and by Proposition 3.2, we get (3.62). This completes the proof.

4. Examples

In this section, we consider the some examples of the shifted Darboux
transformations. Recall some facts

Definition 4.1. A function F ∈ N−∞ if and only if
1. F is holomorphic on C+,
2. ImF (λ) ≥ 0 for all λ ∈ C+,
3. F admits the following asymptotic expansion

F (λ) = −s0

λ
− s1

λ2
· · · − s2n

λ2n+1
+ o

(
1

λ2n+1

)
, λ→̂∞, (4.1)

with sj ∈ R for all j ∈ Z+, where λ→̂∞ means that λ tends to ∞
nontangentially, that is inside the sector ε<argλ<π−ε for some ε > 0.

As was known [14,25], every function F ∈N−∞ admits the J–fraction
expansion

F (λ) ∼ − b0

λ− c0 −
b1

λ− c1 −
b2
. . .

= − b0
λ− c0

b1
λ− c1

· · · . (4.2)

Obviously, F (λ3) has the following asymptotic expansion

F (λ3) = − s̃0

λ
− s̃1

λ2
· · · − s̃2n

λ2n+1
− · · · , λ→̂∞, (4.3)
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where s̃3j+2 = sj and s̃j = 0 otherwise. On the other hand, the expansion
(4.3) can be rewritten as the P−fraction (see [19])

F (λ3) ∼ − b0
λ3 − c0

b1
λ3 − c1

b2
λ3 − c2

· · · . (4.4)

Hence, F (λ3) is associated with the monic generalized Jacobi matrix

J =




Cp0 D0

B1 Cp1 D1

B2 Cp2

. . .
. . .

. . .



, (4.5)

where the entries are defined by

Cpj =



0 1 0
0 0 1
cj 0 0


 ,Dj=



0 0 0
0 0 0
1 0 0


 and Bj+1=




0 0 0
0 0 0
bj+1 0 0


 . (4.6)

Example 1a. Now we study the shifted Darboux transformation
without parameter of the GJM J associated with the function F (λ3).

Let Pnj (λ) be the polynomials of the kind associated with the GJM
J. Let us choose some α ∈ R, such that

Pnj (α) 6= 0. (4.7)

By Theorem 3.1, J admits the LU – factorization (3.1)–(3.3), i.e.

J− αI = LU, (4.8)

L =




A0 0

L1 A1
. . .

. . .
. . .


 and U =




U0 D0

0 U1
. . .

. . .
. . .


 , (4.9)

Dj are defined by (4.6) Aj , Lj+1, Uj take the form (see (3.1)– (3.3))

Aj=




1 0 0
0 1 0

−α2 −α 1


 ,Lj+1=



0 0 0
0 0 0

0 0 − bj+1

uj


,Uj=




−α 1 0
0 −α 1

−uj 0 0


 , (4.10)

where u0 = −c0 − α3 and ui = − bi
ui−1

− ci − α3, i ∈ N. Then

J(p) = UL+ αI =




C0
0 D0,0

B1,0 C1
0 D0,1

B1,1 C0
1

. . .
. . .

. . .




(4.11)
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is the shifted Darboux transformation without parameter of J (see The-
orem 3.2). Furthermore, the entries have the following form

C0
j =

(
0 1

−α2 −α

)
, Dj,0 =

(
0
1

)
, Bj+1,1 =

(
0

− bj+1

uj

)
,

Bj+1,0 =
(
−uj 0

)
, C1

j = (α), Dj,1 =
(
1 0

)
, j ∈ Z+.

(4.12)

By Corollary 3.2, s(p) =
{
s
(p)
j

}∞
j=0

is associated with the GJM

J(p) = UL + αI, where s
(p)
3j = 0, s

(p)
3j+1 = sj , s

(p)
3j+2 = −αsj , j ∈ Z+.

Consequently, the function F (p)(λ) = (λ−α)F (λ3) is associated with the
monic generalized Jacobi matrix J(p) = UL+ αI.

Example 1b. This example is a special case of the Example 1a.
We consider the monic Chebyshev-Hermite polynomials {Hk(λ)}∞k=0 and
study the shifted Darboux transformation without parameter of the
monic generalized Jacobi matrix J associated with {Hk(λ

3)}∞k=0.

Let s = {sj}∞j=0 be a moment sequence corresponding to the measure

e−t
2
dt on R, i.e.

s0 =
√
π, s2j =

√
π

2j
(2j − 1)!! and s2j−1 = 0, j ∈ N. (4.13)

Then the corresponding recurrence relation takes the form

λHk(λ) = Hk+1(λ) +
k

2
Hk−1(λ), for all k ∈ N, (4.14)

and the corresponding polynomials of the first kind coincide with the
monic Chebyshev-Hermite polynomials

Hj(λ) =
(−1)j

2j
eλ

2 dj

dλj

(
e−λ

2
)

for all j ∈ Z+, (4.15)

where x ∈ (−∞,+∞) and the polynomials Hj(λ) are orthogonal in

L2(R, w(λ)) with the weight function w(λ) = e−λ
2
.

Let us consider the sequence of the polynomials {Hj(λ
3)}∞j=0 which

satisfies the recurrence relation

λ3Hk(λ
3) = Hk+1(λ

3) +
k

2
Hk−1(λ

3), for k ∈ N. (4.16)

The polynomials {Hj(λ
3)}∞j=0 are polynomials of the first kind associated

with the monic generalized Jacobi matrix J defined by (4.5)–(4.6).
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Consequently, the moment sequence s̃ = {s̃j}∞j=0 associated with the
matrix J takes the form

s̃3j = s̃3j+1 = 0, s̃3j+2 = sj , j ∈ Z+. (4.17)

Let us choose α ∈ R, such that

Hj(α
3) 6= 0 for all j ∈ Z+. (4.18)

Then J− αI admits the LU–factorization (4.9)–(4.10), i.e.

J− αI = LU. (4.19)

Therefore, the monic generalized Jacobi matrix

J(p) = UL+ αI. (4.20)

is the shifted Darboux transformation without parameter of J (see Ex-

ample 1a).

By Theorem 3.3, the polynomials
{
P

(p)
j (λ)

}∞
j=0

of the first kind as-

sociated with the matrix J(p) are given by

P
(p)
3j (λ) = Hj(λ

3), P
(p)
3j+1(λ) = λHj(λ

3),

P
(p)
3j+2(λ) =

1

λ− α

(
Hj+1(λ

3)− Hj+1(α)

Hj(α)
Hj(λ

3)

)
, j ∈ Z+.

(4.21)
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