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1. Introduction

Various generalizations of quasiconformal mappings such as mappings
of the Dirichlet class [23] or mappings quasiconformal in mean, (see, for
example, [15, 16, 21, 25]) play an important role in the geometric func-
tion theory. In the present article we study functional properties of
generalized quasiconformal mappings which are connected with compo-
sition operators on Sobolev spaces [7, 26, 32]. Recall that a homeomor-
phism φ : Ω→ Ω̃ is called a weak (p, q)-quasiconformal homeomorphism,
1 ≤ q ≤ p ≤ ∞, if φ ∈W 1

q,loc(Ω), has finite distortion and

Kp,q(φ; Ω) = ∥Kp | Lκ(Ω)∥ <∞, 1/q − 1/p = 1/κ (κ =∞, ifp = q),

where p-dilatation of a mapping φ at a point x is defined as

Kp(x) = inf{k(x) : |Dφ(x)| ≤ k(x)|J(x, φ|
1
p , x ∈ Ω}.

In the case p = n we have the usual conformal dilatation and if
p = q = n this class coincides with quasiconformal mappings. In the
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case p ̸= n the p-dilatation arises in [4]. The weak (p, q)-quasiconformal
homeomorphisms are natural generalization of (quasi)conformal map-
pings and have applications in the elliptic operators theory and in the
elasticity theory. These applications are based in the composition oper-
ators on Sobolev spaces generated by weak (p, q)-quasiconformal home-
omorphisms. Note that in the case p = q = n a class of weak (p, q)-
quasiconformal homeomorphisms coincides with the usual quasiconformal
mappings and in the case p = n, q = n− 1 these mappings are mappings
of integrable distortions that were considered in [12, 14]. Weak quasi-
conformal homeomorphisms allow a capacitary description and on this
way are closely connected with so-called Q-homeomorphisms [7]. Study
of Q-homeomorphisms are based on the capacitary (moduli) distortion of
these classes and is upon intensive development at last decades (see, for
example, [15, 22]).

In the theory of weak (p, q)-quasiconformal homeomorphisms the sig-
nificant role plays the composition duality property [26]. Let φ : Ω→ Ω̃
be a weak (p, q)-quasiconformal homeomorphism, n − 1 < q ≤ p < ∞,
that induces the bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), n− 1 < q ≤ p <∞.

Then the inverse mapping φ−1 : Ω̃→ Ω be a weak (q′, p′)-quasiconformal
homeomorphism where p′ = p/(p− n+ 1), q′ = q/(q − n+ 1).

Using this composition duality we obtain self-improvement type the-
orems for weak quasiconformal homeomorphisms and Liouville type the-
orems.

The classical Liouville theorems states that does not exists a con-
formal mapping φ : R2 → Ω̃ onto any bounded domain Ω̃ ⊂ R2 and
in the space Rn, n ≥ 3, the class of conformal mappings coincide with
the Möbius group of transformation. In the present article we prove, in
particular, that does not exists a weak (p, q)-quasiconformal homeomor-
phism, n−1 < q < p ≤ n, φ : Rn → Ω̃ onto any domain of finite measure
Ω̃ ⊂ Rn, n ≥ 2.

Note, that in the case p = n the Liouville type theorem was proved in
[9]. In capacitory terms Liouville type theorems for mappings of bounded
(p, q)-distortion were obtained in [28].

The global Lp-integrability of weak derivatives of quasiconformal map-
pings and its Hölder continuity represent an interesting part of the qua-
siconformal mapping theory [1, 5, 18]. In the second part of the paper
we prove the property of the global integrability of weak derivatives of
weak (p, q)-quasiconformal mappings and obtain a self-improvement type
theorem.
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2. Composition operators on Sobolev spaces

2.1. Sobolev spaces

Let E be a measurable subset of Rn, n ≥ 2. The Lebesgue space
Lp(E), 1 ≤ p ≤ ∞, is defined as a Banach space of p-summable functions
f : E → R equipped with the standard norm.

If Ω is an open subset of Rn, the Sobolev space W 1
p (Ω), 1 ≤ p ≤ ∞,

is defined as a Banach space of locally integrable weakly differentiable
functions f : Ω→ R equipped with the following norm:

∥f |W 1
p (Ω)∥ = ∥f | Lp(Ω)∥+ ∥∇f | Lp(Ω)∥.

The homogeneous seminormed Sobolev space L1
p(Ω), 1 ≤ p ≤ ∞,

is defined as a space of locally integrable weakly differentiable functions
f : Ω→ R equipped with the following seminorm:

∥f | L1
p(Ω)∥ = ∥∇f | Lp(Ω)∥.

Sobolev spaces are Banach spaces of equivalence classes [20]. To clar-
ify the notion of equivalence classes we use the non-linear p-capacity
associated with Sobolev spaces. Recall the notion of the p-capacity of a
set E ⊂ Ω [20]. Let Ω be a domain in Rn and a compact F ⊂ Ω. The
p-capacity of the compact F is defined by

capp(F ; Ω) = inf{∥f |L1
p(Ω)∥p,

where infimum is taken over all continuous functions with a compact
support f ∈ L1

p(Ω) such that f ≥ 1 on F . By the similar way we can
define p-capacity of open sets.

For arbitrary set E ⊂ Ω we define an inner p-capacity as

cap
p
(E; Ω) = sup{capp(e; Ω), e ⊂ E ⊂ Ω, e is a compact},

and an outer p-capacity as

capp(E; Ω) = inf{capp(U ; Ω), E ⊂ U ⊂ Ω, U is an open set}.

A set E ⊂ Ω is called p-capacity measurable, if cap
p
(E; Ω) = capp(E; Ω).

The value
capp(E; Ω) = cap

p
(E; Ω) = capp(E; Ω)

is called the p-capacity of the set E ⊂ Ω.
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The notion of p-capacity permits us to refine the notion of Sobolev
functions. Let a function f ∈ L1

p(Ω). Then refined function

f̃(x) = lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y) dy

is defined quasieverywhere i. e. up to a set of p-capacity zero and it
is absolutely continuous on almost all lines [20]. This refined function
f̃ ∈ L1

p(Ω) is called a unique quasicontinuous representation (a canonical

representation) of function f ∈ L1
p(Ω). Recall that a function f̃ is termed

quasicontinuous if for any ε > 0 there is an open set Uε such that the
p-capacity of Uε is less than ε and on the set Ω \ Uε the function f̃ is
continuous (see, for example [11, 20]). In what follows we will use the
quasicontinuous (refined) functions only.

Note that the first weak derivatives of the function f coincide almost
everywhere with the usual partial derivatives (see, e.g., [20] ).

2.2. Composition operators and the composition duality
property

Let φ : Ω→ Rn be a weakly differentiable mapping. Then the formal
Jacobi matrix Dφ(x) and its determinant (Jacobian) J(x, φ) are well
defined at almost all points x ∈ Ω. The norm |Dφ(x)| is the operator
norm of Dφ(x), i. e., |Dφ(x)| = max{Dφ(x) ·h : h ∈ Rn, |h| = 1}. Recall
that a weakly differentiable mapping φ : Ω → Rn is a mapping of finite
distortion if Dφ(x) = 0 for almost all x ∈ Z = {x ∈ Ω : J(x, φ)} = 0}
[30].

Let us recall also the change of variable formula for the Lebesgue
integral [3, 10]. Suppose that for a mapping φ : Ω → Rn there exists a
collection of closed sets {Ak}∞1 , Ak ⊂ Ak+1 ⊂ Ω for which restrictions
φ|Ak are Lipschitz mappings on the sets Ak and∣∣∣∣Ω \ ∞∑

k=1

Ak

∣∣∣∣ = 0.

Then there exists a measurable set S ⊂ Ω, |S| = 0 such that the mapping
φ : Ω \ S → Rn has the Luzin N -property and the change of variable
formula ∫

E

f ◦ φ(x)|J(x, φ)| dx =

∫
Rn\φ(S)

f(y)Nf (E, y) dy (2.1)
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holds for every measurable set E ⊂ Ω and every nonnegative measurable
function f : Rn → R. Here Nf (y,E) is the multiplicity function defined
as the number of preimages of y under f in E.

Note, that Sobolev mappings of the class W 1
1,loc(Ω) satisfy the condi-

tions of the change of variable formula [10] and so for Sobolev mappings
the change of variable formula (2.1) holds.

If the mapping φ possesses the Luzin N -property (the image of a
set of measure zero has measure zero), then |φ(S)| = 0 and the second
integral can be rewritten as the integral on Rn. Note, that Sobolev home-
omorphisms of the class L1

p(Ω), p ≥ n, possess the Luzin N -property.
Let Ω and Ω̃ be domains in Rn, n ≥ 2. We say that a homeomorphism

φ : Ω→ Ω̃ induces a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,

by the composition rule φ∗(f) = f ◦φ, if for any function f ∈ L1
p(Ω̃), the

composition φ∗(f) ∈ L1
q(Ω) is defined quasi-everywhere in Ω and there

exists a constant Kp,q(Ω) <∞ such that

∥φ∗(f) | L1
q(Ω)∥ ≤ Kp,q(Ω)∥f | L1

p(Ω̃)∥.

The problem of composition operators on Sobolev spaces arises firstly
in the work [19] where were introduced sub-areal mappings and in the
Reshennyak’s problem (1969) connected to quasiconformal mappings [29].
In connection with the geometric function theory we define p-dilatation
of a mapping φ at a point x as

Kp(x) = inf{k(x) : |Dφ(x)| ≤ k(x)|J(x, φ|
1
p , x ∈ Ω}.

If p = n we have the usual conformal dilatation and in the case p ̸= n
the p-dilatation arises in [4].

The geometric theory of composition operators on Sobolev spaces
is based on the measure property of composition operators introduced
in [26] (in the limit case p =∞ in [27]).

Theorem 2.1. Let a homeomorphism φ : Ω → Ω̃ between two domains
Ω and Ω̃ induces a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), 1 ≤ q < p ≤ ∞.

Then

Φ(Ã) = sup
f∈L1

p(Ã)∩C0(Ã)

(
∥φ∗(f) | L1

q(Ω)∥
∥f | L1

p(Ã)∥

)κ
,

(where 1/q − 1/p = 1/κ) is a bounded monotone countably additive set
function defined on open bounded subsets Ã ⊂ Ω̃.
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The following theorem allows refine this function Φ as a measure
generated by the p-dilatation Kp.

Theorem 2.2. A homeomorphism φ : Ω → Ω̃ between two domains Ω
and Ω̃ induces a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,

if and only if φ ∈W 1
1,loc(Ω), has finite distortion, and

Kp,q(φ; Ω) = ∥Kp | Lκ(Ω)∥ <∞,

where 1/q − 1/p = 1/κ.

This theorem in the case 1 ≤ q = p < ∞ was proved in [7] and in
the case 1 ≤ q < p < ∞ in [26] (see also [32]), case p = ∞ was con-
sidered in [9]. Homeomorphisms that satisfy conditions of Theorem 2.2
are called weak (p, q)-quasiconformal homeomorphisms [7, 31] and are a
natural generalization of quasiconformal mappings (p = q = n).

In the geometric theory of composition operators on Sobolev spaces
the significant role plays the following composition duality property [26]:

Theorem 2.3. Let a homeomorphism φ : Ω→ Ω̃, Ω, Ω̃ ⊂ Rn, induces a
bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), n− 1 < q ≤ p <∞.

Then the inverse mapping φ−1 : Ω̃ → Ω induces a bounded composition
operator (

φ−1
)∗

: L1
q′(Ω)→ L1

p′(Ω̃), n− 1 < p′ ≤ q′ <∞,

where p′ = p/(p− n+ 1) and q′ = q/(q − n+ 1).

Let us recall for readers convenience short highlights of the proof
[26]. On the first step we need to check that the inverse mapping φ−1 ∈
W 1

1,loc(Ω̃) [26, Theorem 3]. Because φ−1 ∈W 1
1,loc(Ω̃) then [24] (see, also,

[2, 8, 13])

|Dφ−1(y)| =


(

| adjDφ|(x)
|J(x,φ)|

)
x=φ−1(y)

if x ∈ Ω \ (S ∪ Z) ,

0 otherwise.

Hence

|Dφ−1(y)| ≤ |Dφ(x)|
n−1

|J(x, φ)|
,
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for almost all x ∈ Ω \ (S ∪ Z), y = φ(x) ∈ Ω′ \ φ (S ∪ Z), and

|Dφ−1(y)| = 0 for almost all y ∈ φ(S).

Now, taking into account that

q′p′

q′ − p′
=

pq

(p− q)(n− 1)

we obtain∫
Ω′

(
|Dφ−1(y)|q′

|J(y, φ−1)|

)p′/(q′−p′)
dy ≤

∫
Ω

(
|Dφ(x)|p

|J(x, φ)|

)q/(p−q)
dx

(in the case p = q we have p′ = q′ and L∞-norms instead integrals) and
by Theorem 2.2 we have a bounded composition operator(

φ−1
)∗

: L1
q′(Ω)→ L1

p′(Ω̃), n− 1 < p′ ≤ q′ <∞.

Remark 2.4. In the case n = 2 we have p′ = p/(p− 1), q′ = q/(q − 1)
and p′′ = p, q′′ = q. Hence the homeomorphism φ : Ω → Ω̃, Ω, Ω̃ ⊂ Rn,
induces a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), 1 < q ≤ p <∞,

if and only if the inverse mapping φ−1 : Ω̃ → Ω induces a bounded
composition operator(

φ−1
)∗

: L1
q′(Ω)→ L1

p′(Ω̃), 1 < p′ ≤ q′ <∞.

In the case n ̸= 2 we have

p′′ =
(
p′
)′
=

p

(n− 1)2 − p(n− 2)
̸= p, if p′ > n− 1,

q′′ =
(
q′
)′
=

q

(n− 1)2 − q(n− 2)
̸= q, if q′ > n− 1,

and this case is more complicated.

Using this composition duality property we obtain the following self-
improvement type theorem.

Theorem 2.5. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal homeo-
morphism, n − 1 < q ≤ p < n. Then φ induces a bounded composition
operator

φ∗ : L1
r(Ω̃)→ L1

s(Ω)

for all s ≤ r such that q′′ ≤ s ≤ q and p′′ ≤ r ≤ p.
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Proof. Because φ : Ω → Ω̃ is a weak (p, q)-quasiconformal homeomor-
phism, then the composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), n− 1 < q ≤ p <∞,

is bounded.
In the case p < n and q < n we have that

p′′ =
(
p′
)′
=

p

(n− 1)2 − p(n− 2)
< p

and
q′′ =

(
q′
)′
=

q

(n− 1)2 − q(n− 2)
< q.

So by the composition duality property we have that this weak (p, q)-
quasiconformal homeomorphism generates also a bounded composition
operator

φ∗ : L1
p′′(Ω̃)→ L1

q′′(Ω), 1 < q′′ < q ≤ p′′ < p <∞.

Using the Marcinkiewicz interpolation theorem [6] we obtain that

φ∗ : L1
r(Ω̃)→ L1

s(Ω)

is bounded for all s ≤ r such that q′′ ≤ s ≤ q and p′′ ≤ r ≤ p.

3. Liouville type theorems for weak (p, q)-quasiconformal
homeomorphisms

The composition duality property allows us to obtain Liouville type
theorems for weak (p, q)-quasiconformal homeomorphisms.

Theorem 3.1. Let n < p < ∞ and suppose there exists a weak (p, n)-
quasiconformal homeomorphism φ : Ω→ Ω̃. Then |Ω̃| <∞.

Proof. Because φ : Ω → Ω̃ is a weak (p, n)-quasiconformal homeomor-
phism, then the composition operator

φ∗ : L1
p(Ω̃)→ L1

n(Ω), n < p <∞,

is bounded. By the duality property the inverse composition operator(
φ−1

)∗
: L1

n(Ω)→ L1
p′(Ω̃), p

′ < n,

will be bounded. Hence, for any function f ∈ L1
p(Ω̃) the inequality

∥f | L1
p′(Ω̃)∥ ≤ ∥

(
φ−1

)∗ ∥∥φ∗(f) | L1
n(Ω)∥ ≤ ∥

(
φ−1

)∗ ∥∥φ∗∥∥f | L1
p(Ω̃)∥
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holds. It means that the embedding

L1
p(Ω̃) ↪→ L1

p′(Ω̃), n− 1 < p′ < p <∞,

holds. Hence |Ω̃| <∞.

From this theorem immediately follows

Corollary 3.2. For any n < p < ∞ and any domain Ω ⊂ Rn does not
exist a weak (p, n)-quasiconformal homeomorphism φ : Ω→ Rn.

Remark 3.3. This corollary can be formulated in the strong form: for
any domain Ω ⊂ Rn and any n < p < ∞ does not exists a weak (p, n)-
quasiconformal homeomorphism φ from Ω onto any domain of unbounded
volume.

In the case n < q < p we have an additional assumption of finiteness
of a measure of Ω.

Theorem 3.4. Let n < q < p <∞ and |Ω| <∞. Suppose there exists a
weak (p, q)-quasiconformal homeomorphism φ : Ω→ Ω̃. Then |Ω̃| <∞.

Proof. Because φ : Ω → Ω̃ is a weak (p, q)-quasiconformal homeomor-
phism, then the composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), n < q < p <∞,

is bounded. By the duality property the inverse composition operator(
φ−1

)∗
: L1

q′(Ω)→ L1
p′(Ω̃), n− 1 < p′ < q′ < n,

will be bounded also. Because |Ω| <∞, then this embedding

L1
q(Ω) ↪→ L1

q′(Ω)

holds. Hence the embedding

L1
p(Ω̃) ↪→ L1

p′(Ω̃), n− 1 < p′ < p <∞,

holds. Therefore |Ω̃| <∞.

From this theorem immediately follows

Corollary 3.5. For any domain Ω ⊂ Rn, |Ω| <∞, and any n < p <∞
does not exist a weak (p, q)-quasiconformal homeomorphism φ : Ω→ Rn.
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Remark 3.6. This corollary can be formulated in the strong form: for
any domain Ω ⊂ Rn, |Ω| < ∞, and any n < p < ∞ does not exists a
weak (p, n)-quasiconformal homeomorphism φ from Ω onto any domain
of unbounded volume.

In the case n − 1 < q < p ≤ n using the dual composition property
we obtain dual Liouville type theorems for weak (p, q)-quasiconformal
homeomorphisms.

Theorem 3.7. Let n − 1 < q < n and suppose there exists a weak
(n, q)-quasiconformal homeomorphism φ : Ω→ Ω̃. Then |Ω| <∞.

From this theorem immediately follows

Corollary 3.8. For any n−1 < q < n and any domain Ω̃ does not exist
a weak (n, q)-quasiconformal homeomorphism φ : Rn → Ω̃.

In the case n − 1 < q < p < n we have an additional assumption of
finiteness of a measure of Ω̃.

Theorem 3.9. Let n − 1 < q < p < n and |Ω̃| < ∞. Suppose there
exists a weak (p, q)-quasiconformal homeomorphism φ : Ω → Ω̃. Then
|Ω| <∞.

From this theorem immediately follows

Corollary 3.10. For any domain Ω̃ such that |Ω̃| < ∞ and for any
n − 1 < q < p < n does not exist a weak (p, q)-quasiconformal homeo-
morphism φ : Rn → Ω̃.

4. Composition operators and integrability of derivatives

The global Lp-integrability of weak derivatives of quasiconformal map-
pings and its Hölder continuity represent an interesting part of the qua-
siconformal mapping theory [1, 5, 18]. In the next theorem we consider
the property of the global integrability of weak derivatives of weak (p, q)-
quasiconformal mappings.

Theorem 4.1. Let homeomorphism φ : Ω→ Ω̃ between two domains Ω
and Ω̃ induces a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), 1 ≤ q ≤ p ≤ ∞.

If p ̸= n, then |Dφ|
p−n
p ∈ Lκ(Ω) where 1/q − 1/p = 1/κ.
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Proof. The case p = q was proved in [7] and the case p =∞ was consid-
ered in [9].

Let n < p < ∞. We denote Z = {x ∈ Ω : J(x, φ) = 0}. Because φ
generates a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω),

then by Theorem 2.2 φ is a mapping of finite distortion and soDφ(x) = 0
for almost all x ∈ Z. Using Theorem 2.2 and the Hadamard’s inequality:

|J(x, φ)| ≤ |Dφ(x)|n, for almost all x ∈ Ω \ Z,

we have

∥|Dφ|
p−n
p | Lκ(Ω)∥ =

∫
Ω

|Dφ(x)|
p−n
p

pq
p−q dx


p−q
pq

=

 ∫
Ω\Z

|Dφ(x)|
p−n
p

pq
p−q dx


p−q
pq

=

 ∫
Ω\Z

(
|Dφ(x)|p−n

) q
p−q dx


p−q
pq

≤

 ∫
Ω\Z

(
|Dφ(x)|p

|J(x, φ)|

) q
p−q

dx


p−q
pq

= ∥Kp | Lκ(Ω)∥ <∞.

Let 1 ≤ q < p < n. Because Z = {x ∈ Ω : J(x, φ) = 0}, then by
the change of variable formula for weakly differentiable mappings [10]
we have |φ(Z)| = 0. Since in the case 1 ≤ q < p < n the mapping φ
possesses the Luzin N−1 property (preimage of a set of a measure zero
has measure zero) [31,32] we have |Z| = 0 and so |J(x, φ)| ̸= 0 a.e. in Ω.
Hence by the Hadamard’s inequality:

∥|Dφ|
p−n
p | Lκ(Ω)∥ =

∫
Ω

|Dφ(x)|
p−n
p

pq
p−q dx


p−q
pq

=

 ∫
Ω\Z

(
|Dφ(x)|p−n

) q
p−q dx


p−q
pq

≤

 ∫
Ω\Z

(
|Dφ(x)|p

|J(x, φ)|

) q
p−q

dx


p−q
pq

= ∥Kp | Lκ(Ω)∥ <∞.
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Remark 4.2. Let Ω ⊂ Rn be a bounded domain and φ : Ω→ Ω̃ be a weak

(p, q)-quasiconformal homeomorphism, p ̸= n. Then |Dφ|
p−n
p ∈ Lα(Ω)

for any α ≤ κ.

In [31] it was proved that weak (p, q)-quasiconformal homeomorphism,
n < q < p <∞, are locally Hölder continuous with the Hölder exponent
α = p(q − n)/q(p − n). As a consequence of Theorem 4.1 we obtain
the property of global Hölder continuity for weak (p, q)-quasiconformal
homeomorphism in the case of continuous embedding domains. Note,
that we call a domain Ω ⊂ Rn as a Hölder continuous embedding domain
if the embedding operator of the Sobolev space to the space of continuous
functions

W 1
p (Ω) ↪→ C(Ω), p > n,

is bounded. Examples of such domains are domains with Lipschitz bound-
aries or domains with the uniform interior cone condition (see, for exam-
ple, [6]).

Theorem 4.3. Let Ω ⊂ Rn be a Hölder continuous embedding domain
and homeomorphism φ : Ω→ Ω̃ induces a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), n < q ≤ p ≤ ∞.

Then φ belongs to the Hölder space Hα(Ω), α = p(q − n)/q(p− n).

Proof. By Theorem 4.1 a mapping φ ∈ L1
s(Ω) for

s =
p− n
p

pq

p− q
=

(p− n)q
p− q

In the case n < q < p ≤ ∞ we have

(p− n)q
p− q

> n

and using Sobolev embedding theorems into the spaces of Hölder con-
tinuous functions [20] we obtain that φ belongs to Hα(Ω), α = p(q −
n)/q(p− n).

Corollary 4.4. Let Ω̃ ⊂ Rn be a continuous embedding domain and
homeomorphism φ : Ω→ Ω̃ induces a bounded composition operator

φ∗ : L1
p(Ω̃)→ L1

q(Ω), n− 1 < q < p < n.

Then the inverse mapping φ−1 : Ω̃ → Ω belongs to the Hölder space
Hα(Ω̃), α = q′(p′ − n)/p′(q′ − n).
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Proof. By the duality theorem [26, 31] the inverse mapping generates a
bounded composition operator

(φ−1)∗ : L1
q′(Ω)→ L1

p′(Ω̃),

where q′ = q/(q − n+ 1), p′ = p/(p− n+ 1), n < p′ ≤ q′ ≤ ∞.
By Corollary 4.3 we obtain that the inverse mapping φ−1 : Ω̃ → Ω

belongs to the Hölder space Hα(Ω̃), α = q′(p′ − n)/p′(q′ − n).

The global integrability of derivatives allows us to obtain the second
type of self improvement theorem for composition operators on Sobolev
spaces. Namely if φ is a weak (p, q)-quasiconformal homeomorphism,
then φ be also a weak (r, s)-quasiconformal mapping under some restric-
tions on r and s that depend on p and q.

Theorem 4.5. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal home-
omorphism, 1 < q < p < ∞. Then φ is a weak (r, s)-quasiconformal
homeomorphism for all 1 < s < r <∞ such that p/q ≤ r/s and

rs− ps
rq − ps

=
(p− n)
p− q

.

Proof. By Theorem 2.2 it is sufficient to check that

Kr,s(φ; Ω) = ∥Kr | Lκ′(Ω)∥ <∞,

where 1/s− 1/r = 1/κ′.
Because φ is the weak (p, q)-quasiconformal mapping then φ is a

mapping of finite distortion. Denote Z = {x ∈ Ω : J(x, φ) = 0}. Then

∫
Ω\Z

(
|Dφ(x)|r

|J(x, φ)|

) s
r−s

dx =

∫
Ω\Z

(
|Dφ(x)|p|Dφ(x)|r−p

|J(x, φ)|

) s
r−s

dx

=

∫
Ω\Z

(
|Dφ(x)|p

|J(x, φ)|

) s
r−s (
|Dφ(x)|r−p

) s
r−s dx.

By conditions of the theorem we have that s/(r − s) ≤ q/(p − q).
Hence, using the Hölder inequality we obtain∫

Ω\Z

(
|Dφ(x)|r

|J(x, φ)|

) s
r−s

dx

≤

 ∫
Ω\Z

(
|Dφ(x)|p

|J(x, φ)|

) p
p−q

dx


s(p−q)
q(r−s)

 ∫
Ω\Z

|Dφ(x)|
qs(r−p)
qr−ps dx


qr−ps
q(r−s)

.
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Using the equality

qs(r − p)
qr − ps

=
q(p− n)
p− q

and Theorem 4.1 we have∫
Ω\Z

|Dφ(x)|
qs(r−p)
qr−ps dx =

∫
Ω\Z

|Dφ(x)|
q(p−n)
p−q dx <∞.

Hence
Kr,s(φ; Ω) = ∥Kr | Lκ′(Ω)∥ <∞,

where 1/s− 1/r = 1/κ′.

Remark 4.6. Recall that for bounded domains |Dφ|
p−n
p ∈ Lα(Ω) for any

α ≤ q(p−n)
p−q . Therefore for bounded domains the second condition of the

previous theorem is
qs(r − p)
qr − ps

≤ q(p− n)
p− q

.

References

[1] K. Astala, P. Koskela, Quasiconformal mappings and global integrability
of the derivative // J. Anal. Math., 57 (1991), 203–220.
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