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B, classes of De Giorgi, Ladyzhenskaya and
Ural’tseva and their application to elliptic and
parabolic equations with nonstandard growth
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Abstract. The article provides an application of generalized De Giorgi
functional classes to the proof of the Holder continuity of weak solutions
to quasilinear elliptic and parabolic equations with nonstandard growth
conditions.
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1. Introduction

We will consider the question of regularity of weak solutions to quasi-
linear elliptic and parabolic equations with nonstandard (p,q) growth.
Such properties as the local boundedness of weak solutions, their conti-
nuity, and the Harnack inequality for positive solutions are indispensable
in the qualitative theory of second-order elliptic and parabolic equations.
The local boundedness and Hélder continuity of weak solutions to linear
divergence-type second-order elliptic and parabolic equations with mea-
surable coefficients are known since the famous results by De Giorgi [32]
and Nash [88], and the Harnack inequality is in use since Moser’s cele-
brated papers [86,87]. It were Ladyzhenskaya, Ural'tseva [67], and Ser-
rin [90] who generalized De Giorgi’s and Moser’s results to the case of
quasilinear elliptic equations. Particularly, if €2 is a bounded open set of
R™, n > 2, then the so-called B, () class, p > 1, was defined in [67]: the
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function u € I/Vlif(ﬂ) N LS () belongs to the class B,(2), if, for any
ball Bg,(xg) C ©, any k € R, and o € (0, 1), the following relation holds:

MP
/i |VulP de < c( (k) + 1> |Af’p|, (1.1)

p
O (op)

where c is a positive constant, \Af p| is the n-dimensional Lebesgue mea-
sure of the set Aip = By(xo) N{(u—Fk)+ >0}, and M (k) = M(k,p) :=
sup (u — k)+ . It was proved in [67] that B,(Q) C Cﬂ,g(ﬂ) with some
BP(xO)

a € (0,1) depending only on n, p, and c¢. Later, DiBenedetto and
Trudinger [37] proved the validity of Harnack’s inequality for functions
in the B, () classes.

For second-order linear parabolic equations with measurable coeffi-
cients, the Holder continuity of solutions was first proved by Nash [8§].
This result was extended to the case of quasilinear parabolic equations
with linear growth in |66].

The parabolic theory for degenerate and singular quasilinear equa-
tions differs substantially from the “linear” case which can be already
realized looking at the Barenblatt solution to the parabolic p-Laplace
equation. DiBenedetto developed an innovative intrinsic scaling method
(see [34] and references therein). He introduced parabolic classes B,
and proved that the functions from these classes are locally Holder-
continuous [33]. The classes By, p > 2, can be considered as an ex-
tension of the classes By introduced in [66]. The further expansion of
the B, classes to parabolic equations was carried out in the works by
Ivanov [56,57|, DiBenedetto and Gianazza [35,36], Gianazza, Surnachev,
and Vespri [51], Gianazza and Vespri 52|, Skrypnik [95].

The study of the regularity of minima of the functionals with nonstan-
dard growth of the (p,q)-type has been initiated by Marcellini [76-80].
In the last thirty years, the qualitative theory of second-order equa-
tions with nonstandard growth has been actively developed (see, e.g.,
[1-10, 20, 24, 25, 28-31, 39-46, 48-50, 58-61, 64, 65,69, 70, 72-75, 81-83, 85,
93,99, 105-108]). Moreover, the parabolic equations and systems with a
variable growth exponent p(z,t) were studied intensively in the last years
(see, e.g., [12,14-16,21,22,38,91,92,101-104,111]). Equations of this type
and systems of such equations arise in various problems of mathematical
physics. Their description can be found in the books by Antontsev—
Diaz—Shmarev [13|, Ruzicka [89], and Weickert [100]. At the same time,
to prove the regularity of solutions to the corresponding equations, the
classes B,,(€2) and their generalizations such as the B, classes [47] and
the B¢ classes [71] were used.
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We will make attempt to unify the De Giorgi approach to establish
the local regularity of solutions to elliptic and parabolic equations with
nonstandard growth. We give extension of the well-known elliptic and
parabolic B, classes defined by Ladyzhenskaya and Ural’tseva [66,67| and
DiBenedetto [33]. Particularly, in Section 3, we define elliptic B , classes
and prove the Holder continuity and Harnack’s inequality for functions
in the By, classes. In addition, we will prove that the solutions to the
equations

Apyu = div(|VuP)2Vy) =0,

P

. Vu
Agu = d1v<g(|Vu])|vu) =0,

p—1
g(u)}(u) , u>v>0, p>1,

div(|VulP2Vu + a(z)|Vu|T?>Vu) =0, a(z) =0, 1<p<ygq,

div(\vu|P*2vu(1 (1 + \Vu|))) -0, p>1,

(=)™ Z DO‘[( Z |D6u|2>p22Dau] —Aygu=0, ¢q>mp,

|af=m |Bl=m

belong to B1, with the correspondent choice of ¢. Moreover, in some
sense, we will improve the result by Lieberman (see Remark 3.1).

In Section 4, we define parabolic By, classes and prove the Hélder
continuity for functions in By ,. In addition, we prove that the solutions
to the equations

up — diV(\Vu]p(x’t)_2Vu) =0,
up — Agu = 0,
uy — div(|VulP"2Vu + a(z, )| Vu|7>Vu) = 0,
s — div(|vu|P—2vu(1 (1 + qu|))) —0

belong to Bi,, with the corresponding choice of ¢. Moreover, we give
answer to the still open problem on the regularity of solutions to parabolic
equations with (p, ¢)-growth in the case p < 2 < q.
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2. Notation and auxiliary propositions

Everywhere below, 2 is a bounded domain in R™, n > 2. For ar-
bitrary p > 0 and y € R", B,(y) := {z € R" : |z —y| < p} is the
open n-dimensional ball centered at y with radius p. For every Lebesgue
measurable set E C R", we denote, by |E|, the n-dimensional Lebesgue
measure of E (or the n + l-dimensional measure, if £ C R""1). We
will also use the well-known notation for function spaces and for their
elements (see [34,66,67] and references therein).

The following two lemmas will be used in the sequel. The first one is
the well-known DeGiorgi-Poincaré lemma (see [67, Chap. II, Lemma 3.9]).

Lemma 2.1. Let u € WYY (B,(z0)). Then, for any s > 1 and for any
k.l eR, k <, the following inequalities hold:

_1 _ n S—
(1—k)° ‘AlJ,er Ay | < esp / \Vu|(u — k)5 da,

+ +
Ak,p\Al,p

S - -1 n S—
(= k) A A | < esp / IVul(l — u)5 da, (2.1)

ALp M

where A;p i= Bp(xo) N {u >k}, Ay, = By(xo) N{u < k}, and c is a
positive constant depending only on n.

The following lemma can also be found in [67, Chap. II, Lemma 4.7].

Lemma 2.2. Lety;, j =0,1,2,..., be a sequence of nonnegative num-
bers satisfying
Yj+1 <cb]y;+5, j:O,l,Q,...,

with some constants 6 > 0 and ¢,b > 1. Then

(+6)d—1 (14871
5 b 2

yj < e TR i=0,1,2,.
1
Particularly, if yo < v := c_%b_??, then

vb5  and lim y; = 0.
Jj—oo

N

Yj

3. Elliptic B, classes

We assume that, for every v € Ry, the function x — ¢(x,v) is mea-
surable and, for every z € , the function v — ¢(x,v) is increasing
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and continuous, ¢(z,0) = hlzulo o(x,v) = 0. We say that a measurable
v—r

function v : 2 — R belongs to the By, ,(2) class for some s > 1, if

lul* € I/Vli’cl(Q), u € L>®(Q), M := supgq |u|, and there exist positive

numbers K7, ¢1, c2, and cg such that, for all k,l € R, k < I, |k|] < M,

| < M, for any ¢ € (0,1], o € (0,1), and for any ball B,(x¢) such that

Bg,(x0) C £, the following inequalities hold:

/ \Vul(u — k)5 da
AT

+
fop(1—0) VA p(1-0)

Ms (k) (1 o e
< Kl + {E‘Az_’p(la’) \Al—t_p(lfo)’ +e%o SIAZP
(3.1)
6010'_63 U — k _
VIR TS / “’(“"O’Kl( <)+><CQ 1‘”}
SO(TCOa T) Ak,p op
Klgcl +
+ Al
M (k) k,pl>
So(x07 +T)
/ |Vu|(u — 1) e
A;P(1*0'>\A’;P(1*U)
ME(D) (1, _ 1. —cs| A—
< Kl ) {€|Al,p(1—0) \ Ak,p(l—a)‘ +elo 3|Al,p| ( )
3.2
£Clg—Cs u—=k)_ _
+M(z)/ 90<xo,K1( C) )CCQ 1dw}
SD(Q’JO, o ) Al,p Up
K1€Cl _

— o Al
(o, L;(Z)) b
where ¢ € C§°(B,(20)), 0 < ¢ <1, ¢ = 1in B,q_g)(20), |V¢| < (0p) 71,
(u— k)t = max{x(u—k),0},

Af’p = B,(xo) N {(u—k)+ > 0},

My (k) = My (k,p) == sup (u—k)+.
Bp(xo)
We now consider some examples, where the solutions of quasilinear el-
liptic equations with non-standard growth belong to the classes B1 5 ,(£2).

Example 3.1. Let p(z) be a measurable function on  satisfying the
condition

1<p<plr) <qg<+oo, (3.3)
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let WHP()(Q) = {u : u € WH(Q), |[Vu|P®) € LY(Q)}, and let, for every
u e WP (Q),

[ullwrpe @) = llullLr @) + inf {)\ TA > 0,/Q IVuPENPE) dz < 1}.

We note that VVO1 P(@) (Q) is the closure in WP (Q) of the set of functions
from WP (Q) with compact support.
By definition, a function v € W) () is a solution to the equation

Apyu = div(|VuP®2vy) = 0, (3.4)

p(T)
if
/Q IVu[PO)2VuVnde =0, Vne W™ (). (3.5)

Interest in Eq. (3.4) with a variable growth exponent p(x) arose in
the works [105,106] in connection with the study of variational function-
als with integrands of the form |Vu[P®®)/p(z), and with the Lavrent’ev
effect [68] for such functionals [107,108]. In particular, in [108], it was
established that if

p(x) = p(y)| < L/Infz —y|7" for |z —y| < 1/2, (3.6)

then the sets of smooth functions C*°(£2) (C§°(€2)) are dense in W ()
(Wo(92)), and condition (3.6) is exact for the validity of this assertion.
If condition (3.6) is violated, then there is a counterexample of a non-
Holder solution to Eq. (3.4). Subsequently, the inner Holder continuity
of solutions of Eq. (3.4) with condition (3.6) was established in [6,47,64].
The Wiener-type criterion for the regularity of boundary points for Eq.
(3.4) under assumptions (3.3), (3.6) was obtained in [7].

Testing the integral identity (3.5) by n = (u — k)+(?, ¢z > ¢, where
¢ is the same as in (3.1), (3.2), using the Young inequality and (3.6), we
obtain

/ |Vu[P@®) da
+

k,p(l—0)

_ p~—1 B
< C(n,p,q,L,M)Mi(k) /Ai (wk)i> Pt gy
k,p

ap opG

where p~ := ming () p(x). From this by the Young inequality, we arrive
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at

M (k)
[ vl < EEEar o\ A
A+

+
koo(1-0) VAL p(1-0)

() L,

-1
IVulP®) dz + ep \' AT |
M. (k) e

,p(1—0)
< My (k) e IM(k), .
ep | k,p(1—0) \Alpl o) |+C(n’p’q’L’M)T|Ak,p
p——1
p + M ( )
*(mwﬂ il < 4% pt1-0) \ Aipia—)
. Myk) [ p YO
L, M)eP~HAF +
Fetmpa L AN "””( otp  \ My (k) ’

which yields (3.1) with s = 1, p(x,u) = wP®)=1 e =p—1, ¢35 = ¢, and
K depending on n, p, q, L, and M. The proof of inequality (3.2) is
completely similar.

Example 3.2. Let us consider the equation Aju = 0, where g satisfies

p—1
g(w) > <w> , w>v>0, p>1. (3.7)

We set G(w) := g(w)w for w > 0 and write WH%(Q) for the class of
functions which are weakly differentiable in Q with [, G(|Vu|) dx < +o0c.
WO1 G (Q) := {u € WHF(Q) : u has a compact support in Q}.

By a solution to the equation Aju = 0, we mean a function u €
WHG(Q) that satisfies the integral identity:

/ g(IVu|)VuVndz =0, Vne Wy 9).
Q

The study of the equation Aju = 0 goes back to the work by Lieber-
man [72], which generalizes the natural structural conditions proposed
by Ladyzhenskaya and Ural’tseva [67] for the coefficients of second-order
quasilinear elliptic equations to ensure the regularity of their weak solu-
tions.

Testing the previous integral identity by n = (u — k)1(?, where ( is
the same as in (3.1), (3.2) and using the evident inequality

g(a)b < eg(a)a+ g(b/e)b, Va,b,e >0, (3.8)
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we obtain
My (k —k
[ cuvuar<aup [ (502D g,
Al p(1—0) ap k.o ap(

From whence, by (3.8), we arrive at (3.1), (3.2) with s = 1, p(z,u) =
o(u) =g(u), g =p—1, c3 =1 and K; depending only on n and p.

Example 3.3. Let us consider the two-phase elliptic equation
div(|Vu[P 72 Vu + a(z)|Vu|T2Vu) = 0, z € Q, (3.9)

which is the Euler—Lagrange equation of the functional
P, Q) = / (IVl? + a(z)|Vul?) dz,
Q

where 0 < a(z) € C*¥(Q), 1 < p < ¢ < p+ «. The functional P, is
a part of the family of variational integrals introduced by Zhikov [105,
106] in order to develop models for strongly anisotropic materials. They
intervene in the homogenization theory and elasticity theory, where the
modulating coefficient a(x) dictates the geometry of a composite made by
two different materials, with hardening exponents p and ¢, respectively.
They can also be used in order to provide new examples of the Lavrent’ev
phenomenon [107,108]. From the global viewpoint, the integrand of the
functional P, , satisfies the so-called (p, ¢)-growth conditions:

|[VulP < |VulP 4+ a(z)|Vul? < e(1 + [Vul?).

Now, the regularity theory of minima of such functionals is well devel-
oped, starting with the pioneering contributions of Marcellini [76-80] (see
Sec. 1 and [84] for a survey). New non-trivial phenomena appear due to
the fact that the integrand of the functional P, , switches between two
different types (phases) of elliptic behavior, according to the coefficient
a(x). Specifically, on the set {a(z) > 0}, the growth of the integrand
with respect to the gradient is polynomial with order q. Whereas, on the
zero set {a(z) = 0}, the growth occurs at a rate of p. As a result, Eq.
(3.9) demonstrates a new type of non-uniform and doubly degenerate
ellipticity that mixes up two different kinds of p-Laplace operators. The
study of non-autonomous functionals characterized by the fact that the
energy density changes its ellipticity and growth properties according to
the point x € Q has been continued in a series of remarkable papers by
Mingione et al. [17-19,26,27]. In this regard, we also cite Skrypnik and
Buryachenko [93].
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Let u € WH4() be a weak solution to Eq. (3.9), i.e. u satisfies the
integral identity

/ (IVulP72VuVn + a(z)|Vul|*?>VuVn) dz =0, Vne W)
Q

Set ga(v) := 0P~ + av?™! and

[a] L sup ‘G(IB) — a(y)’
a =
z,y€Q, xF#y |I’ - y‘a

Testing the previous integral identity by n = (u — k)+(%?19P where ¢
is the same as in (3.1) and (3.2), we obtain

[ s IVu)ivulds

k,p(1—0)

Mo (k —k
<v(n,p,q) :;)l[;gq@<<uamgi>cw+qp%m. (3.10)

The following two cases are possible: a(zg) = 0 or a(zg) > 0.
In the first one, we have

Therefore, inequality (3.10) implies that

/i |Vul|P dx
A

k,p(1—0)

My (k —k p—1
< ’7(71,]9, q, [a]a,M)O'p_q_lip()/Akip <(u0—p<>i> C02_1d$.

If a(zg) > 0, we set R = %(a(mo)/Q[a]a)l/o‘. Then fa(zo) < a(z) <
3a(wo), * € By(wy) C Br(xo), and inequality (3.10) implies that

| VIVl da

k,p(1—0)
M (k) (u—FK)x\ eyt
< ’Y(qupa Q> / a(zo) < CCQ dx.
ap £ apC
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From this, using (3.8), we arrive at (3.1), (3.2) with s =1, p(z,u) =
Ya(z)(w), c1 =p—1, c3 = 1, and K; depending only on n, p, and q.
The case of the equation

div(]Vu\p_QVu(l +a(z) P (1 + |Vuy))) —0, 0<f<1
0<a(z)eC®(Q), p<a<l

can be considered almost similarly.

Example 3.4. We consider the equation

p=2
(=™ Z DO‘[( Z ]DﬁuP) ? Do‘u} —Aqu=0, ¢g>mp, m2=2,

laj=m |Bl=m

which comes from work [94] (see also recent works [23,62,63,97-99] and
references therein).

Let u € WH4(Q) N W™P(Q) be a weak solution to this equation, i.e.
u satisfies the integral identity

p—2
Z / Z ]Dﬁu]) N DauDavdx—l-/ V|1 2VuVudz = 0
Q

laj=m |Bl=m
for all v € W0 Q) NWIP(Q), and let ¢ € C§°(Q) be a function with the
properties 0 < ¢ < 1, ¢ = 1 in B,1_g)(w0) and |D(| < fymm(ap)_""',
la] < m, where B,(wo) and B,;_q)(70) are the same balls as in (3.1)
and (3.2).

Testing the integral identity by (u — k)%.(“?, where s is a sufficiently
large positive number, and using the relations (see, e.g., [96, Lemma 4])
D*((u — k)5.¢?) = s(u — k)5 ' D*u¢® + R(a, 3, ¢2)

and
ol 5=l la|
|R(a7 8, 02)| < V(av S, 02) Z (u - k):i: . |Dﬁu|mccz
18l=1
+ (e 5,2)(0p) N (u = R)2¢ T 2 <ol <m
we obtain

/Ai { > DoulP+ Y yDau|fI}(u—k)j;1gC2dx

kp ~ |ajl=m la|=1

1 / s+q—1 reg— / -
< — u—k){T(Cdr + O u— k)7 C%dr (311
(O’p)q Ai ( ):I: 1 A;p( ):t (3 )

+c/{

|D“u|pa}<u BT de,

2<|a|<m—1
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where

1 —-11 — 1
7:|a| -+ = |a|—for 2< o <m—1,
Pa m—1lp m-—1q

mp < q <q<n,

and C1 = Cy(n,m,p,q,q1,s,ce) and s = s1(m,p, q,q1) are positive con-
stants. We use the integration by parts as in [96, Lemma 4] to estimate
the last integral on the right-hand side of (3.11) as follows:

[ A T e fa-nste

+
kp ~2<]al<m—1

< 5/i { > D+ Y |Dau|q}(u—k);1¢@dx
Ak

»p S al=m |a|=1

C'2 1 st+q—1 rco—q §—13 +Co
+5}‘2[(U,0)‘1/Ai (u—k)ZT" ¢ dx+/Ai (u— k)i 5¢?dx
k,p k,p

(3.12)
with arbitrary 6 € (0,1) and some positive constants s2 = »2(m, p, ¢, q1),
ng = s3(m,p,q,q1) and Co = Cy(n, m,p,q,q1,Ss,c2). Inequalities (3.11)

and (3.12) for an appropriate choice of ¢ give the following:

/Ai { S peup+ Y |Dau|q}(u—k);—1g@dx

kp ~|ajl=m la|=1

1 _

<l [ enriens [ e ngecn
(0p) Jat, A%

with some positive constants Cs(n,m,p,q,q1,$,c2) and s¢4(m,p,q,q1).

From this, we arrive at (3.1), (3.2) with some sufficiently large s, p(z,u)=

o(u) =ui!, ¢y = q—1, c3 = ¢, and K; depending only on n, m, p, and

q.

The main result of this section reads as follows:

Theorem 3.1. Let u € B ,,(2) with some s > 1, and let ¢ satisfies

o
plz,w) 2(“’) L w8 >0, (3.13)

for all x € Q, with some p > 0 and some sg > 0. Then wu is locally
Hélder-continuous in §2.
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Theorem 3.2. Let 0 < u € By1,,() with some s > 1, and let ¢
additionally satisfies (3.13). Then u satisfies the Harnack inequality:

max u < ¢( min +p"/*).
BP(IO) Bp(xo)

Theorems 3.1 and 3.2 are immediate consequences of the following
two lemmas (see [67] for details).

Lemma 3.1. Let 0 < u € By () with some s > 1, and let ¢ satisfies
(3.13). Fiz a € (0,1), N € (0, M). Then there exists v € (0,1) which
depends only on s, n, c1, co, c3, K1 and a, and is such that if

{2 € By(@) s u(z) < N} < v|B,(@))
then either
N < rl/s (3.14)

or
u(r) = aN for a.a. x € B, )5(T),

provided that Bs,(T) C .

Lemma 3.2. Let 0 < u € By ,,(Q) with some s > 1, and let ¢ satisfies
(3.13). Assume that, with some N € (0, M) and some € (0,1), the
following relation holds:

{z € B(T) : u(x) < N} < (1= 5)[B(T)].

Then there exists a number £ € (0,1) which depends only on s, n, c1, ca,
c3, K1, and B and is such that either

EN < rl/* (3.15)

or
u(z) 2 EN  for a.a. © € Bo(T),
provided that Bs,(T) C €.

The proofs of Lemmas 3.1 and 3.2 are completely similar to that
of |67, Lemmas 6.1, 6.2, Chapt. II]. Particularly, in the proof of Lemma
3.1, we use (2.1), Lemma 2.2, and inequality (3.2) with

k

_ — 1
N N [ ANy o \ Ao |\ 51 019 i
- 2j+17 - 2]’ - ’Br(fﬂ ) .7 » ]*7
where j, is a sufficiently large positive number. In addition, assuming

that (3.14) and (3.15) are violated, and ¢ is so small that =1 > 5o, we
can use (3.13).
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Remark 3.1. We note that Theorems 3.1 and 3.2 improve Lieberman’s
results [72], since condition (3.13) in [72] is assumed with sg = 0. We
give an example of the function ¢ which satisfies (3.7) and (3.13) with
so = 1, but, at the same time, condition (3.13) with sy = 0 will not be
fulfilled.

Let ¢1 : (0,1) — (0,400) be a function with the propertieS' 1
is nondecreasing on (0,1), SEEO ¢1(s) = +oo, and fo 1(s)ds < +o0.

Consider the function

Jei(s)ds if 0<w<1,
0

p(w) = 1
w [ p1(s)ds if w>1.
0

From the definition of ¢, it follows that, for 0 < v < w < 1,

v w

v v
/cpl()ds—w/cpl —s ds w/gol
0

0 0

Moreover,

p(w) )E for any 0 < v < w,
p(v) ~ v

o (3.7) is fulfilled. We also note that (3.13) is evidently fulfilled for
so = 1, but
/
i B gy )
u—1—0 gp(u) u—1— Ofo 901 ds
So, condition (3.13) will be violated for sy = 0.

= +00.

Remark 3.2. We will consider a possible generalization of B classes.
Particularly, we assume that the following inequalities hold instead of
(3.1) and (3.2):

/ |Vu|dx

A 1)\ p(10)
M (k) -
sk p { ’Akpl —0) \Alp(l U)H_glp (p)‘Al—;p
(3.16)
N £ G(P){‘ n |
1 k,
(o, Mt,(k)) g
M —
+(k) / S0<$O,K1 (u k)+><—c2—1d }’
p g op
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/ |Vu|dx

AZP(I*U)\Al:m(l*G)
M_() (1, _ _ o -6 _
s K= {5|Al,p(1—a> \Ap ooyl T %0 (p)’Az,p|}
1o p=0(p) _ M_(I u—1)_ _
+ K11\5(l){‘Al,p’ + O / 90(1707}(1())(62 1d1’}7
¢ (0, =) P Jag, op¢
(3.17)
where ¢ satisfies condition (3.13) and
0<o(p) < L = 0<L o
< SL——, <L< —/—F—0Fm,
() ln% 1+n(c; +1)
. ) Ap) . ) ) .
A(p) is nondecreasing, and is nonincreasing for sufficiently small p,
P

- . Ap) /dp
lim A(p) =0, lim —— = +o0, — =+
P AP =00 f = =t f N T

As an example, the function A(p) = plog 1 satisfies the above conditions.

These classes can be used in the study of the equations A, u = 0,
1 < p <p(x) < g < +oo, when condition (3.6) fails (see, e.g., [8,11,1009,
110] and references therein). Assuming osc{p(z); B,(zo)} < 6(p) instead
of (3.6) and testing (3.5) by n = (u—£k)+(*, c2 > ¢, similarly to Example
3.1, we arrive at (3.16), (3.17) with p(z,u) = u?®~1 ¢; =p—1, c5 = ¢,
and K; depending on n, p, ¢, L, and M.

Lemmas 3.1, 3.2 can be reformulated as follows.

Lemma 3.3. Let u > 0 satisfies (3.16) and (3.17), and let ¢ satisfies
(3.13). Fiza,§ € (0,1), N € (0,M). Then there exists v1 € (0,1) which
depends only on n, c1, ¢z, c3, K1, and a and is such that if

{z € B(T) : u(z) < ENY < vir™7)|B.(T)),
then either EN < sor or
u(z) = aN for a.a. x € B, )5(T),
provided that Bs,(T) C .

Fix pg by the condition

L 14n(c1+1)

_ 14 —
Cvr 9 <log Ai}ﬂo)) " < A(ppo)
0 0

)
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where C > 0 is a fixed number depending only on n, ci, c2, c3, and K1,
and vy is defined in Lemma, 3.3.

Lemma 3.4. Let u > 0 satisfies (3.16) and (3.17), and let ¢ satisfies
(3.13). Assume that, with some N € (0, M) and some /5 € (0,1),

{z € By (7) : u(z) < N} < (1 - B)[B(T)].
Fiz j. by the condition

1+cq
(&
L

' _ _g(p) (e +D)
Jx = Cl/l (r) €1

Then either
N < s0A(r) (3.18)

or
u(z) = N/ for a.a. € By (),

provided that Bg,(T) C B,,(T) C Q.

The proof of Lemmas 3.3 and 3.4 is completely similar to that of
Lemmas 3.1 and 3.2. Particularly, in the proof of Lemma 3.4, we use
(2.1), Lemma 2.2, inequality (3.17) with k = N/2/*1 | = N/2J and

_1

|Akr\Alr)1+cl LGN
e=|—--—" ’I"H_cl7 j:0,1,27j*
( | Br(T)]

In addition, assume that (3.18) is violated. Since

14 L1+n(cl+1)
)\(7‘)) c1

i <ot ()

<r28 5T = \(r) (3.19)

for r < po, we can use (3.13).

We give a sketch of the proof of the continuity of the function u
satisfying (3.16) and (3.17).

Fix r < pg. The following two alternative cases are possible:

1
{z € Br(wo) s ul@) > p” = wr/2}| < 5|Br(0)]
or )
[{z € Br(2o) : u(z) < py +wr/2} < 5[Br(20)l,
where
wh= sup u, p. = inf u, w,=p —p .

Br(x0) By(z0)
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Assume, for example, the first one. Then, by Lemma 3.4, we obtain
wrrp < (1 - 2710w, + soA(r), T < po.

From this, using (3.19), we obtain

r
<1 — —— |w, , T < po.
Wr/2 ( 2)\(r)>w + s0A(r), < po

Iterating the previous inequality, we arrive at

P ds
wr < Wy, €X — — | +7A
wo (=7 [ 55) 0

for any 2r < p < pp. This implies the continuity of w.

4. Parabolic B; classes

4.1. Definition of the class and the main result

For simplicity, we consider the parabolic By, classes that correspond
to second-order parabolic equations with nonstandard growth.

We assume that, for every v € R4, the function (z,t) — ¢(z,t,v)
is measurable, and, for every (z,t) € Qp := Q x (0,7), 0 < T < 400,
the function v — @(z,t,v) is increasing and continuous, ¢(z,t,0) =

ugnjo o(x,t,v) = 0.

We say that the measurable function u(x,t) belongs to the parabolic

class Bi,,(27),

U € Cioo(0,T; L2, (Q) N LL (0, T; W2 () N L=(Qp), M :=sup|ul,

loc
Qr

and there exist constants § > 0, K1, K, c1, ¢, and c3 > 0 such that, for
any (zo,t0) € Qr, any cylinder Qg,g0(x0,t0) := Bgp(x0) x (to —86,t9) C
Qr, 0 < Kop'*® for all k,1 € R, |k, |I| < M, k < I, for any ¢ € (0,1],
0,61 € (0,1), for any ¢ € C§°(By(w0)), 0 < ( <1, ¢ = 11in B,q_s)(z0)
and |V(¢| < (op)71, for any A(t) € CHR,), 0 < A(t) < 1, the following
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inequalities hold:

K4 —c3
// IVulA(t) do dt < £ 9 X
X ¢<x0 o M+<k>>

k,p(1—0), G\Al ,p(l—0),0 ’ ’ P

Affo-rinisas [ wmian-o

Al

r Bp(wo)x{to—0} (4.1)
+p- // <x0,t0,K1 ]z) )( k). ¢~ 1dwdt+]A p9|}

Al oo
LK M+( )|A+ o) 9\Alp1 ” 9|+K1M\AL,9,

K16610'703
<
// [VulA(t) dr dt < t M) X
Al p(l—0), B\Akpl o) P\ ro.to, 1%
{//u—l\)\t|dxdt+ / (u—1)2 A(to — 0) d
Ao Bp(wo)x{to—0} (4.2)
l o _
+p // <l‘0,to,K1 C) >( — l),C 2 ldl‘dt—f- |Al,p,9|}
lpG
M- s M_(1)
+K1 (>| l,plUG\Akp109|+K1 ( | l,p,9|

(u — k)AN(t) d
Bp(lfo') (.’)30) X{t}

< / (1 — K2 A(fy — 0) da + K10~

Bp(wo X{to 9}

{//u i|)\t|dxdt+g0(xo,to, i(k))Mi(k)prd
p p bl
—k)+
+p” // (x(]atO»Kl C) )( k) dt + | Ay p0’}

Vt e (to—0,to),

(4.3)
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M M
1113_ (k) dr < / ln?|r =(k) dx
Wi Wk
Bp(1—o) (wo) x{t} Bp(x0)x{to—0}
1 _92 Klwk‘ co—2 + (44)
+K, lnq{(ap) //1/)(:50,750, - )Q‘ 27 %dx dt + |Ak,p,9‘ )
Aljc[,pﬁ

Vit e (to — Q,to),
where $(z,t,5) = (2, ,5)/5,
(u— k)t := max{x(u— k), 0},
Wg 1= (1 + 61)Mi(k‘) — (u — k)i,
Ao = Quolxo, to) N{(u— k) > 0},
My (k) = My(k,p,0) == sup (u—k)s.
Qp,0(0;t0)
We will assume that there exists sg > 0 such that the function

W(x,t,s) = p(x,t,s)/s satisfies one of the following conditions:

Y(x,t,s) is nondecreasing for all (z,t) € Qr and for s > s, (4.5)
¥ (x,t,s) is nonincreasing for all (z,t) € Qp and for s > sy, (4.6)

and ¢(z,t,1) < 1 for any (z,t) € Qr, where < means that there exists
constant K > 0 such that K—! < ¢(x,t,1) < K. We also suppose the
existence of a constant ¢ > 0 such that p(x1,t1,v/p) < co(xa,ta,v/p)
for any (x1,t1), (z2,t2) € Qp0(xo,t0) and every v € (0, M).

In the case (4.6), we additionally assume that, for all ¢ € (o — 6, t¢)
and € € (0,1), the following inequality holds:

D- / Gk(u)w 2 dzp

0
By (o) x{t}
+£ / Vin (L +e1)My(k) t_t0+0§62dac
2¢e W 0
Bp(wo)x{t}
K, e p s
< — ©2 K %1 _— B
;[ G Ko ( + (51Mi(k)> > (z0)]
Bp(wo)x{t}
Kywy
<P<$Oat0, cr()wk
+ Kq(eo)™ P ¢ e,
wy
By (o) x {t} ¢<p>

(4.7)
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where ®(w) := ®(xg, tg, w) := [ @(xo,to, s)ds,

ST

(u—k)+

Gulw) = | - <((11+j;1)§‘]{;§;)38> s,

P

0

Here, we used the notation D~ for the derivative

D~ f(t) := limsup JO=Jt=n .
h—s0 h

Example 4.1. Let u be a solution to the equation u; — A, yu = 0,

2n
n—+1

<p<p(x,t) <q,

L
| In(|lz =yl + [t = 7]’

p(z,t) — pz,7)| < (z,t) # (y, 7).

Solution u € Cioc(0,T5 LE (2)) N Li(f t)(O T; I/Vlif(x t)(Q)) satisfies
the integral identity

/Qu(:c,tg)n(x,tg) dm—/u(w,tl)n(x,tl)dw

Q

to
+ / /{—unt + |Vu[PTD=2vuVn) de dt = 0, (4.8)
t1 Q

for any 1 € C(0,T; L*(Q)) N LP@H(0, T; WHen(Q)), n, [m| € L2(€),
and for any to > t; > 0.

We test the integral identity by n = (u —k)+(9(z)A(t), where ¢, A as
n (4.1), (4.2). By the Young inequality we arrive at

/ (u — t)dx + // (VuP@EON(t) da dt

B,(1-0)(z0)x{t} k p(1—0),0

</ (1 — k)2 A(to — 0) da
B, (x0)

~(n,p,q, M, L) //<u— iAtH((“_ E: >>dxdt,
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where p~ = min p(x,t). From this we arrive at (4.3) and, using the
Qp,0(w0t0)

Young inequality similarly to Example 3.1, we arrive at (4.1), (4.2) with
QO(I‘, ta S) = sp(a},t)—l'
To prove (4.4), we test the integral identity by
M (k)
= |In 1(x).
1= [ i ),
Then, by the Young inequality, the standard calculations give (4.4) with
P(x,t,s) = sP(zt)=2
To prove (4.7), we note that the integral identity (4.8) can be rewrit-
ten in the form (for details, we refer the reader to [34, Chap. IIJ):

fimsf [ -

V(1 — k)4 [PEO2Y (g k)ivn} dedt <0, to>t >0, (4.9)

for any k£ > 0 and any n > 0, 7 is the same as in (4.8).
—to+06
Testing (4.9) by n = p~P w1 P 0+

inequality, we obtain

D / Gk(u)w Cldz

¢%(x), and using the Young

0
By (w0) x{t}
L P~ p—t—t0—|—9 q
+ / (wk) V| == (Tda
By (w0)x{t}
<D / Grlu tg+0Cdx
mo)X{t}
o+ 0
+ / (wk) |V, [P@ )73 ¢ de
Bo(0)x{t}

n / (;})k)pt—tg—l-Gqux

B (xo)x{t}
/ Gp(u) ¢?dx

170 X{t}

+wm@%Mw(H(ﬁﬁ;mf)wmmL
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From this, using the Young inequality with arbitrary € > 0, we arrive at
(4.7).

Example 4.2. Let u be a solution to the equation
—Agu =0, (4.10)

where ¢ : (0,4+00) — (0, +00) satisfies the following condition:

w\P !
2() , w>v>0, p>1.
v
For every s > 0, we set G(s) := g(s)s.

We say that the function u € Cioc (0,75 L2 ()N LE (0, T; W)

loc

is a solution to Eq. (4.10), if the following integral identity holds:

/Qu(x,tg)n(x,tg)dx—/Qu(:v,tl)n(w,tl)drv

f2 Vu
+/ / { —um+g(Vu|)Vn} dedt =0, to >t >0,
t1 Q ‘VU’

for any n € C(0,T; L2(Q)) N LE (0, T; W% (), n,m: € L= (Qr).

We test the integral identity (4.11) by n = (u—k)+£(%(x)A(t) and use
(3.8) and the Young inequality to arrive at (4.1), (4.2), and (4.3) with
p(x,t,u) = p(u) = g(u).

To prove (4.4), we test the integral identity (4.11) by

(4.11)

Mi(k) / o
[1 2 T A4+ e)Me(k) — (u— k)iLC (z)A(1).

Using (3.8), we arrive at (4.4) with ¢(s) = g(s)/s.
To prove (4.7), we note that the integral identity (4.11) can be rewrit-

ten in the form
to
/ / { :|:77t
t1

/(U— iﬁdﬂﬁ
V(u—Fk)s N
(|V(u — )i|)7‘v(u — k)i‘v }d dt <0, ta >t >0, (4.12)

for any k£ > 0 and any n > 0, n is the same as in (4.8).
Testing (4.12) by
w, t—tg+0

()

¢,
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using (3.7) and the fact that ®(“£) < %G(%), we arrive at
D~ Gk(u)t tg+9qu1:
By (o) x{t}
G(|Vwk|) t—ty+6 q
+ / G(%) 0 ¢ldx
Bp(z0) x{t}
YWk
1 ) G(56) ,
Ry
Bp(Io)X{t} BP(IE())X{t} ( P )
By (3.7), we have
Vw 1 |Vwg Wi G(|Vwy __p_
g | wkk| = CL(wk) g<7> < ci(w’“>|) e ot (4.14)
p p

Combining (4.13) and (4.14), we arrive at (4.7).

Example 4.3. Let u be a solution to the equation

u — div(|VulP?Vu + a(z, )| Vu|7?Vu) = 0,

- 2
0 < a(z,t) € COCOP™(Qr), p = min(2,p), ni—&?—ll <p<qg<?2 or
p = 2. We note (see [24]) that the constant ¢ from the definition of the
B

Ga(5) == ga(s)s, ga(s):=s""1+as?™t, s>0.

The solution u € Cioc(0,T; LE _(2)) N Lg‘g (0, T VVI})’CG“ (2)) satisfies
the integral identity

/Qu(x,tg)n(x,tQ)d:c—/u(x,tl)n(x,tl)dx

Q

b2 Vu
+/ / { —unt + Ga(w) (IVU]) == Vn} dxdt =0, ta>1t; >0,
t1 Q |VU|

for any n € C(0,T; L*(Q)) N L% (0, T; Wol’G“(Q)), n, n € L (Qr).

The proof of inequalities (4.1)—(4.4), (4.7) is completely similar to
that of Example 4.2 in two alternative cases: a(xg,tg) = 0 or a(zg,ty) > 0
(see Example 3.3).
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The case of the equation
up — div(|Vu|p_2Vu(1 +a(z,t)InP(1 + |Vu|))> =0, 0<p<l,

0 < a(z,t) e C¥P-(Qr), B<a<l.
can be considered almost similarly.
The main result of this section reads
Theorem 4.1. Let u € By ,(Qr) and ¢ satisfies (4.5) or (4.6). In case
(4.5), we assume that there exists so > 0 such that

+ K
@((xvt?qu)) < 2<w> , W=V =S8y > 07 (415)
w\r,t, v

v
for all (x,t) € Qp, with some > 0 and some sg > 0. Then u is locally
Holder-continuous in Q.

Remark 4.1. We note that Theorem 4.1 improves the results in [53-55],
since only the case sp = 0 in conditions (4.6) and (4.15) was considered
there. The example from Remark 3.1 can be used also in the parabolic
case. We also give an answer to the question on the Holder continuity of
solutions to the parabolic equations with (p, ¢)-growth, p < 2 < ¢q. So,
the function o(s) = sP1 45971 s > 0 and p < 2 < ¢, satisfies conditions
2 — p\Y(a-p)
(4.5) and (4.15) with sg = (—g)
q—
hand, the function ¢(s) = sp_l(l—i-ln(l—i—s)), s>0,andp<2,qg=p+1,

and ¢ = ¢ — 1. On the other

-1
satisfies condition (4.6) with sp = exp (%) -1
-Pp

4.2. DeGiorgi-type lemmas

Below, we use the simplified notations ¢(u) and (u) instead of
©(xo, to, w) and P(xo, to, u).
The main result of this section is

Theorem 4.2. Let 0 < u € By ,(Qr), and let inequality (4.15) and
condition (4.5) or (4.6) be fulfilled. Fiz N € (0,M), a € (0,1). Then
there exist numbers B > max{1l,so} and v € (0,1) which depend only on
Ky, ¢, ¢, ¢, c3,n, T, p,a, and N and are such that if

|QP,T(:EO7t0) N {U’ < N}| < V|QP,T(IE07tO)|7

then either
N < Bp (4.16)

or
U(I,t) =z alN  for all (fL‘,t) € Qp/2,7/2(x0>t0)‘
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Proof. For 7 =0,1,2,..., we define the sequences

(1—a)N p _ P+ Pj+1
kj : —aN+T, pj = 5(1+2 9, pj = %,
T i _ T+ T
Tj = 5(1-}—2 N, 7= L 2]“, Bj := B, (z0),

B] = Bﬁj (l’o), Q] = ij,Tj (QTO,tQ), @] = Qﬁj,?j (antO)a

Ajvkj = Akj,pj,‘rj’ Ajvkj = Akjvﬁjv?j.

Let \;(t ) be such that \;(t) =1 for t >t — 741, Aj(t) =0 for t < t—7;,
0< )\ <1 and |[d)\;/dt| < 2772771, Let also ¢; € C§°(B;), be such that
0< g < 1,¢; =1in Bj;1 and |vgj| < 22p7h

We also assume that condition (4.16) is violated, i.e.

N > Bp. (4.17)
Then inequality (4.2) with ¢ = 1 implies that

// |V (K — max{u, kj1})+G;) [dwd

Aj,

<y // |Vu|dmdt+/ (k; — max{u, k:]H}) |V (ldadt

Z ks \Ajk]+1
N N
<")/23’y<1+p>‘14]k|
P\ Te(3)

Here, we also used our assumption that ¢ is nondecreasing, and the
evident inequality (k; — max{u, ij})Jr < (kj — u)4 holds.
By (4.17), inequality (4.3) can be rewritten in the form

N (N Np
sup / (kj —u)? \j(t)dx < 72”(,0() (1 + )’Ak‘
i—7;<t<t /B, ’ A P P T‘P(ﬁ) P

p

From this by the Sobolev embedding theorem and Holder’s inequality,



I. I. SKrRYPNIK, M. V. VOITOVYCH 427

we obtain
(k‘j — kj+1)‘z4j+17kj+1‘ < //(kj — max{u, kj—i—l})—&-(j)\j dxdt
Zj,kj
1
2 n+2
< ’y( sup / (kj — u)+/\j(t)dac)
t—7;<t<t B

_n_

n+2 2
X </ |V((k] - max{u, kj+1})+<j)‘ dﬂ?dt) ‘Aj,kj|"+2

Ajk
Jikj

< (s(5) 7 ()

From this, we get
; N 1 n+l
el = |Aj+1,k]'+1| < 72]7 <Tg0(p) ) n+2 (1 n N,O )n+2 1+%+2
’ |Qp,r (0, t0)] l-a Np 7'90(%)

This inequality together with Lemma 2.2 implies that lim y; = 0, pro-
J]—00

n+1 n+1

n+2 Np \n+2 1
<1 o > Ay

vided v is chosen to satisfy

N N —n—1
— —2—n2—7(n+2)2 1 — q)"t2 P <1 p > )
v d e\

This proves Theorem 4.2. ]

Theorem 4.3 (DeGiorgi type lemma involving initial data). Let
0<u€Biy(Qr). Fiz N e (0,M), ac (0,1). Then there exist numbers
B > max{1,s0} and v1 € (0,1) which depend only on K1, ¢, c1, ca, c3,
n, 7, p, a, and N and are such that if

Np

To(5)

T < u(x,to —7) = N,

and
|Qp,r (w0, t0) N {u < N} < 11|Qp,r (20, o),
then either (4.16) holds true or

u(z,t) = aN for all (z,t) € Q,/2,(z0,t0).

Proof. The proof is similar to that of Theorem 4.2. Taking n(t) = 1 into
account, using (4.2) and (4.3), and repeating the same arguments as in
the previous proof, we prove Theorem 4.3. The precise choice of v is

vy = 7727n277(n+2)2(1 _ a)n+2.
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4.3. Holder continuity. Proof of Theorem 4.1

In the proof, we follow [34] (see also [53-55]). Further, we need the
following lemmas.

Lemma 4.1. Let 0 < u € By ,(Qr), and let inequality (4.15) and condi-
tion (4.5) or (4.6) be fulfilled. Assume also that, with some N € (0, M)
and some 3 € (0,1), the following relation holds:

o € B(@) : u(z,F) < NY| < (1 - B)|B, @) (4.18)

Then there exists a number j1 > 1 which depends only on K1, n, ¢, ci,
ca, c3, i, and B and is such that either

N

21

X

Hx € B.(3@) : u(x,T) < 2].]122 }‘ (1 _ 52) IB.(7)] (4.19)

for all t € (£, +0), where § = r2[(»(N/2r)]~! in case (4.5), and 6 =
r2[(N/271720)] 7L in case (4.6).

Proof. We use inequality (4.4) with p = r, k = N/4, ¢; = 2771, In case
(4.5), since 1N(14e1) — (N —u)4 < AN(1+¢1), we estimate the second
term on the right-hand side of (4.4) as follows:

oy L // (lN 1+61>T (N_u)+)da;dt

A5 /ams (4.20)
1 (N1 +e1)/r)

gfylna SN/ | Br ()| < vi1]Br(@)]-

In case (4.6), since N(14¢e1) — (N —u)4 > $Ney, we estimate the
second term on the right-hand side of (4.3) as follows:

81 // <1N1+81)7~ (N_u)+>da:dt

AN 4o (4.21)

N
<2 2 o5 1B = it By o).

The term on the left-hand side of (4.4) can be estimated by

[T T
- NI +e1) — (3N —u)4
Br(l—o’)(x)x{t}

> (j1 — 1)’z € By(@) : u(z,t) < 272N} = no(j — 1)%|B:(@)].
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Then, from (4.4), (4.18), (4.20), and (4.21), we arrive at

{z € B.(Z) : u(z,t) <271 72N}

<im@I{ (52 1)2<1 — ) oI,

Choosing o so small that no < 32/4 and then choosing j so large that

. 2 . 2
<.Jl ) <1+28, 70_‘33.371<5f

ji—1 (-1 47
we get the required relation (4.19). O

Lemma 4.2. Let 0 < u € Bi,(Qr), and let condition (4.5) and in-
equality (4.15) be satisfied. Assume also that, with some N € (0, M) and
some B > 1, the following inequalities hold:

u(z,t) = N for x € B,(T), (4.22)

N > Br.

Then, for any &, v1 € (0,1), there exists a number jo which depends only
on K1, n, c, c1, ca, c3, i, and v1 and s such that

{2 € Bys(@) s ulw,t) < 272N) <n|B,p(@)|  (4.23)

for any

,,,2

te(t,t+0), 6= DENTT)

Proof. We use inequality (4.4) with
p=r, k=EN/4, o=1/2, g =277,

By (4.22), the first term on the right-hand side of (4.4) is equal to zero.
Choosing B > sg large enough, since

%(1 +e1) — <§iv —U)+ < %(1 +€1),

we estimate the second term on the right-hand side of (4.4) as follows:

21 - // < 16N ( 1+51)r (1§N—U)+>dg;dt

§N/4'r9

1
<yr20ln—v
€1

({N(l +e1)

o) 1B, (@) = 2l o).
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The term on the left-hand side of (4.4) can be estimated by

¢NJ4
In? dx:
L/ FIEN(+er) - (2N —u)y
B,./o(T) x{t}

> (j—2)?In2|{z e B, 2(T) : u(z,t) < 27ENY.
Choosing j so large that vj/(j —1)? = v1, we obtain the required relation
(4.23) with jo = j + [In g] + 1. O
4.4. Proof of Theorem 4.1 in cases (4.5) and (4.15)
Let (xg,t0) € Qp be arbitrary. We fix a number R > 0 so that
QRr(xo,t0) := Br(zo) x (to — R?/¢(s0),t0) C Qr

and set

lu+ = Sup u, /1/7 = 1nf U7 w = 'LL+ — /l,.
Qr(zo,to) QRr(zo,to)

Fix positive numbers B > sg and j, < In B which will be specified later
and depend only on K1, n, ¢, c¢1, o, c3, and p. If

w = BR, (4.24)
then
R2
QR,G(.’BO,IS()) - QR(‘rOatO)v 0= o N
(5:7)
We consider the cylinders ) Rm(g;o,f) C Qro(xo, to), where
LR T
2R 25« R °R

The following two alternative cases are possible.
First alternative. There exists a cylinder Qg (x0,t) C Qr,o(zo,t0)
such that

{(@,1) € Qralao,D) s ule,t) < - +w/2}] < V|Qroleo, DI (4.25)

Second alternative. For all cylinders Qg y(z0,t) C Qrg(zo,t0), the
opposite inequality holds:

{(z,t) € Qry(xo,t) : u(z,t) < p— +w/2} > v|Qry(x0,T)|.  (4.26)

Further, we assume that inequality (4.24) holds.
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4.5. Analysis of the first alternative

By Theorem 4.2 with £ = 1/2, a = 1/2, p = R, 7 = 1, we obtain from
(4.25) that

u(z,t) = p— +w/4 for all x € Brs(xo)- (4.27)
Using Lemma 4.2 with N = w/4, we conclude in view of (4.27) that

{(z,t) € Qryap(zo,to) : ulz,t) < p- +w/2?} < 11|Qp/a(zo,t0)|
(4.28)
with jo > j.. With regard for Theorem 4.3 and (4.28), we get

u(l',t) 2 ph— + w/2j2+1 for (:L‘at) € QR/SJ}(IEOatO)' (429)

4.6. Analysis of the second alternative

Lemma 4.3. Fiz a cylinder Qry(xo,t) and suppose that (4.26) holds.
Then there exists t. € (t —n,t —vn/2) such that

1—v
1—v/2

{& € Brlao) : u(z, t.) > ps —w/2}] < Br(ao)l.  (4.30)

Proof. Suppose that the statement of the lemma is false. Then, for all
t e (t—mn,t—wvn/2), the following relation holds:

1—-v
{x € Br(xo) : u(z,t) > py —w/2} > 1 | Br(xo)]-
—v/2
Hence,
‘{(mvt) S QR,n(ﬂonf) : U(.Z',t) Z pt — w/z}‘
t—vn/2
> [ o€ Bateo) s ule.0) > /2 dt > (1= 0)|Qnale0. D),
t—n
which contradicts (4.30). O

By Lemma 4.1, we obtain from (4.30) that there exists j; € (1, Jx)
which depends only on K1, n, ¢, ¢1, c2, ¢3, i, and v and is such that, for
all t € (t,1),

{x € Br(xo) : u(z,t) > py — w/2j1+2}| < (11— 1/2/4)|BR(950)|. (4.31)
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Lemma 4.4. For any v € (0,1), there exists a number j, which depends
only on K1, n, ¢, c1, c2, c3, W, and v and is such that

{(2,t) € Qra(zo,to) : u(z,t) < py —w/2} < v|Qro(wo, to)|. (4.32)

Proof. For j = j1 +2,..., 7« we set kj = uq — w/27. We use inequality
(4.1) with k = kj, l = kj41, p= 2R, 0 = 1/2, and with

o (’Ak Ro\A ]+1R0|>1+Cl

|QRr,0(0,10)|

We also choose n(t) such that 0 < n(t) < 1, n(t) = 0 for ¢ < to — 6,
n(t) =1 fort >ty —0/2, and || < 20!, By these choices and by the

fact that
w
(o) <*(5w)
R0 \A ]+1,R 9‘)

|A
// Vuldzdt < 2JR|QR9<x0’t°)'< Qralao. o)

Ro\ kjy1,R.0

inequality (4.1) yields

From Lemma 2.1 with s =1, (4.31), and (4.32), we get

+ 1+cq
( |Akj+1,R,9‘ ) T AL Re\ J+1,R9|
~X
|Qr.o(w0,t0)] \QR,e 0, to)]
Summing up the previous inequality for j = j; + 2,..., j« and choosing

jx from the condition
Wi =1 =2 T4 =,
we arrive at the required relation (4.32). O
By Theorem 4.2, inequality (4.32) yields
w(@,t) < pyp —w/2*H for (z,t) € Qryagya(wo; o).
Combining this inequality and (4.29), we conclude that
osc{u; Qrys (w0, t0)} < (1 —Ew, &=27771 (4.33)
Define the sequences R; := (3(1 — f))jR, wj = (1—&w,

R?
Q] = QRj,@j(x07t0)7 0] = ma j:071727
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If w> BR, then w; > BR;, j = 1,2,.... Since

n_ 1 RrR 2 Rt R
P %) () (R

we have from (4.33) that osc{u; @1} < wi. Repeating the previous pro-
cedure, we obtain osc{u;Q;} < wj, j = 1,2,.... Note that, by (4.5),
the constant y defined in (4.15) satisfies u > 1. Hence, Q; D @j, where
ij = QR%R;wwl_#(xo,to). This proves the Holder continuity of u (for
details, we refer the reader to [34, Chap. III, Proposition 3.1]).

4.7. Proof of Theorem 4.1 in case (4.6)
Let (xg,t0) € Qr be arbitrary. We fix number R > 0 so that

2MR

M
Q% (w0, to) := Br(zo) x (to — ——, ) C O
©(s0)
and set
g = sup u, p—:= inf w, w=psr—p_.
Q%\/I) (z0,t0) Q%M) (wo,to)

We also fix positive numbers ¢ € (0,1), B > so/0 which will be specified
later and depend only on Ki, n, ¢, c1, ¢2, c3 and . If

w > BR, (4.34)
then
R2 _ owR < ‘wR < 2MR
dwy T 0wy T p(se) T p(so)
¢( R ) ‘p( R )
and )
R
Qro(0,t0) C QW (o, t0) for 6= —

(%)
Further, we will assume that inequality (4.34) holds.
The following two alternative cases are possible:

{z € Br(zo) : py —u(z,t0 — 0) S w/2}[ < %\BR(wo)!

or
1
{x € Br(xo) : u(x,to —0) — p— < w/2}| < §|BR(3:0)|.
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Both of these cases can be considered in a similar way. Assume, for ex-
ample, the first one. Then, by Lemma 4.1, there exists j; which depends
only on K1, n, ¢, c1, co, c3, and p and is such that if B > 2/tsg, then

. 3
[ € Br(xo) : ps — u(w,1) < w/22}| < §|Br(ao)

for all t e (to —6,t9 — 6 +R2/¢(2j1i2R))'

Choosing § = 277172, we can rewrite the previous inequality as
3
[{z € Br(2o) : pt — u(@,t) < dw}| < [Br(zo)] (4.35)

for all t € (to — 0,t9), 0 = R%/y(dw/R).

Now, for the function v = pu4 — u, we will use inequality (4.7) with
0=1/2,p=R, N =6w, k=¢]N,j=1,2,..., where ¢; is small enough
and will be determined later. We set

A;i(t) := {z € Br(zo) : v(z,t) < &N},

1 t—to+ 0
Yi(t) .= °(x)dx, = su Yi(t).
]( ) |BR(CUO)| /Aj(t) 0 C ( ) y] P J( )

to— % <t<to

Fix t1 € (to — g,to) such that y;11 = Yj(¢1). First, we assume that

t1 —to+ 6

G (Cdr > 0. (4.36)

D~ / Gy (v)

Br(zo)x{t1}

Let us estimate the first term on the right-hand side of (4.7). By (4.6),
we have

B(u) = / pls)ds > Sup(u), u>0,
0
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and

3 v

{N

1 N—
/ ( -I-El S ds
0

(1+e1)e N—s
(0]
(=)

£

v

IN-
<2 [
) <1—|—€1) N—s)

R
2 J
< 21]j o — 51]\7(1 +€.1)
S(ELONY AN ) = (N — o)y
R

< 201n

E{N(1+51)
—v

EN(1+e1) = (N —v)y

So, we estimate the first term on the right-hand side of (4.7) as follows:

1
0 / GE{N(”) (“dx
Br(zo)x{t1}
J
S 2 / In— eN(1 +5j1) o
Br(zo)x{t1} 51N(1 + 61) — (EIN _ U)+
j p—
= / I VU Ee) h=to+f o,
N1 +e1)— (€[N —v)s J

Br(zo)x{t1}

Choosing B so large that B > 5*151_1_]', we obtain from (4.6), (4.7),
(4.34), and (4.36) that

: ‘w” N )( +<€J'1])v ) Wl ey
€ +e1)— (€ —v
Br(zo)x{t1} ! ! ! *
IN(1 ty —to+ 0
<4 In aN(d+ey L= 0H0 erg,

5jN1+5 — (/N — 0
ey ENO ) = (N o)

+ ve 7| Br(x0)|.
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From this, by (4.35) and the Poincaré inequality, we obtain

-1 IN(1 -
= N >( Jr(ilz)v ) R
€ +e1)— (€ —v
Br(wo)x{t1} ! ! ! "
J _
<4 In etN(1+¢e1) t1 t0+6CCQd~’C

&N 1+¢e1)— N —w 0
Baoxit} L (1+e1)— (g )+

+ e 7| Br(z0)|.

Choosing ¢ to be small enough and such that y~!/e = 8, we conclude
from the previous inequality that

N1 +e1) t1—to+0
eIN(1+e1) — (eJN —v)4 0

In (?dx < y|Bgr(zo)|.

Br(wo)x{t1}

If £ is sufficiently small, this implies that

T+e\ !
xauu><v(h12 1) < (437)
€1

Assume now that

_ t1—to+0
D / Gs{N(U)TCde<O'
Br(zo)x{t1}
In this case, we define
0 _ T—tg+ 0 c
t, 1= sup {TG (t0—§, t1): D / Gajl-N(v)TC 2d:):>0}
Br(xo)x{T}

and note that this set is nonempty. From the definition of t,, we have

t1 —to+ 0
I(t) = / Gy (0) 0 (oo
BR(wO)X{tl} t to + 0 (438)
* — U0 C
< [ Gt e = 1ie),

BR(JTO)X{t*}
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By Fubini’s theorem, we conclude that

I(t*) = / w Cczdl‘

0
Br(zo)x{t«}
&N .
] X{E{was}((l +e1)e]N — )

q)<(1 +51)§-{N— s>

S

E{N .
_/ (1+e1)efN —s / t*—to+egch _
(1+e)elN — s To S XN
) R Br(zo)x{t«}

dxds.

Similarly to (4.37), we have
ty —tg+ 06

-1
7 CCQX{s{N—ws}dx < 7(ln 1+€1_£> | Br(z0)|-
Br(zo)x{t+}

So, choosing s, by the condition

S*—(1—|—5*)<1—exp<—y(17_5*)>>, 0<el <0,

with 0 < 0, < exp(—27/v) to be chosen later and assuming that y; > v,
we obtain

I(t) < yj|Br(x0)|(€]N)?

y < I ) ((1 ;(?;jdss)> +( —5*)/5*1 @((1;(1; :l)dss>> >

Set f(s) = s/®(s). We note that f(E{N(s + €1)/R) is a decreasing
function for s > sg. In view of the inequality

[ =)

B ! a{N(Us +e1)
BT

WV

- /0 y <5{N(8R+51)> ds (4.39)
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with o € (0,1), we obtain

I(t.) < y;|Br(zo)| el N

ARG (e}
—) [ (),

Now, we estimate the left-hand side of inequality (4.38). For v <
]-‘rl

< Yj |BR(1‘0)|51N<

/
/

N, we have

8 ’U

N—
N —
/ 1+e1)e s 4
/ 1 + 61)631]\7 -5
R

eI N(1—e1) ; 1 i
> (1+€1)51N—s ds—INR [ f e1N(s+e1) ds
(1+¢1)eiN — s ! R
0 <I>< Rl ) €1
€1

slNR{O/1f<€{N(SR+€1)>dsO/f<6{N(SR+€1)>ds}.

So, we need to obtain the upper bound for the last integral on the right-
hand side of the previous inequality.

Choose L from the condition 275~ < &7 < 2%, Then we have

R
A )
0
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which yields

1
elN(s+e1) elN(s+e1)
/f<1 7 >ds—/f<1 7 >ds
0 0
L1t eIN(s+¢1) L7 eIN(e1 + 2(s 4 1)
:Z/f<1 > 1>ds=22l/f<1 1R 1>d5
=0 5 =0

1

Ge{N(U) Z 5{NR(1 — K(e1)) /f(gle(gH—S)) ds, (4.41)
0

-1

1
where K (e1) = (1 +3 log %

Combining (4.38)—(4.41), we arrive at

1— (1 s4)/2

Vi) € oy

Yj = 0xYj -

We choose €1 to be small enough and such that K(e1) < (1 — s4)/2 and
get

yji+1 < max{v,o.y;}, j=1,2,....
The method of induction implies that

y; < max{v, ol ), j=1,2,....

So, there is a positive number j, which is determined by v, n, K, ¢, c1,
c2, c3 and is such that y;, < 2v.
By definition of y;, for all t € (tg — 0/2,t9), we have

{@ € Brplwo) : iy — ula, 1) < 272w} < 27+,
By Theorem 4.2, we arrive at

osc{u; Qrya 0, 4(T0,t0)} < (1 — §w, (4.42)



440 B, CLASSES OF DE GIORGI, LADYZHENSKAYA AND...

where ¢
_ p2 w _ _Jro—j1—3
0* R /¢( R )7 g €1 2 :

Define the sequences R;j :=07(1 — )R, wj == (1 — &)w,

wj .
Qj = Qr,0,(0,t0), 0; = R§/¢<Rjj>; j=0,1,2....

If w> BR, then w; > BRj, j = 1,2,... . We note that
9* . EOJR . f w1R1 { w1R1 . R%
4 (&N T A1-6%0 (Cowry T do (WL} (L)

If o is chosen so that o = £/4, then inequality (4.42) yields

osc{u; Q1} < wi.

Repeating the previous procedure, we obtain
osc{u; Q;} <wj, j=1,2,....

Note that, by our assumptions, ¢ (w;/R;) < ¥(so). Hence, Q; D @j,

where Q; = QRj R2/¢(so)($07 to). This proves the Holder continuity of u
g

(for details, we refer the reader to [34, Chap. III, Proposition 3.1]).

References

[1] E. Acerbi, N. Fusco, Partial regularity under anisotropic (p,q) growth condi-
tions // J. Differential Equations, 107 (1994), No. 1, 46-67.

[2] E. Acerbi, G. Mingione, Regularity results for a class of functionals with non-
standard growth // Arch. Ration. Mech. Anal., 156 (2001), No. 2, 121-140.

[3] E. Acerbi, G. Mingione, Regularity results for a class of quasiconvex functionals
with nonstandard growth // Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30 (2001),
No. 2, 311-339.

[4] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological flu-
tds // Arch. Ration. Mech. Anal., 164 (2002), No. 3, 213-259.

[5] E. Acerbi, G. Mingione, Gradient estimates for the p(z)-Laplacean system [/ J.
Reine Angew. Math., 584 (2005), 117-148.

[6] Yu.A. Alkhutov, The Harnack inequality and the Hélder property of solutions of
nonlinear elliptic equations with a nonstandard growth condition // Differ. Uravn.,
33 (1997), No. 12, 1651-1660 (in Russian); translation in Differential Equations,
33 (1997), No. 12, 1653-1663 (1998).

[7] Yu.A. Alkhutov, O.V. Krasheninnikova, Continuity at boundary points of solu-
tions of quasilinear elliptic equations with a nonstandard growth condition // lzv.
Ross. Akad. Nauk Ser. Mat., 68 (2004), No. 6, 3—60 (in Russian); translation in
Izv. Math., 68 (2004), No. 6, 1063-1117.



I. I. SKrRYPNIK, M. V. VOITOVYCH 441

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

23]

Yu. A. Alkhutov, O. V. Krasheninnikova, On the continuity of solutions of elliptic
equations with a variable order of nonlinearity // Tr. Mat. Inst. Steklova, 261
(2008), No. 1, Differ. Uravn. i Din. Sist., 7-15 (in Russian); translation in Proc.
Steklov Inst. Math., 261 (2008), No. 1, 1-10.

Yu. A. Alkhutov, M. D. Surnachev, Behavior at a boundary point of solutions of
the Dirichlet problem for the p(z)-Laplacian // Algebra i Analiz, 31 (2019), No. 2,
88-117 (in Russian).

Yu. A. Alkhutov, M. D. Surnachev, A Harnack inequality for a transmission prob-
lem with p(x)-Laplacian // Appl. Anal., 98 (2019), No. 1-2, 332-344.

Yu. A. Alkhutov, M.D. Surnachev, On the Harnack inequality for the p(x)-
Laplacian with a double-phase exponent p(x) // Tr. Semin. im. I. G. Petrovskogo,
32 (2019), 8-56 (in Russian).

Yu. A. Alkhutov, V.V. Zhikov, Hélder continuity of solutions of parabolic equa-
tions with variable nonlinearity exponent // Translation of Tr. Semin. im. I. G.
Petrovskogo No. 28 (2011), Part I, 8-74, J. Math. Sci. (N.Y.), 179 (2011), No. 3,
347-389.

S.N. Antontsev, J. 1. Diaz, S. Shmarev, Energy Methods for Free Boundary Prob-
lems. Applications to Nonlinear PDEs and Fluid Mechanics, in: Progress in Non-
linear Differential Equations and their Applications, vol. 48, Birkhauser Boston,
Inc., Boston, MA, 2002.

S. Antontsev, S. Shmarev, Anisotropic parabolic equations with variable nonlin-
earity // Publ. Mat., 53 (2009), No. 2, 355-399.

S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions.
Existence, uniqueness, localization, blow-up, in: Atlantis Studies in Differential
Equations, vol. 4, Atlantis Press, Paris, 2015.

P. Baroni, V. Bogelein, Calderdn-Zygmund estimates for parabolic p(z,t)-
Laplacian systems // Rev. Mat. Iberoam., 30 (2014), No. 4, 1355-1386.

P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase func-
tionals // Nonlinear Anal., 121 (2015), 206—222.

P. Baroni, M. Colombo, G. Mingione, Nonautonomous functionals, borderline
cases and related function classes // St. Petersburg Math. J., 27 (2016), No. 3,
347-379.

P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with
double phase // Calc. Var. Partial Differential Equations, 57 (2018), No. 2, Art.
62, 48 pp.

I. Benedetti, E. Mascolo, Regularity of minimizers for nonconvex vectorial inte-
grals with p-q growth via relazation methods // Abstr. Appl. Anal., (2004), No. 1,
27-44.

V. Bogelein, F. Duzaar, Higher integrability for parabolic systems with non-
standard growth and degenerate diffusions // Publ. Mat., 55 (2011), No. 1, 201-
250.

V. Bogelein, F. Duzaar, Holder estimates for parabolic p(x,t)-Laplacian sys-
tems // Math. Ann., 354 (2012), No. 3, 907-938.

S. Bonafede, M.V. Voitovych, Hélder continuity up to the boundary of solutions
to nonlinear fourth-order elliptic equations with natural growth terms // Differ.
Equ. Appl., 11 (2019), No. 1, 107-127.



442 B, CLASSES OF DE GIORGI, LADYZHENSKAYA AND...

[24] K. O. Buryachenko, I.I. Skrypnik, Harnack’s inequality for double-phase parabolic
equations // J. Evol. Equ. (to appear).

[25] V. Chiadd Piat, A. Coscia, Hélder continuity of minimizers of functionals with
variable growth exponent // Manuscripta Math., 93 (1997), No. 3, 283-299.

[26] M. Colombo, G. Mingione, Bounded minimisers of double phase variational inte-
grals // Arch. Ration. Mech. Anal., 218 (2015), No. 1, 219-273.

[27] M. Colombo, G. Mingione, Regularity for double phase variational problems //
Arch. Ration. Mech. Anal., 215 (2015), No. 2, 443-496.

[28] G. Cupini, N. Fusco, R. Petti, Hélder continuity of local minimizers // J. Math.
Anal. Appl., 235 (1999), No. 2, 578-597.

[29] G. Cupini, M. Guidorzi, E. Mascolo, Regularity of minimizers of vectorial integrals
with p-q growth // Nonlinear Anal., 54 (2003), No. 4, 591-616.

[30] G. Cupini, A.P. Migliorini, Hélder continuity for local minimizers of a nonconvez
variational problem // J. Convex Anal. 10 (2003), No. 2, 389-408.

[31] A. Dall’Aglio, E. Mascolo, G. Papi, Local boundedness for minima of functionals
with nonstandard growth conditions // Rend. Mat. Appl. (7), 18 (1998), No. 2,
305-326.

[32] E. De Giorgi, Sulla differenziabilita e Uanaliticita delle estremali degli integrali
multipli regolari // Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3), 3
(1957), 25-43.

[33] E. DiBenedetto, On the local behaviour of solutions of degenerate parabolic equa-
tions with measurable coefficients // Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 13
(1986), No. 3, 487-535.

[34] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York,
1993.

[35] E. DiBenedetto, U. Gianazza, Some Properties of DeGiorgi Classes [/
arXiv:1604.07699v1 [math.AP].

[36] E. DiBenedetto, U. Gianazza, Some Properties of DeGiorgi Classes // Rend.
Istit. Mat. Univ. Trieste, 48 (2016), 245-260.

[37] E. DiBenedetto, N.S. Trudinger, Harnack inequalities for quasiminima of varia-
tional integrals // Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), No. 4,
295-308.

[38] F. Duzaar, J. Habermann, Partial regularity for parabolic systems with non-
standard growth // J. Evol. Equ., 12 (2012), No. 1, 203—244.

. Eleuteri, Holder continuity results for a class of functionals with non-standar

39] M. ElL i, Hold Ut lts f l f f jonals with dard
growth // Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), No. 1,
129-157.

[40] L. Esposito, F. Leonetti, G. Mingione, Regularity for minimizers of functionals
with p-q growth // NoDEA Nonlinear Differential Equations Appl., 6 (1999),
No. 2, 133-148.

[41] L. Esposito, F. Leonetti, G. Mingione, Higher integrability for minimizers of inte-
gral functionals with (p,q) growth // J. Differential Equations, 157 (1999), No. 2,
414-438.

[42] L. Esposito, F. Leonetti, G. Mingione, Regularity results for minimizers of irreg-
ular integrals with (p,q) growth // Forum Math., 14 (2002), No. 2, 245-272.



I. I. SKrRYPNIK, M. V. VOITOVYCH 443

[43]
[44]

[45]

[46]
[47)
48]
[49)
50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p,q)
growth // J. Differential Equations, 204 (2004), No. 1, 5-55.

L. Esposito, G. Mingione, A regularity theorem for w-minimizers of integral func-
tionals // Rend. Mat. Appl. (7), 19 (1999), No. 1, 17-44.

L. Esposito, G. Mingione, Partial regularity for minimizers of convez integrals
with Llog L-growth // NoDEA Nonlinear Differential Equations Appl., 7 (2000),
No. 1, 107-125.

L. Esposito, G. Mingione, Partial reqularity for minimizers of degenerate poly-
convex energies // J. Convex Anal., 8 (2001), No. 1, 1-38.

X. Fan, D. Zhao, A class of De Giorgi type and Hélder continuity // Nonlinear
Anal., 36 (1999), 295-318.

I. Fonseca, N. Fusco, Regularity results for anisotropic image segmentation mod-
els // Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), No. 3, 463-499.

N. Fusco, C. Sbordone, Local boundedness of minimizers in a limit case //
Manuscripta Math., 69 (1990), No. 1, 19-25.

N. Fusco, C. Sbordone, Some remarks on the reqularity of minima of anisotropic
integrals // Comm. Partial Differential Equations, 18 (1993), No. 1-2, 153-167.

U. Gianazza, M. Surnachev, V. Vespri, A new proof of the Hélder continuity of
solutions to p-Laplace type parabolic equations // Adv. Calc. Var., 3 (2010), No. 3,
263-278.

U. Gianazza, V. Vespri, Parabolic De Giorgi classes of order p and the Harnack
inequality // Calc. Var. Partial Differential Equations, 26 (2006), No. 3, 379-399.

S. Hwang, G. M. Lieberman, Hélder continuity of bounded weak solutions to gen-
eralized parabolic p-Laplacian equations I: degenerate case // Electron. J. Differ-
ential Equations (2015), No. 287, 32 pp.

S. Hwang, G. M. Lieberman, Hdélder continuity of bounded weak solutions to gener-
alized parabolic p-Laplacian equations II: singular case // Electron. J. Differential
Equations (2015), No. 288, 24 pp.

S. Hwang, G. M. Lieberman, Hélder continuity of a bouded weak solution of gen-
eralized parabolic p-Laplacian equations // arXiv:1407.0531v2 [math.AP]

A.V. Ivanov, The claasses B, and Hélder estimates for quasilinear parabolic
equations that admit double degeneration // Zap. Nauchn. Sem. S.-Peterburg.
Otdel. Mat. Inst. Steklov. (POMI) 197 (1992), Kraev. Zadachi Mat. Fiz. Smezh.
Voprosy Teor. Funktsii. 23, 42-70, 179-180 (in Russian); translation in J. Math.
Sci. (N. Y.), 75 (1995), No. 6, 2011-2027.

A.V. Ivanov, Hélder estimates for equations of fast diffusion type // Algebra i
Analiz, 6 (1994), No. 4, 101-142 (in Russian); translation in St. Petersburg Math.
J., 6 (1995), No. 4, 791-825.

I. M. Kolodii, The boundedness of generalized solutions of elliptic differential equa-
tions // Vestnik Moskov. Univ. Ser. I Mat. Meh., 25 (1970), No. 5, 44-52.

I. M. Kolodii, The Liouville theorem for generalized solutions of degenerate quasi-
linear parabolic equations (Russian) // Differentsial'nye Uravneniya, 21 (1985),
No. 5, 841-854.

I. M. Kolodii, An estimate for the maximum modulus of generalized solutions of
the first boundary value problem for degenerate parabolic equations [/ Ukrain.
Mat. Zh., 49 (1997), No. 12, 1624-1637 (in Russian); translation in Ukrainian
Math. J., 49 (1997), No. 12, 1827-1845.



444 B, CLASSES OF DE GIORGI, LADYZHENSKAYA AND...

[61] I. M. Kolodii, I.1. Verba, An a priori estimate for the modulus of continuity of
the generalized solution of a parabolic equation in divergence form with degener-
ation // Ukrainian Math. J., 53 (2001), No. 2, 214-228.

[62] A.A. Kovalevsky, I.1. Skrypnik, A.E. Shishkov, Singular Solutions of Nonlinear
Elliptic and Parabolic Equations, Walter de Gruyter GmbH, Berlin/Boston, 2016.

[63] A.A. Kovalevskii, M. V. Voitovich, On the improvement of summability of gener-
alized solutions of the Dirichlet problem for nonlinear equations of the fourth order
with strengthened ellipticity // Ukrainian Math. J., 58 (2006), No. 11, 1717-1733.

[64] O.V. Krasheninnikova, On the continuity at a point of solutions of elliptic equa-
tions with a nonstandard growth condition // Tr. Mat. Inst. Steklova, 236 (2002),
Differ. Uravn. i Din. Sist., 204-211 (in Russian); translation in Proc. Steklov Inst.
Math., 236 (2002), No. 1, 193-200.

[65] S.N. Kruzkov, I. M. Kolodii, A priori estimates and Harnack’s inequality for
genemlized solutions of degenerate quasilinear parabolic equations // Sibirsk. Mat.
Z., 18 (1977), No. 3, 608-628 (in Russian).

[66] O.A. Ladyzenskaja, V. A. Solonnikov, N.N. Ural’ceva, Linear and Quasi-linear
Equations of Parabolic Type, in: Translations of mathematical monographs, vol.
23, American Math. Soc., Providence, RI, 1968.

[67] O.A. Ladyzhenskaya, N.N. Ural’tseva, Linear and quasilinear elliptic equations,
Nauka, Moscow, 1973.

[68] M. Lavrentieff, Sur quelques problémes du calcul des variations // Ann. Mat.
Pura Appl., 4 (1926), No. 1, 7-28.

[69] F. Leonetti, Higher differentiability for weak solutions of elliptic systems with
nonstandard growth conditions // Ricerche Mat., 42 (1993), No. 1, 101-122.

[70] F. Leonetti, Higher integrability for minimizers of integral functionals with non-
standard growth // J. Differential Equations, 112 (1994), No. 2, 308-324.

[71] S. Li, X. Liu, The G class of functions and its applications // Acta Math. Sin.
(Engl. Ser.), 16 (2000), No. 3, 455-468.

[72] G.M. Lieberman, The natural generalization of the natural conditions of La-
dyzhenskaya and Ural’tseva for elliptic equations // Comm. Partial Differential
Equations, 16 (1991), No. 2-3, 311-361.

[73] G.M. Lieberman, On the regularity of the minimizer of a functional with expo-
nential growth // Comment. Math. Univ. Carolin., 33 (1992), No. 1, 45-49.

[74] G.M. Lieberman, Gradient estimates for a new class of degenerate elliptic and
parabolic equations // Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21 (1994), No. 4,
497-522.

[75] G.M. Lieberman, Gradient estimates for anisotropic elliptic equations // Adv.
Differential Equations, 10 (2005), No. 7, 767-812.

[76] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations
with non standard growth conditions // Arch. Rational Mech. Anal., 105 (1989),
No. 3, 267-284.

[77] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-
growth conditions // J. Differential Equations, 90 (1991), No. 1, 1-30.

[78] P. Marcellini, Regularity for elliptic equations with general growth conditions //
J. Differential Equations, 105 (1993), No. 2, 296-333.



I. I. SKrRYPNIK, M. V. VOITOVYCH 445

[79]
[80]
[81]
[82]

[83]

[84]
[85]

[86]

[87]
[88]
[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth
conditions // Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), No. 1, 1-25.

P. Marcellini, Regularity for some scalar variational problems under general
growth conditions // J. Optim. Theory Appl., 90 (1996), No. 1, 161-181.

E. Mascolo, A.P. Migliorini, Fverywhere regularity for vectorial functionals with
general growth // ESAIM Control Optim. Calc. Var., 9 (2003), 399-418.

E. Mascolo, G. Papi, Local boundedness of minimizers of integrals of the calculus
of variations // Ann. Mat. Pura Appl. (4), 167 (1994), 323-339.

E. Mascolo, G. Papi, Harnack inequality for minimizers of integral functionals
with general growth conditions // NoDEA Nonlinear Differential Equations Appl.,
3 (1996), No. 2, 231-244.

G. Mingione, Regularity of minima: an invitation to the dark side of the calculus
of variations // Appl. Math., 51 (2006), No. 4, 355-426.

G. Moscariello, L. Nania, Hélder continuity of minimizers of functionals with
nonstandard growth conditions // Ricerche Mat., 40 (1991), No. 2, 259-273.

J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem
for elliptic differential equations // Comm. Pure Appl. Math., 13 (1960), 457
468.

J. Moser, On Harnack’s theorem for elliptic differential equations // Comm. Pure
Appl. Math., 14 (1961), 577-591.

J. Nash, Continuity of solutions of parabolic and elliptic equations // Amer. J.
Math., 80 (1958), No. 4, 931-954.

M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, in: Lec-
ture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.

J. Serrin, Local behavior of solutions of quasi-linear equations // Acta Math., 111
(1964), 247-302.

I.1. Skrypnik, On the Wiener test for degenerate parabolic equations with non-
standard growth condition // Adv. Differential Equations, 13 (2008), No. 34,
229-272.

I. 1. Skrypnik, On the sufficient condition for reqularity of a boundary point for sin-
gular parabolic equations with non-standard growth // Math. Nachr., 284 (2011),
No. 16, 2101-2122.

I.1. Skrypnik, K. O. Buryachenko, Pointwise estimates of solutions to the double-
phase elliptic equations // Ukr. Math. Bulletin, 13 (2016), No. 3, 388-407; trans-
lation in J. Math. Sci. (N. Y.) 222 (2017), No. 6, 772-786.

1. V. Skrypnik, High order quasilinear elliptic equations with continuous general-
ized solutions // Differential Equations, 14 (1978), No. 6, 786-795.

I. V. Skrypnik, The Hélder property of functions in the class Bq,s // Ukrain. Mat.
Zh., 45 (1993), No. 7, 1020-1028 (in Russian); translation in Ukrainian Math. J.,
45 (1993), No. 7, 1134-1144.

1. V. Skrypnik, Pointwise estimates of potentials for higher-order capacity //
Ukrain. Mat. Zh., 49 (1997), No. 1, 149-163 (in Russian); translation in Ukrainian
Math. J., 49 (1997), No. 1, 165-180.

M. V. Voitovych, Hélder continuity of bounded generalized solutions for nonlin-
ear fourth-order elliptic equations with strengthened coercivity and natural growth
terms // Electron. J. Differential Equations, 2017 (2017), No. 63, 1-18.



446 B, CLASSES OF DE GIORGI, LADYZHENSKAYA AND...

[98] M. V. Voitovych, Improved integrability and boundedness of solutions to some
high-order variational problems // J. Math. Sci. (N. Y.), 235 (2018), No. 1, 81—
102.

[99] M. V. Voitovych, Pointwise estimates of solutions to 2m-order quasilinear ellip-
tic equations with m-(p,q) growth via Wolff potentials // Nonlinear Anal., 181
(2019), 147-179.

[100] J. Weickert, Anisotropic diffusion in image processing, European Consortium
for Mathematics in Industry, B. G. Teubner, Stuttgart, 1998.

[101] P. Winkert, R. Zacher, Global a priori bounds for weak solutions to quasilinear
parabolic equations with nonstandard growth // Nonlinear Anal., 145 (2016), 1—-
23.

[102] M. Xu, Y.Z. Chen, Hoélder continuity of weak solutions for parabolic equations
with nonstandard growth conditions // Acta Math. Sin. (Engl. Ser.), 22 (2006),
No. 3, 793-806.

[103] F. Yao, Holder regularity of the gradient for the mon-homogeneous parabolic
p(z,t)-Laplacian equations // Math. Methods Appl. Sci., 37 (2014), No. 12, 1863—
1872.

[104] F. Yao, Holder regularity for the general parabolic p(z,t)-Laplacian equations //
NoDEA Nonlinear Differential Equations Appl., 22 (2015), No. 1, 105-119.

[105] V.V. Zhikov, Questions of convergence, duality, and averaging for functionals
of the calculus of variations // Math. USSR-Izv., 23 (1984), No. 2, 243-276.

[106] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity
theory // Math. USSR-Izv., 29 (1987), No. 1, 33-66.

[107] V.V. Zhikov, The Lavrent’ev effect and averaging of nonlinear variational prob-
lems // Differ. Equ., 27 (1991), No. 1, 32-39.

[108] V.V. Zhikov, On Lavrentiev’s Phenomenon // Russian J. of Math. Physics, 3
(1995), No. 2, 249-269.

[109] V.V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces [/
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 310 (2004),
Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 67-81, 226 (in
Russian); translation in J. Math. Sci. (N.Y.), 132 (2006), No. 3, 285-294.

[110] V.V. Zhikov, S. E. Pastukhova, On the improved integrability of the gradient of
solutions of elliptic equations with a variable nonlinearity exponent // Mat. Sb.,
199 (2008), No. 12, 19-52 (in Russian); translation in Sb. Math., 199 (2008),
No. 11-12, 1751-1782.

[111] V.V. Zhikov, S.E. Pastukhova, On the property of higher integrability for
parabolic systems of variable order of nonlinearity // Mat. Zametki, 87 (2010),
No. 2, 179-200 (in Russian); translation in Math. Notes, 87 (2010), No. 1-2,
169-188.



I. I. SKRYPNIK, M. V. VOITOVYCH 447

Igor Igorovych
Skrypnik

Mykhailo
Volodymyrovych
Voitovych

CONTACT INFORMATION

Institute of Applied Mathematics

and Mechanics,

National Academy of Sciences of Ukraine,
Sloviansk, Ukraine

Vasyl’ Stus Donetsk National University,
Mathematical Analysis and Differential
Equations,

Vinnytsia, Ukraine

E-Mail: iskrypnik@iamm.donbass.com

Institute of Applied Mathematics

and Mechanics,

National Academy of Sciences of Ukraine,
Sloviansk, Ukraine

E-Mail: voitovichmv76@gmail.com



