On compressions of self-adjoint extensions of a symmetric linear relation with unequal deficiency indices

VADIM I. MOGILEVSKII

(Presented by V. A. Derkach)

Abstract. Let A be a symmetric linear relation in the Hilbert space \mathfrak{H} with unequal deficiency indices $n_-A < n_+(A)$. A self-adjoint linear relation $\widetilde{A} \supset A$ in some Hilbert space $\widetilde{\mathfrak{H}} \supset \mathfrak{H}$ is called an (exit space) extension of A. We study the compressions $C(\widetilde{A}) = P_{\mathfrak{H}}\widetilde{A} \upharpoonright \mathfrak{H}$ of extensions $\widetilde{A} = \widetilde{A}^*$. Our main result is a description of compressions $C(\widetilde{A})$ by means of abstract boundary conditions, which are given in terms of limit value of the Nevanlinna parameter $\tau(\lambda)$ from the Krein formula for generalized resolvents. We describe also all extensions $\widetilde{A} = \widetilde{A}^*$ of A with the maximal symmetric compression $C(\widetilde{A})$ and all extensions $\widetilde{A} = \widetilde{A}^*$ of the second kind in the sense of M.A. Naimark. These results generalize the recent results by A. Dijksma, H. Langer and the author obtained for symmetric operators A with equal deficiency indices $n_+(A) = n_-(A)$.

2010 MSC. 47A06, 47A20, 47A56, 47B25.

Key words and phrases. Symmetric and self-adjoint linear relation (operator), exit space self-adjoint extension, compression, boundary triplet.

1. Introduction

Assume that A is a closed not necessarily densely defined symmetric operator in a Hilbert space \mathfrak{H} . Recall that a self-adjoint linear relation (in particular operator) $\widetilde{A} \supset A$ in a Hilbert space $\mathfrak{H} \supset \mathfrak{H}$ is called an (exit space) extension of A and a linear relation $C(\widetilde{A}) := P_{\mathfrak{H}} \widetilde{A} \upharpoonright \mathfrak{H}$ is called a compression of \widetilde{A} . A description of all extensions $\widetilde{A} = \widetilde{A}^*$ and their compressions $C(\widetilde{A})$ is an important problem in the extension theory of symmetric operators (note that $C(\widetilde{A})$ is a symmetric extension of A). In [9,20,21] all extensions $\widetilde{A} = \widetilde{A}^*$ of an operator A with arbitrary (equal or

Received 22.07.2019

unequal) deficiency indices $n_{\pm}(A) \leq \infty$ and their compressions $C(\widetilde{A})$ were described by means of holomorphic operator-functions $F(\lambda)(\lambda \in \mathbb{C}_+)$, whose values are contractions between defect subspaces of A. In the case $n_{+}(A) = n_{-}(A)$ another description of extensions $A = A^{*}$ of A is given by the Krein formula for generalized resolvents [11,12]. This formula gives a parametrization $A = A_{\tau}$ of all extensions $A = A^*$ by means of Nevanlinna functions $\tau = \tau(\lambda)$, whose values are linear relations in the auxiliary Hilbert space. In the recent papers by A. Dijksma and H. Langer [7,8] the compressions $C(A_{\tau})$ of extensions A_{τ} are investigated in terms of the parameter τ from the Krein formula. The results of [7,8] were essentially strengthened in our paper [18]. The investigations in this paper are based on the theory of boundary triplets for symmetric operators A with equal deficiency indices $n_{+}(A) = n_{-}(A)$ and Weyl functions of these triplets (see [5, 6, 10, 13] and references therein). By using such an approach we described in [18] the compressions $C(A_{\tau})$ in terms of the parameter τ . This enables us to describe, in particular, all extensions \widetilde{A}_{τ} with selfadjoint compressions.

In our papers [15, 16] the theory of boundary triplets and their Weyl functions was extended to symmetric operators A with unequal deficiency indices $n_{-}(A) < n_{+}(A)$. In particular, we showed that in this case the Krein formula for generalized resolvents

$$P_{\mathfrak{H}}(\widetilde{A}_{\tau}-\lambda)^{-1} \upharpoonright \mathfrak{H} = (A_0-\lambda)^{-1} - \gamma_+(\lambda)(\tau(\lambda)+M_+(\lambda))^{-1}\gamma_-^*(\overline{\lambda}), \ \lambda \in \mathbb{C}_+$$
(1.1)

establishes a bijective correspondence $\widetilde{A} = \widetilde{A}_{\tau}$ between all Nevanlinna type functions $\tau = \tau(\lambda)$ and all extensions $\widetilde{A} = \widetilde{A}^*$ of A. In (1.1) A_0 is a fixed maximal symmetric extension of A and $\gamma_{\pm}(\lambda)$ (the γ -fields) and $M_{+}(\lambda)$ (the Weyl function) are the operator functions defined in terms of a boundary triplet for A. In the present paper we extend the results of [18] to symmetric operators A with unequal deficiency indices $n_{-}(A) < n_{+}(A)$ (clearly, in this case $n_{-}(A) < \infty$ and $n_{+}(A) \leq \infty$). Our main result (see Theorem 3.5) is a description of compressions $C(\widetilde{A}_{\tau})$ of extensions $\widetilde{A}_{\tau} = \widetilde{A}^*_{\tau}$ in terms of the parameter $\tau = \tau(\lambda)$ from (1.1). This description is given by means of an abstract boundary parameter θ_c , which is a certain limit value of $\tau(\lambda)$ at infinity. By using this result we describe extensions \widetilde{A}_{τ} with some special properties. In particular, we describe in terms of τ all extensions \widetilde{A}_{τ} of the second kind in the sense of M. A. Naimark (see Remark 3.7) and all extensions \widetilde{A}_{τ} with the maximal symmetric compression $C(\widetilde{A}_{\tau})$.

2. Preliminaries

2.1 Notations

The following notations will be used throughout the paper: \mathfrak{H} , \mathcal{H} denote separable Hilbert spaces; $B(\mathcal{H}_1, \mathcal{H}_2)$ is the set of all bounded linear operators defined on \mathcal{H}_1 with values in \mathcal{H}_2 ; $B(\mathcal{H}) := B(\mathcal{H}, \mathcal{H})$; $A \upharpoonright \mathcal{L}$ is a restriction of the operator $A \in B(\mathcal{H}_1, \mathcal{H}_2)$ to the linear manifold $\mathcal{L} \subset \mathcal{H}_1$; $P_{\mathcal{L}}$ is the orthoprojection in \mathfrak{H} onto the subspace $\mathcal{L} \subset \mathfrak{H}$; $\mathbb{C}_+ (\mathbb{C}_-)$ is the open upper (lower) half-plane of the complex plane.

Recall that a linear manifold T in the Hilbert space $\mathcal{H}_0 \oplus \mathcal{H}_1$ $(\mathcal{H} \oplus \mathcal{H})$ is called a linear relation from \mathcal{H}_0 to \mathcal{H}_1 (resp. in \mathcal{H}). The set of all closed linear relations from \mathcal{H}_0 to \mathcal{H}_1 (in \mathcal{H}) will be denoted by $\widetilde{\mathcal{C}}(\mathcal{H}_0, \mathcal{H}_1)$ (resp. $\widetilde{\mathcal{C}}(\mathcal{H})$). Clearly for each linear operator $T : \text{dom } T \to \mathcal{H}_1$, $\text{dom } T \subset \mathcal{H}_0$, its graph $\text{gr}T = \{\{f, Tf\} : f \in \text{dom } T\}$ is a linear relation from \mathcal{H}_0 to \mathcal{H}_1 . This fact enables one to consider an operator as a linear relation.

For a linear relation T from \mathcal{H}_0 to \mathcal{H}_1 we denote by

dom
$$T := \{h_0 \in \mathcal{H}_0 : \exists h_1 \in \mathcal{H}_1 \ \{h_0, h_1\} \in T\}$$

ker $T := \{h_0 \in \mathcal{H}_0 : \{h_0, 0\} \in T\}$
ran $T := \{h_1 \in \mathcal{H}_1 : \exists h_0 \in \mathcal{H}_0 \ \{h_0, h_1\} \in T\}$
mul $T := \{h_1 \in \mathcal{H}_1 : \{0, h_1\} \in T\}$

the domain, kernel, range and multivalued part of T respectively. Denote also by T^{-1} and T^* the inverse and adjoint linear relations of T respectively.

As is known a linear relation T in \mathcal{H} is called symmetric (self-adjoint) if $T \subset T^*$ (resp. $T = T^*$).

2.2 Nevanlinna functions

Recall that a holomorphic operator function $M : \mathbb{C}_+ \to B(\mathcal{H})$ is called a Nevanlinna function if $\operatorname{Im} M(\lambda) \geq 0$, $\lambda \in \mathbb{C}_+$. The class of all Nevanlinna $B(\mathcal{H})$ -valued functions will be denoted by $R[\mathcal{H}]$. The operator-function $M \in R[\mathcal{H}]$ is referred to the class $R_c[\mathcal{H}]$, if ran $\operatorname{Im} M(\lambda)$ is closed for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

The following proposition is well known (see e.g. [13]).

Proposition 2.1. If $M \in R[\mathcal{H}]$, then the equality

$$\mathcal{B}_M = s - \lim_{y \to +\infty} \frac{1}{iy} M(iy) \tag{2.1}$$

defines the operator $\mathcal{B}_M \in \mathcal{B}(\mathcal{H})$ such that $\mathcal{B}_M \ge 0$. Moreover, for each $h \in \mathcal{H}$ there exists the limit $\lim_{y \to +\infty} y \operatorname{Im}(M(iy)h, h) \le \infty$ and the equality

$$\operatorname{dom} \mathcal{N}_M = \{h \in \mathcal{H} : \lim_{y \to +\infty} y \operatorname{Im}(M(iy)h, h) < \infty\}$$
(2.2)

defines the (not necessarily closed) linear manifold dom $\mathcal{N}_M \subset \mathcal{H}$ such that for each $h \in \operatorname{dom} \mathcal{N}_M$ there exists the limit

$$\mathcal{N}_M h := \lim_{y \to +\infty} M(iy)h, \quad h \in \operatorname{dom} \mathcal{N}_M.$$
(2.3)

Hence the equalities (2.2) and (2.3) define the linear operator \mathcal{N}_M : dom $\mathcal{N}_M \to \mathcal{H}$.

2.3 The classes $Sym(\mathcal{H}_0, \mathcal{H}_1)$ and $\widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$

In the following \mathcal{H}_0 is a Hilbert space, \mathcal{H}_1 is a subspace in \mathcal{H}_0 , $\mathcal{H}_2 = \mathcal{H}_0 \ominus \mathcal{H}_1$ and P_j is the orthoprojection in \mathcal{H}_0 onto \mathcal{H}_j , $j \in \{1, 2\}$.

Definition 2.2. [14] A linear relation θ from \mathcal{H}_0 to \mathcal{H}_1 belongs to the class $\operatorname{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$ if

$$2\mathrm{Im}(h_1, h_0)_{\mathcal{H}_0} + ||P_2 h_0||^2 = 0, \quad \{h_0, h_1\} \in \theta.$$
(2.4)

A relation $\theta \in \operatorname{Sym}_{0}(\mathcal{H}_{0}, \mathcal{H}_{1})$ belongs to the class $\operatorname{Sym}(\mathcal{H}_{0}, \mathcal{H}_{1})$ if there is not an extension $\tilde{\theta} \supset \theta$, $\tilde{\theta} \neq \theta$ such that $\tilde{\theta} \in \operatorname{Sym}_{0}(\mathcal{H}_{0}, \mathcal{H}_{1})$.

Note that in the case $\mathcal{H}_0 = \mathcal{H}_1 =: \mathcal{H}$ the classes $\operatorname{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$ and $\operatorname{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ coincide with the known classes of symmetric and maximal symmetric linear relations in \mathcal{H} respectively.

Let $\theta \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$, let $\mathcal{K} := \text{mul } \theta$ be a closed subspace in \mathcal{H}_1 and let $\mathcal{H}'_1 := \mathcal{H}_1 \ominus \mathcal{K}$ and $\mathcal{H}'_0 := \mathcal{H}_0 \ominus \mathcal{K}$. Then $\mathcal{H}'_0 = \mathcal{H}'_1 \oplus \mathcal{H}_2$,

$$\mathcal{H}_1 = \mathcal{H}'_1 \oplus \mathcal{K}, \qquad \mathcal{H}_0 = \mathcal{H}'_0 \oplus \mathcal{K} = \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0} \oplus \mathcal{K}$$
(2.5)

and according to [14]

$$\theta = \operatorname{gr} \theta_s \oplus \widehat{\mathcal{K}} = \{ \{ h'_0, \theta_s h'_0 \oplus k \} : h'_0 \in \operatorname{dom} \theta_s, k \in \mathcal{K} \},$$
(2.6)

where $\widehat{\mathcal{K}} = \{0\} \oplus \mathcal{K}$ and $\theta_s \in \text{Sym}_0(\mathcal{H}'_0, \mathcal{H}'_1)$ is an operator with dom $\theta_s = \text{dom } \theta$. Moreover, $\theta \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ if and only if $\theta_s \in \text{Sym}(\mathcal{H}'_0, \mathcal{H}'_1)$. The operator θ_s in (2.6) is called the operator part of θ .

It follows from (2.5) and (2.6) that

$$P_1 \operatorname{dom} \theta \subset \mathcal{H}_1 \ominus \operatorname{mul} \theta. \tag{2.7}$$

Lemma 2.3. Let dim $\mathcal{H}_1 < \infty$ and let $\theta \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$, so that decompositions (2.5) and (2.6) hold with $\mathcal{K} = \text{mul }\theta$. Then there exist a subspace $L' \subset \mathcal{H}'_1$ and operators $Q_1 \in B(L', \mathcal{H}'_1)$ and $Q_2 \in B(L', \mathcal{H}_2)$ such that

$$\theta = \{\{h' \oplus Q_2h', Q_1h' \oplus k\} : h' \in L', k \in \mathcal{K}\}.$$
(2.8)

Moreover, $\theta \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ if and only if $L' = \mathcal{H}'_1$.

Proof. Since dom $\theta_s \subset \mathcal{H}'_1 \oplus \mathcal{H}_2$, it follows that dom θ_s is a linear relation from \mathcal{H}'_1 to \mathcal{H}_2 . Let $L' \subset \mathcal{H}'_1$ be the domain of this relation. Assume that $0 \oplus h_2 \in \text{dom}\,\theta_s$ with some $h_2 \in \mathcal{H}_2$. Then $\{0 \oplus h_2, h'_1\} \in \theta_s$ with some $h'_1 \in \mathcal{H}'_1$ and by equality (2.4) for θ_s one has $||h_2||^2 = 0$. Hence $h_2 = 0$ and consequently there exists an operator $Q_2 \in \mathcal{B}(L', \mathcal{H}_2)$ such that dom $\theta_s = \{\{h' \oplus Q_2h'\} : h' \in L'\}$. Moreover, the equality

$$Q_1h' = \theta_s(h' \oplus Q_2h'), \quad h' \in L'$$

correctly defines the operator $Q_1 \in B(L', \mathcal{H}'_1)$ such that

gr
$$\theta_s = \{ \{ h' \oplus Q_2 h', Q_1 h' \} : h' \in L' \}.$$

This and (2.6) imply (2.8).

Next according to [17, Proposition 2.7] the operator θ_s belongs to $\operatorname{Sym}(\mathcal{H}'_0, \mathcal{H}'_1)$ if and only if $\dim(\operatorname{gr} \theta_s) = \dim \mathcal{H}'_1$. This and the obvious equality $\dim L' = \dim(\operatorname{gr} \theta_s)$ yield the last statement of the theorem. \Box

Definition 2.4. [14,16] A function $\tau : \mathbb{C}_+ \to \widetilde{\mathcal{C}}(\mathcal{H}_0, \mathcal{H}_1)$ is referred to the class $\widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$ if:

(i) $2\text{Im}(h_1, h_0) - ||P_2h_0||^2 \ge 0, \ \{h_0, h_1\} \in \tau(\lambda), \ \lambda \in \mathbb{C}_+;$

(ii) $(\tau(\lambda) + iP_1)^{-1} \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_0), \ \lambda \in \mathbb{C}_+$, and the operator-function $(\tau(\lambda) + iP_1)^{-1}$ is holomorphic on \mathbb{C}_+ .

A function $\tau \in R(\mathcal{H}_0, \mathcal{H}_1)$ is referred to the class $R(\mathcal{H}_0, \mathcal{H}_1)$ if its values are operators, i.e., if mul $\tau(\lambda) = \{0\}, \ \lambda \in \mathbb{C}_+$

According to [14, 16] the equality

$$\tau(\lambda) = \{\{K_0(\lambda)h, K_1(\lambda)h\} : h \in \mathcal{H}_1\}, \ \lambda \in \mathbb{C}_+$$

establishes a bijective correspondence between all functions $\tau \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$ and all pairs $\{K_0, K_1\}$ of holomorphic operator-functions $K_j : \mathbb{C}_+ \to B(\mathcal{H}_1, \mathcal{H}_j), j \in \{0, 1\}$, with the block representation

$$K_0(\lambda) = (K_{01}(\lambda), K_{02}(\lambda))^{\top} : \mathcal{H}_1 \to \mathcal{H}_1 \oplus \mathcal{H}_2$$
(2.9)

satisfying for all $\lambda \in \mathbb{C}_+$ the following relations:

$$2\operatorname{Im}(K_{01}^*(\lambda)K_1(\lambda)) - K_{02}^*(\lambda)K_{02}(\lambda) \ge 0, \ (K_1(\lambda) + iK_{01}(\lambda))^{-1} \in \boldsymbol{B}(\mathcal{H}_1).$$
(2.10)

In the following we write $\tau = \{K_0, K_1\}$ identifying a function $\tau \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$ and the corresponding pair $\{K_0, K_1\}$ of holomorphic operator functions satisfying (2.10)(more precisely the equivalence class of such pairs [14]).

Lemma 2.5. [14, 16] Let $\tau \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$. Then the multivalued part $\mathcal{K} := \text{mul} \tau(\lambda) (\subset \mathcal{H}_1)$ of $\tau(\lambda)$ does not depend on $\lambda \in \mathbb{C}_+$. Moreover, decompositions (2.5) and

$$\tau(\lambda) = \operatorname{gr} \tau_s(\lambda) \oplus \widehat{\mathcal{K}}, \quad \lambda \in \mathbb{C}_+$$
(2.11)

hold with $\tau_s \in R(\mathcal{H}'_0, \mathcal{H}'_1)$ and $\widehat{\mathcal{K}} = \{0\} \oplus \mathcal{K}$.

The operator function τ_s in (2.11) is called the operator part of τ .

Remark 2.6. In the case $\mathcal{H}_1 = \mathcal{H}_0 =: \mathcal{H}$ the class $\widetilde{R}(\mathcal{H}, \mathcal{H})$ coincides with the well-known class $\widetilde{R}(\mathcal{H})$ of Nevanlinna $\widetilde{C}(\mathcal{H})$ -valued functions (Nevanlinna operator pairs) $\tau = \{K_0(\lambda), K_1(\lambda)\}, \lambda \in \mathbb{C}_+$ (see e.g [3]). Denote by $R(\mathcal{H})$ the set of all $\tau \in \widetilde{R}(\mathcal{H})$ such that $\tau(\lambda)$ is an operator, $\lambda \in \mathbb{C}_+$. For a function $\tau \in \widetilde{R}(\mathcal{H})$ decompositions (2.5) and (2.11) take the following well known form (see e.g. [11]):

$$\mathcal{H} = \mathcal{H}' \oplus \mathcal{K}, \qquad \tau(\lambda) = \operatorname{gr} \tau_s(\lambda) \oplus \widehat{\mathcal{K}}, \quad \lambda \in \mathbb{C}_+, \qquad (2.12)$$

where $\tau_s \in R(\mathcal{H}')$ is the operator part of τ . It is clear that $R[\mathcal{H}] \subset R(\mathcal{H}) \subset \widetilde{R}(\mathcal{H})$.

Let decompositions (2.5) hold and let $Q_1(\lambda) (\in \boldsymbol{B}(\mathcal{H}'_1))$ and $Q_2(\lambda) (\in \boldsymbol{B}(\mathcal{H}'_1, \mathcal{H}_2))$ be holomorphic on \mathbb{C}_+ operator functions.

Definition 2.7. For a function $\tau \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$ we write $\tau = \{\mathcal{H}'_1 \oplus \mathcal{K}, Q_1, Q_2\}$ if

$$\tau(\lambda) = \{\{h_1' \oplus Q_2(\lambda)h_1', Q_1(\lambda)h_1' \oplus k\} : h_1' \in \mathcal{H}_1', k \in \mathcal{K}\}, \quad \lambda \in \mathbb{C}_+$$
(2.13)

If $\tau = \{\mathcal{H}'_1 \oplus \mathcal{K}, Q_1, Q_2\}$, then $\mathcal{K} = \text{mul}\,\tau(\lambda), \ \lambda \in \mathbb{C}_+$, and in view of the inequality

$$2\mathrm{Im}Q_1(\lambda) - Q_2^*(\lambda)Q_2(\lambda) \ge 0, \quad \lambda \in \mathbb{C}_+$$
(2.14)

one has $Q_1 \in R[\mathcal{H}'_1]$.

Proposition 2.8. In the case dim $\mathcal{H}_1 < \infty$ each function $\tau \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$ admits the representation $\tau = \{\mathcal{H}'_1 \oplus \mathcal{K}, Q_1, Q_2\}.$

Proof. Let $\tau_s = \{\widetilde{Q}_0, \widetilde{Q}_1\}$ with operator-functions $\widetilde{Q}_j : \mathbb{C}_+ \to B(\mathcal{H}'_1, \mathcal{H}'_j), j \in \{0, 1\}$, and let

$$\widetilde{Q}_0(\lambda) = (\widetilde{Q}_{01}(\lambda), \, \widetilde{Q}_{02}(\lambda))^\top : \mathcal{H}'_1 \to \mathcal{H}'_1 \oplus \mathcal{H}_2, \quad \lambda \in \mathbb{C}_+$$

be the block representation of $\widetilde{Q}_0(\lambda)$. Since $\tau_s \in R(\mathcal{H}'_0, \mathcal{H}'_1)$, it follows that

$$2\mathrm{Im}(\widetilde{Q}_1(\lambda)h'_1,\widetilde{Q}_{01}(\lambda)h'_1) - ||\widetilde{Q}_{02}(\lambda)h'_1||^2 \ge 0, \quad \lambda \in \mathbb{C}_+, \ h'_1 \in \mathcal{H}'_1.$$

Therefore for each $h'_1 \in \ker \widetilde{Q}_{01}(\lambda)$ one has $h'_1 \in \ker Q_{02}(\lambda)$. Hence $h'_1 \in \ker \widetilde{Q}_0(\lambda)$, which implies that $\ker \widetilde{Q}_{01}(\lambda) \subset \ker \widetilde{Q}_0(\lambda)$. Since $\tau_s(\lambda)$ is an operator, it follows that $\ker \widetilde{Q}_0(\lambda) = \{0\}$ and, consequently, $\ker \widetilde{Q}_{01}(\lambda) = \{0\}$. Since $\dim \mathcal{H}'_1 < \infty$, this implies that the operator $\widetilde{Q}_{01}(\lambda)$ is invertible, that is $\widetilde{Q}_{01}^{-1} : \mathbb{C}_+ \to B(\mathcal{H}'_1)$ is a holomorphic operator function. Clearly, τ_s admits the representation $\tau_s = \{Q_0, Q_1\}$ with

$$Q_0(\lambda) = \widetilde{Q}_0(\lambda)\widetilde{Q}_{01}^{-1}(\lambda) = (I_{\mathcal{H}'_1}, Q_2(\lambda))^\top, \qquad Q_1(\lambda) = \widetilde{Q}_1(\lambda)\widetilde{Q}_{01}^{-1}(\lambda),$$

where $Q_2(\lambda) = \widetilde{Q}_{02}(\lambda)\widetilde{Q}_{01}^{-1}(\lambda)$. Hence

$$\operatorname{gr} \tau_s(\lambda) = \{ \{ h'_1 \oplus Q_2(\lambda) h'_1, Q_1(\lambda) h'_1 \} : h'_1 \in \mathcal{H}'_1 \}, \quad \lambda \in \mathbb{C}_+,$$

which in view of (2.11) yields (2.13).

Proposition 2.9. Let $\tau = \{\mathcal{H}'_1 \oplus \mathcal{K}, Q_1, Q_2\} \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1), \text{ let } \widetilde{L}_{\infty}(\subset \mathcal{H}'_1) \text{ be a linear manifold of all } h \in \mathcal{H}'_1 \text{ such that there exists the limit} \lim_{y \to +\infty} Q_2(iy)h \text{ and let } Q_2(\infty) : \widetilde{L}_{\infty} \to \mathcal{H}_2 \text{ be the linear operator given by}$

$$Q_2(\infty)h = \lim_{y \to +\infty} Q_2(iy)h, \quad h \in \widetilde{L}_{\infty}.$$

For $h \in \widetilde{L}_{\infty}$ put

$$\varphi_h(y) = \operatorname{Im}(Q_1(iy)h, h) - \operatorname{Re}(Q_2(iy)h, Q_2(\infty)h) + \frac{1}{2} ||Q_2(\infty)h||^2, y \in \mathbb{R}_+.$$
(2.15)

Then for each $h \in \widetilde{L}_{\infty}$ there exists the limit $\lim_{y \to +\infty} y \varphi_h(y) \leq \infty$ and the equality

$$L_{\infty} = \{h \in \widetilde{L}_{\infty} : \lim_{y \to +\infty} y \varphi_h(y) < \infty\}$$
(2.16)

defines the linear manifold $L_{\infty} \subset \mathcal{H}'_1$ such that for each $h \in L_{\infty}$ there exists the limit

$$Q_1(\infty)h = \lim_{y \to +\infty} Q_1(iy)h, \quad h \in L_{\infty}.$$
 (2.17)

Thus the equalities (2.16) and (2.17) define the linear operator $Q_1(\infty)$: $L_{\infty} \to \mathcal{H}'_1$.

Proof. Let

$$\tau_{es}(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0\\ -iQ_2(\lambda) & \frac{i}{2}I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0} \to \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0}, \quad \lambda \in \mathbb{C}_+.$$
(2.18)

Then

$$\operatorname{Im}\tau_{es}(\lambda) = \begin{pmatrix} \operatorname{Im}Q_1(\lambda) & -\frac{1}{2}Q_2^*(\lambda) \\ -\frac{1}{2}Q_2(\lambda) & \frac{1}{2}I_{\mathcal{H}_2} \end{pmatrix} : \mathcal{H}_1' \oplus \mathcal{H}_2 \to \mathcal{H}_1' \oplus \mathcal{H}_2, \quad \lambda \in \mathbb{C}_+.$$
(2.19)

and by (2.14) $\operatorname{Im}\tau_{es}(\lambda) \geq 0$, $\lambda \in \mathbb{C}_+$. Therefore $\tau_{es} \in R[\mathcal{H}'_0]$. Next, the immediate calculations show that for each $h \in \widetilde{L}_{\infty}$

$$\operatorname{Im}(\tau_{es}(iy)(h \oplus Q_2(\infty)h), h \oplus Q_2(\infty)h) = \varphi_h(y).$$
(2.20)

Therefore by Proposition 2.1 for each $h \in L_{\infty}$ there exists the limit $\lim_{y\to+\infty} \tau_{es}(iy)(h\oplus Q_2(\infty)h)$. Since

$$\tau_{es}(iy)(h \oplus Q_2(\infty)h) = Q_1(iy)h \oplus (-iQ_2(iy)h + \frac{i}{2}Q_2(\infty)h),$$

this implies that there exists the limit in (2.17).

2.4 Boundary triplets

In the following we denote by A a closed symmetric linear relation (in particular closed not necessarily densely defined symmetric operator) in a Hilbert space \mathfrak{H} . Let $\mathfrak{N}_{\lambda}(A) = \ker (A^* - \lambda) \ (\lambda \in \mathbb{C} \setminus \mathbb{R})$ be a defect subspace of A, let $\mathfrak{N}_{\lambda}(A) = \{\{f, \lambda f\} : f \in \mathfrak{N}_{\lambda}(A)\}$ and let $n_{\pm}(A) := \dim \mathfrak{N}_{\lambda}(A) \leq \infty, \ \lambda \in \mathbb{C}_{\pm}$, be deficiency indices of A. Denote by $\operatorname{ext}(A)$ the set of all proper extensions of A (i.e., the set of all relations \widetilde{A} in \mathfrak{H} such that $A \subset \widetilde{A} \subset A^*$) and by $\operatorname{ext}(A)$ the set of closed extensions $\widetilde{A} \in \operatorname{ext}(A)$. Clearly, each symmetric extension \widetilde{A} of A belongs to $\operatorname{ext}(A)$. As before we assume that \mathcal{H}_0 is a Hilbert space, \mathcal{H}_1 is a subspace in \mathcal{H}_0 and $\mathcal{H}_2 := \mathcal{H}_0 \ominus \mathcal{H}_1$, so that $\mathcal{H}_0 = \mathcal{H}_1 \oplus \mathcal{H}_2$. Moreover, denote by P_j the orthoprojections in \mathcal{H}_0 and \mathcal{H}_j , $j \in 1, 2$.

Below within this subsection we specify some definitions and results from [15, 16].

Definition 2.10. A collection $\Pi = \{\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1\}$, where $\Gamma_j : A^* \to \mathcal{H}_j, j \in \{0, 1\}$, are linear mappings, is called a boundary triplet for A^* , if the mapping $\Gamma : \hat{f} \to \{\Gamma_0 \hat{f}, \Gamma_1 \hat{f}\}, \hat{f} \in A^*$, from A^* into $\mathcal{H}_0 \oplus \mathcal{H}_1$ is surjective and the following Green's identity holds for all $\hat{f} = \{f, f'\}, \hat{g} = \{g, g'\} \in A^*$:

$$(f',g) - (f,g') = (\Gamma_1 \widehat{f}, \Gamma_0 \widehat{g})_{\mathcal{H}_0} - (\Gamma_0 \widehat{f}, \Gamma_1 \widehat{g})_{\mathcal{H}_0} + i(P_2 \Gamma_0 \widehat{f}, P_2 \Gamma_0 \widehat{g})_{\mathcal{H}_2}$$

$$(2.21)$$

In the following propositions some properties of boundary triplets are specified.

Proposition 2.11. If $\Pi = \{\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1\}$ is a boundary triplet for A^* , then

$$\dim \mathcal{H}_1 = n_-(A) \le n_+(A) = \dim \mathcal{H}_0. \tag{2.22}$$

Conversely, let A be a symmetric relation with $n_{-}(A) \leq n_{+}(A)$. Then for any Hilbert space \mathcal{H}_{0} and a subspace $\mathcal{H}_{1} \subset \mathcal{H}_{0}$ satisfying (2.22) there exists a boundary triplet $\Pi = \{\mathcal{H}_{0} \oplus \mathcal{H}_{1}, \Gamma_{0}, \Gamma_{1}\}$ for A^{*} .

Proposition 2.12. Let $\Pi = \{\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* . Then:

(1) ker $\Gamma_0 \cap \ker \Gamma_1 = A$ and Γ_j is a bounded operator from A^* onto $\mathcal{H}_j, j \in \{0, 1\}.$

(2) The equality $A_0 := \ker \Gamma_0 = \{\hat{f} \in A^* : \Gamma_0 \hat{f} = 0\}$ define a maximal symmetric extension A_0 of A such that $n_-(A_0) = 0$.

(3) The equality

$$A_{\theta} = \{\widehat{f} \in A^* : \{\Gamma_0 \widehat{f}, \Gamma_1 \widehat{f}\} \in \theta\}$$

gives a bijective correspondence $\widetilde{A} = A_{\theta}$ between all linear relations θ from \mathcal{H}_0 to \mathcal{H}_1 and all extensions $\widetilde{A} \in \text{ext}(A)$. Moreover, A_{θ} is symmetric (maximal symmetric) if and only if $\theta \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ (resp. $\theta \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$). If $\Pi = \{\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1\}$ is a boundary triplet for A^* , then the equalities

$$\gamma_{+}(\lambda) = \pi_{1}(\Gamma_{0} \upharpoonright \widehat{\mathfrak{N}}_{\lambda}(A))^{-1}, \ \lambda \in \mathbb{C}_{+};$$

$$\gamma_{-}(\lambda) = \pi_{1}(P_{1}\Gamma_{0} \upharpoonright \widehat{\mathfrak{N}}_{\lambda}(A))^{-1}, \ \lambda \in \mathbb{C}_{-}$$

$$\Gamma_{1} \upharpoonright \widehat{\mathfrak{N}}_{\lambda}(A) = M_{+}(\lambda)\Gamma_{0} \upharpoonright \widehat{\mathfrak{N}}_{\lambda}(A), \quad \lambda \in \mathbb{C}_{+}$$

correctly define the holomorphic operator functions $\gamma_+ : \mathbb{C}_+ \to B(\mathcal{H}_0, \mathfrak{H}),$ $\gamma_- : \mathbb{C}_- \to B(\mathcal{H}_1, \mathfrak{H})$ and $M_+ : \mathbb{C}_+ \to B(\mathcal{H}_0, \mathcal{H}_1)$ (here π_1 is the orthoprojection in $\mathfrak{H} \oplus \mathfrak{H}$ onto $\mathfrak{H} \oplus \{0\}$). The operator-functions γ_{\pm} and M_+ are called the γ -fields and the Weyl function of the triplet Π respectively.

2.5 Self-adjoint extensions and their compressions

As is known a linear relation $\widetilde{A} = \widetilde{A}^*$ in a Hilbert space $\widetilde{\mathfrak{H}} \supset \mathfrak{H}$ is called an exit space extension of A if $A \subset \widetilde{A}$ and the minimality condition $\overline{\operatorname{span}}{\mathfrak{H}, (\widetilde{A} - \lambda)^{-1}\mathfrak{H} : \lambda \in \mathbb{C} \setminus \mathbb{R}} = \widetilde{\mathfrak{H}}$ is satisfied. For an exit space extension $\widetilde{A} \in \widetilde{C}(\widetilde{\mathfrak{H}})$ of A the compressed resolvent

$$R(\lambda) = P_{\mathfrak{H}}(A - \lambda)^{-1} \upharpoonright \mathfrak{H}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}$$

$$(2.23)$$

is called a generalized resolvent of A (here $P_{\mathfrak{H}}$ is the orthoprojection in $\widetilde{\mathfrak{H}}$ onto \mathfrak{H}). If two exit space extensions $\widetilde{A}_1 \in \widetilde{\mathcal{C}}(\widetilde{\mathfrak{H}}_1)$ and $\widetilde{A}_2 \in \widetilde{\mathcal{C}}(\widetilde{\mathfrak{H}}_2)$ of A generates the same generalized resolvent $R(\lambda)$, then \widetilde{A}_1 and \widetilde{A}_2 are equivalent. The latter means that there exists a unitary operator $V \in \mathbf{B}(\widetilde{\mathfrak{H}}_1 \oplus \mathfrak{H}, \widetilde{\mathfrak{H}}_2 \oplus \mathfrak{H})$ such that $\widetilde{A}_2 = \widetilde{U}\widetilde{A}_1$ with the unitary operator $\widetilde{U} = (I_{\mathfrak{H}} \oplus V) \oplus (I_{\mathfrak{H}} \oplus V) \in B(\widetilde{\mathfrak{H}}_1^2, \widetilde{\mathfrak{H}}_2^2)$. Hence each exit space extension \widetilde{A} of A is defined by the generalized resolvent (2.23) uniquely up to the equivalence.

The following proposition is well known.

Proposition 2.13. If $n_+(A) = 0$, then there exists a unique exit space extension $\widetilde{A} = \widetilde{A}^*$ of A and

$$P_{\mathfrak{H}}(\widetilde{A}-\lambda)^{-1} \upharpoonright \mathfrak{H} = (A^*-\lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.$$
(2.24)

A parametrization of all exit space self-adjoint extensions \hat{A} of a symmetric relation A is given by the following theorem.

Theorem 2.14. [15, 16] Assume that $n_-(A) \leq n_+(A)$, $\Pi = \{\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1\}$ is a boundary triplet for A^* , $A_0 = \ker \Gamma_0$ and γ_{\pm} and M_+ are

the γ -fields and the Weyl function of Π respectively. Then the equality (Krein formula for generalized resolvent)

$$P_{\mathfrak{H}}(\widetilde{A}_{\tau}-\lambda)^{-1} \upharpoonright \mathfrak{H} = (A_0 - \lambda)^{-1} - \gamma_+(\lambda)(\tau(\lambda) + M_+(\lambda))^{-1}\gamma_-^*(\overline{\lambda}), \ \lambda \in \mathbb{C}_+ \quad (2.25)$$

establishes a bijective correspondence $\widetilde{A} = \widetilde{A}_{\tau}$ between all relation valued functions $\tau = \tau(\lambda) \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$ and all exit space self-adjoint extensions \widetilde{A} of A. The same correspondence is given by the Shtraus formula

$$P_{\mathfrak{H}}(\widetilde{A}_{\tau}-\lambda)^{-1} \upharpoonright \mathfrak{H} = (\widetilde{A}(\lambda)-\lambda)^{-1}, \quad \lambda \in \mathbb{C}_+,$$
(2.26)

where $\widetilde{A}(\lambda) = A_{-\tau(\lambda)}, \ \lambda \in \mathbb{C}_+$ (see Proposition 2.12, (3)).

Remark 2.15. If $n_{-}(A) < \infty$ and $\Pi = \{\mathcal{H}_{0} \oplus \mathcal{H}_{1}, \Gamma_{0}, \Gamma_{1}\}$ is a boundary triplet for A^{*} , then by (2.22) dim $\mathcal{H}_{1} < \infty$ and according to Proposition 2.8 each function $\tau \in \widetilde{R}(\mathcal{H}_{0}, \mathcal{H}_{1})$ admits the representation $\tau = \{\mathcal{H}'_{1} \oplus \mathcal{K}, Q_{1}, Q_{2}\}$ in the sense of Definition 2.7.

Remark 2.16. If $\mathcal{H}_0 = \mathcal{H}_1 := \mathcal{H}$, then the triplet $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ in the sense of Definition 2.10 turns into the boundary triplet (boundary value space) $\Pi = {\mathcal{H}, \Gamma_0, \Gamma_1}$ for A^* in the sense of [2, 10]. In this case:

(i) the relation A has equal deficiency indices $n_+(A) = n_-(A)(= \dim \mathcal{H});$

(ii) $A_0^* = A_0$ and the γ -fields $\gamma_{\pm}(\cdot)$ and the Weyl function $M_+(\cdot)$ of Π turn into the γ -field $\gamma : \mathbb{C} \setminus \mathbb{R} \to B(\mathcal{H}, \mathfrak{H})$ and the Weyl function $M : \mathbb{C} \setminus \mathbb{R} \to B(\mathcal{H})$ from [5, 13]

(iii) $M(\cdot)$ is a Q-function of the pair (A, A_0) and formula (2.25) turns into the classical Krein formula for generalized resolvents of a symmetric relation A with equal deficiency indices [5, 11–13]. This formula gives a parametrization $\widetilde{A} = \widetilde{A}_{\tau}$ of all exit space extensions $\widetilde{A} = \widetilde{A}^*$ of A by means of functions $\tau = \tau(\lambda) \in \widetilde{R}(\mathcal{H})$.

Assume that $\widetilde{\mathfrak{H}} \supset \mathfrak{H}$ is a Hilbert space, $\mathfrak{H}_r := \widetilde{\mathfrak{H}} \ominus \mathfrak{H}$, $P_{\mathfrak{H}}$ is the orthoprojection in $\widetilde{\mathfrak{H}}$ onto \mathfrak{H} and $\widetilde{A} = \widetilde{A}^* \in \widetilde{\mathcal{C}}(\widetilde{\mathfrak{H}})$ is an exit space extension of A.

Definition 2.17. A linear relation $C(\widetilde{A})$ in \mathfrak{H} defined by

$$C(\widetilde{A}) = P_{\mathfrak{H}}\widetilde{A} \upharpoonright \mathfrak{H} := \{\{f, f'\} \in \mathfrak{H}^2 : \{f, f' \oplus f'_r\} \in \widetilde{A} \text{ with some } f'_r \in \mathfrak{H}_r\}$$

$$(2.27)$$

is called the compression of A.

Clearly, C(A) is a (not necessarily closed) symmetric extension of A.

Theorem 2.18. [18] Assume that $n_+(A) = n_-(A)$, $\Pi = \{\mathcal{H}, \Gamma_0, \Gamma_1\}$ is a boundary triplet for A^* , $\tau \in \widetilde{R}(\mathcal{H})$, τ_s is the operator part of τ (see (2.12)), $\widetilde{A}_{\tau} = \widetilde{A}^*_{\tau}$ is the corresponding exit space extension of A and $C(\widetilde{A}_{\tau})$ is the compression of \widetilde{A}_{τ} . Assume also that $\tau_s \in R_c[\mathcal{H}']$ and let $\mathcal{B}_{\tau_s} \in \mathbf{B}(\mathcal{H}')$ and $\mathcal{N}_{\tau_s} : \operatorname{dom} \mathcal{N}_{\tau_s} \to \mathcal{H}'$ (dom $\mathcal{N}_{\tau_s} \subset \mathcal{H}'$) be operators corresponding to τ_s in accordance with Proposition 2.1. If $\operatorname{ran} \mathcal{B}_{\tau_s}$ is closed, then $C(\widetilde{A}_{\tau}) = A_{\theta_c}$ (in the triplet Π) with the symmetric linear relation θ_c in \mathcal{H} given by

$$\theta_c = \{\{h, -\mathcal{N}_{\tau_s}h + \mathcal{B}_{\tau_s}\psi + k\} : h \in \operatorname{dom} \mathcal{N}_{\tau_s}, \psi \in \mathcal{H}', k \in \mathcal{K}\}.$$
 (2.28)

3. Description of compressions of exit space self-adjoint extensions

The following lemma directly follows from [16, Proposition 4.2].

Lemma 3.1. Let $\Pi = \{\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* , let A_r be a maximal symmetric operator in a Hilbert space \mathfrak{H}_r with $n_+(A_r) = 0$, $n_-(A_r) = \dim \mathcal{H}_2$ and let $\mathfrak{H}_e := \mathfrak{H} \oplus \mathfrak{H}_r$. Then $A_e := A \oplus A_r$ is a symmetric relation in \mathfrak{H}_e , $A_e^* := A^* \oplus A_r^*$ and there exists a surjective linear mapping $\Gamma_r : A_r^* \to \mathcal{H}_2$ such that the operators

$$\Gamma_0^e \widehat{f}_e = P_1 \Gamma_0 \widehat{f} \oplus (P_2 \Gamma_0 \widehat{f} + \Gamma_r \widehat{f}_r) (\in \mathcal{H}_1 \oplus \mathcal{H}_2), \qquad (3.1)$$

 $\Gamma_1^e \widehat{f}_e = \Gamma_1 \widehat{f} \oplus \frac{i}{2} (P_2 \Gamma_0 \widehat{f} - \Gamma_r \widehat{f}_r) (\in \mathcal{H}_1 \oplus \mathcal{H}_2), \quad \widehat{f}_e = \widehat{f} \oplus \widehat{f}_r \in A^* \oplus A_r^*$ (3.2)

form a boundary triplet $\Pi_e = \{\mathcal{H}_0, \Gamma_0^e, \Gamma_1^e\}$ for A_e^* .

Proposition 3.2. Let $\Pi = \{\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* , let A_r , \mathfrak{H}_r , \mathfrak{H}_e , \mathfrak{H}_e be the same as in Lemma 3.1 and let $\Pi_e = \{\mathcal{H}_0, \Gamma_0^e, \Gamma_1^e\}$ be boundary triplet (3.1), (3.2) for A_e^* . Then for each linear relation θ from \mathcal{H}_0 to \mathcal{H}_1 the equalities

$$\widetilde{A}_e = A_\theta \oplus A_r^*, \qquad \widetilde{A}'_e = A_\theta \oplus A_r \tag{3.3}$$

define proper extensions \widetilde{A}_e and \widetilde{A}'_e of A_e and $\widetilde{A}_e = A_{\theta_e}$, $\widetilde{A}'_e = A_{\theta'_e}$ (in the triplet Π_e), where θ_e and θ'_e are linear relations in $\mathcal{H}_0 (= \mathcal{H}_1 \oplus \mathcal{H}_2)$ given by

$$\theta_e = \{\{h_{01} \oplus (h_{02} + h_r), h_1 \oplus \frac{i}{2}(h_{02} - h_r)\}: \\ \{h_{01} \oplus h_{02}, h_1\} \in \theta, h_r \in \mathcal{H}_2\} \quad (3.4)$$

$$\theta'_e = \{\{h_{01} \oplus h_{02}, h_1 \oplus \frac{i}{2}h_{02}\} : \{h_{01} \oplus h_{02}, h_1\} \in \theta\}.$$
 (3.5)

Proof. The inclusions $\widetilde{A}_e, \widetilde{A}'_e \in \text{ext}(A_e)$ are obvious. Next assume that $\widehat{f}_e = \widehat{f} \oplus \widehat{f}_r \in \widetilde{A}_e$ with $\widehat{f} \in A_\theta$ and $\widehat{f}_r \in A^*_r$. Then by (3.1) and (3.2)

$$\Gamma_0^e \widehat{f}_e = h_{01} \oplus (h_{02} + h_r), \qquad \Gamma_1^e \widehat{f}_e = h_1 \oplus \frac{i}{2}(h_{02} - h_r),$$

where $h_{01} = P_1 \Gamma_0 \hat{f}$, $h_{02} = P_2 \Gamma_0 \hat{f}$, $h_1 = \Gamma_1 \hat{f}$ and $h_r = \Gamma_r \hat{f}_r$. Since $\{h_{01} \oplus h_{02}, h_1\} = \{\Gamma_0 \hat{f}, \Gamma_1 \hat{f}\} \in \theta$ and $h_r \in \mathcal{H}_2$, it follows that $\{\Gamma_0^e \hat{f}_e, \Gamma_1^e \hat{f}_e\} \in \theta_e$. Conversely, let $\hat{h} \in \theta_e$, so that

$$\hat{h} = \{\{h_{01} \oplus (h_{02} + h_r), h_1 \oplus \frac{i}{2}(h_{02} - h_r)\}$$

with some $\{h_{01} \oplus h_{02}, h_1\} \in \theta$ and $h_r \in \mathcal{H}_2$. Then there exists $\hat{f} \in A_{\theta}$ such that $P_1\Gamma_0\hat{f} = h_{01}, P_2\Gamma_0\hat{f} = h_{02}$ and $\Gamma_1\hat{f} = h_1$. Moreover, since the mapping Γ_r is surjective, there exists $\hat{f}_r \in A_r^*$ such that $\Gamma_r\hat{f}_r = h_r$. Clearly, $\hat{f}_e := \hat{f} \oplus \hat{f}_r \in \tilde{A}_e$ and by (3.1) and (3.2) one has $\{\Gamma_0^e\hat{f}_e, \Gamma_1^e\hat{f}_e\} = \hat{h}$. This implies that $\tilde{A}_e = A_{\theta_e}$.

Next assume that $\hat{f}_r \in A_r$. Then $\hat{f}_e := 0 \oplus \hat{f}_r \in A_e$ and by (3.1) $\Gamma_0^e \hat{f}_e = \Gamma_r \hat{f}_r$. On the other hand, according to Proposition 2.12, (1) $\Gamma_0^e \hat{f}_e = 0$ and, consequently, $\Gamma_r \hat{f}_r = 0$, $\hat{f}_r \in A_r$. This and (3.1), (3.2) yield the equality $\tilde{A}'_e = A_{\theta'_e}$.

Lemma 3.3. Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces, let dim $\mathcal{H}_1 < \infty$ and let $T \in \mathcal{B}(\mathcal{H}_1 \oplus \mathcal{H}_2)$ be an operator with the block representation

$$T = egin{pmatrix} T_1 & T_2 \ T_2^* & rac{1}{2}I_{\mathcal{H}_2} \end{pmatrix} : \mathcal{H}_1 \oplus \mathcal{H}_2 o \mathcal{H}_1 \oplus \mathcal{H}_2.$$

Then $\operatorname{ran} T$ is closed.

Proof. Let $\mathcal{H}_2'' = \ker T_2$ and $\mathcal{H}_2' = \mathcal{H}_2 \ominus \mathcal{H}_2''$, so that $\mathcal{H}_2 = \mathcal{H}_2' \oplus \mathcal{H}_2''$ and $T_2 = (T_2', 0) : \mathcal{H}_2' \oplus \mathcal{H}_2'' \to \mathcal{H}_1.$

Since ker $T'_2 = \{0\}$ and dim $\mathcal{H}_1 < \infty$, it follows that dim $\mathcal{H}'_2 < \infty$. Moreover,

$$T = \begin{pmatrix} T_1 & T'_2 & 0\\ (T'_2)^* & \frac{1}{2}I_{\mathcal{H}'_2} & 0\\ 0 & 0 & \frac{1}{2}I_{\mathcal{H}''_2} \end{pmatrix} : \mathcal{H}_1 \oplus \mathcal{H}'_2 \oplus \mathcal{H}''_2 \to \mathcal{H}_1 \oplus \mathcal{H}'_2 \oplus \mathcal{H}''_2$$

and hence

$$T = \begin{pmatrix} \widetilde{T} & 0\\ 0 & \frac{1}{2}I_{\mathcal{H}_{2}''} \end{pmatrix} : \widetilde{\mathcal{H}} \oplus \mathcal{H}_{2}'' \to \widetilde{\mathcal{H}} \oplus \mathcal{H}_{2}'',$$

where $\widetilde{\mathcal{H}} = \mathcal{H}_1 \oplus \mathcal{H}'_2$ and $\widetilde{T} \in \boldsymbol{B}(\widetilde{\mathcal{H}})$. Since dim $\widetilde{\mathcal{H}} < \infty$, the subspace ran $\widetilde{T} \subset \widetilde{\mathcal{H}}$ is closed. Moreover, ran $T = \operatorname{ran} \widetilde{T} \oplus \mathcal{H}''_2$ and hence ran T is closed.

Proposition 3.4. Let $\Pi = \{\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* , let $\tau = \{K_0, K_1\} \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$, let $K_0(\lambda)$ has the block representation

$$K_0(\lambda) = \begin{pmatrix} K_{01}(\lambda) \\ K_{02}(\lambda) \end{pmatrix} : \mathcal{H}_1 \to \mathcal{H}_1 \oplus \mathcal{H}_2, \quad \lambda \in \mathbb{C}_+$$

and let \widetilde{A}_{τ} be the corresponding exit space self-adjoint extension of Ain the Hilbert space $\widetilde{\mathfrak{H}} \supset \mathfrak{H}$. Assume also that $\mathfrak{H}_r, A_r, \mathfrak{H}_e, A_e, \Gamma_r$ are the same as in Lemma 3.1, $\Pi_e = \{\mathcal{H}_0, \Gamma_0^e, \Gamma_1^e\}$ is the boundary triplet (3.1), (3.2) for A_e^* and let $\widetilde{A}_r = \widetilde{A}_r^*$ be a (unique) exit space extension of A_r in the Hilbert space $\widetilde{\mathfrak{H}}_r \supset \mathfrak{H}_r$. Then:

(1) $\widetilde{A}_e := \widetilde{A}_\tau \oplus \widetilde{A}_r$ is an exit space self-adjoint extension of A_e in the Hilbert space $\widetilde{\mathfrak{H}}_e = \widetilde{\mathfrak{H}} \oplus \widetilde{\mathfrak{H}}_r$.

(2) $\widetilde{A}_e = \widetilde{A}_{\tau_e}$ (in the triplet Π_e), where $\tau_e = \{K_{0e}, K_{1e}\} \in \widetilde{R}(\mathcal{H}_0)$ with

$$K_{0e}(\lambda) = \begin{pmatrix} K_{01}(\lambda) & 0\\ K_{02}(\lambda) & I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}_1 \oplus \mathcal{H}_2}_{\mathcal{H}_0} \to \underbrace{\mathcal{H}_1 \oplus \mathcal{H}_2}_{\mathcal{H}_0}, \quad \lambda \in \mathbb{C}_+ \quad (3.6)$$

$$K_{1e}(\lambda) = \begin{pmatrix} K_1(\lambda) & 0\\ -\frac{i}{2}K_{02}(\lambda) & \frac{i}{2}I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}_1 \oplus \mathcal{H}_2}_{\mathcal{H}_0} \to \underbrace{\mathcal{H}_1 \oplus \mathcal{H}_2}_{\mathcal{H}_0}, \quad \lambda \in \mathbb{C}_+ \quad (3.7)$$

(3) If in addition $n_{-}(A) < \infty$ and $\tau = \{\mathcal{H}'_{1} \oplus \mathcal{K}, Q_{1}, Q_{2}\}$ (see Remark 2.15), then

$$\tau_e(\lambda) = \operatorname{gr} \tau_{es}(\lambda) \oplus \widehat{\mathcal{K}}, \quad \lambda \in \mathbb{C}_+,$$
(3.8)

where $\tau_{es} \in R_c[\mathcal{H}'_0]$ (the operator part of τ_e) is given by (2.18).

Proof. Statement (1) is obvious.

(2) Clearly, $(\widetilde{A}_e - \lambda)^{-1} = (\widetilde{A}_\tau - \lambda)^{-1} \oplus (\widetilde{A}_r - \lambda)^{-1}$. This and Proposition 2.13 give

$$P_{\mathfrak{H}_e}(\widetilde{A}_e - \lambda)^{-1} \upharpoonright \mathfrak{H}_e = P_{\mathfrak{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright \mathfrak{H} \oplus (A_r^* - \lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.$$

Let $\widetilde{A}_e = \widetilde{A}_{\tau_e}$ (in the triplet Π_e) with some $\tau_e \in \widetilde{R}(\mathcal{H}_0)$. Then by Shtraus formula (2.26)

$$(A_{-\tau_e(\lambda)} - \lambda)^{-1} = (A_{-\tau(\lambda)} - \lambda)^{-1} \oplus (A_r^* - \lambda)^{-1}, \quad \lambda \in \mathbb{C}_+$$

and, consequently,

$$A_{-\tau_e(\lambda)} = A_{-\tau(\lambda)} \oplus A_r^*.$$
(3.9)

Since

$$-\tau(\lambda) = \{\{K_{01}(\lambda)h \oplus K_{02}(\lambda)h, -K_1(\lambda)h\} : h \in \mathcal{H}_1\}, \quad \lambda \in \mathbb{C}_+,$$

it follows from (3.9) and Proposition 3.2 that

$$\tau_e(\lambda) = \{\{K_{01}(\lambda)h \oplus (K_{02}(\lambda)h + h_r), K_1(\lambda)h \\ \oplus (-\frac{i}{2}K_{02}(\lambda)h + \frac{i}{2}h_r)\} : h \in \mathcal{H}_1, h_r \in \mathcal{H}_2\}.$$

Therefore $\tau_e = \{K_{0e}, K_{1e}\}$ with $K_{0e}(\lambda)$ and $K_{1e}(\lambda)$ given by (3.6) and (3.7) respectively.

(3) It follows from (2.13) that

$$K_{0}(\lambda) = \begin{pmatrix} I_{\mathcal{H}_{1}'} & 0\\ 0 & 0\\ Q_{2}(\lambda) & 0 \end{pmatrix} : \underbrace{\mathcal{H}_{1}' \oplus \mathcal{K}}_{\mathcal{H}_{1}} \to \underbrace{\mathcal{H}_{1}' \oplus \mathcal{K}}_{\mathcal{H}_{1}} \oplus \mathcal{H}_{2}$$
$$K_{1}(\lambda) = \begin{pmatrix} Q_{1}(\lambda) & 0\\ 0 & I_{\mathcal{K}} \end{pmatrix} : \underbrace{\mathcal{H}_{1}' \oplus \mathcal{K}}_{\mathcal{H}_{1}} \to \underbrace{\mathcal{H}_{1}' \oplus \mathcal{K}}_{\mathcal{H}_{1}}$$

and by statement (2) $\tau_e = \{K_{0e}, K_{1e}\}$, where

$$K_{0e}(\lambda) = \begin{pmatrix} I_{\mathcal{H}'_1} & 0 & 0\\ 0 & 0 & 0\\ Q_2(\lambda) & 0 & I_{\mathcal{H}_2} \end{pmatrix} : \mathcal{H}'_1 \oplus \mathcal{K} \oplus \mathcal{H}_2 \to \mathcal{H}'_1 \oplus \mathcal{K} \oplus \mathcal{H}_2$$
$$K_{1e}(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0 & 0\\ 0 & I_{\mathcal{K}} & 0\\ -\frac{i}{2}Q_2(\lambda) & 0 & \frac{i}{2}I_{\mathcal{H}_2} \end{pmatrix} : \mathcal{H}'_1 \oplus \mathcal{K} \oplus \mathcal{H}_2 \to \mathcal{H}'_1 \oplus \mathcal{K} \oplus \mathcal{H}_2$$

Let

$$K_{0s}(\lambda) = \begin{pmatrix} I_{\mathcal{H}'_1} & 0\\ Q_2(\lambda) & I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0} \to \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0},$$
$$K_{1s}(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0\\ -\frac{i}{2}Q_2(\lambda) & \frac{i}{2}I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0} \to \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0}$$

Then $\tau_e(\lambda) = \tau_{es}(\lambda) \oplus \widehat{\mathcal{K}}, \ \lambda \in \mathbb{C}_+$, where $\widehat{\mathcal{K}} = \{0\} \oplus \mathcal{K}$ and

$$\tau_{es}(\lambda) = \{\{K_{0s}(\lambda)h_0, K_{1s}(\lambda)h_0\} : h_0 \in \mathcal{H}'_0\}, \quad \lambda \in \mathbb{C}_+$$

is the operator part of τ_e . Since the operator $K_{0s}(\lambda)$ is invertible, it follows that $\tau_{es} \in R[\mathcal{H}'_0]$ and

$$\tau_{es}(\lambda) = K_{1s}(\lambda)K_{0s}^{-1}(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0\\ -\frac{i}{2}Q_2(\lambda) & \frac{i}{2}I \end{pmatrix} \begin{pmatrix} I & 0\\ -Q_2(\lambda) & I \end{pmatrix},$$

which implies (2.18). Moreover, $\operatorname{Im}\tau_{es}(\lambda)$ is of the form (2.19) and by Lemma 3.3 ran $\operatorname{Im}\tau_{es}(\lambda)$ is closed. Hence $\tau_{es} \in R_c[\mathcal{H}'_0]$.

In the following theorem the compression $C(\widetilde{A}_{\tau})$ of the exit space extension \widetilde{A}_{τ} is characterized in terms of limit values of the parameter τ .

Theorem 3.5. Assume that A is a symmetric linear relation in \mathfrak{H} with $n_{-}(A) < \infty$, $\Pi = \{\mathcal{H}_{0} \oplus \mathcal{H}_{1}, \Gamma_{0}, \Gamma_{1}\}$ is a boundary triplet for A^{*} , $\tau = \{\mathcal{H}'_{1} \oplus \mathcal{K}, Q_{1}, Q_{2}\} \in \widetilde{R}(\mathcal{H}_{0}, \mathcal{H}_{1})$ (see Remark 2.15), $\widetilde{A}_{\tau} = \widetilde{A}^{*}_{\tau}$ is the corresponding exit space extension of A and $C(\widetilde{A}_{\tau})$ is the compression of \widetilde{A}_{τ} . Then $C(\widetilde{A}_{\tau}) = A_{\theta_{c}}$ (in the triplet Π) with the linear relation $\theta_{c} \in \operatorname{Sym}_{0}(\mathcal{H}_{0}, \mathcal{H}_{1})$ given by

$$\theta_c = \{ \{h \oplus Q_2(\infty)h, (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus k\} : h \in L_\infty, \psi \in \mathcal{H}'_1, k \in \mathcal{K} \}$$

$$(3.10)$$

Here $L_{\infty} \subset \mathcal{H}'_1$ is the subspace and $Q_1(\infty)$ and $Q_2(\infty)$ are operators defined in Proposition 2.9; $\mathcal{B}_{Q_1} \in B(\mathcal{H}'_1)$ is the operator corresponding to $Q_1 \in R[\mathcal{H}'_1]$ in accordance with Proposition 2.1.

Proof. Let A_r, \mathfrak{H}_r and A_e, \mathfrak{H}_e be the same as in Lemma 3.1. Moreover, let $\widetilde{A}_r = \widetilde{A}_r^*$ be a (unique) exit space extension of A_r in the Hilbert space $\widetilde{\mathfrak{H}}_r$. Then according to Proposition 3.4, (1) $\widetilde{A}_e := \widetilde{A}_\tau \oplus \widetilde{A}_r$ is an exit space self-adjoint extension of A_e in $\widetilde{\mathfrak{H}}_e = \widetilde{\mathfrak{H}} \oplus \widetilde{\mathfrak{H}}_r$. Let $C(\widetilde{A}_e)$ and $C(\widetilde{A}_r)$ be compressions of \widetilde{A}_e and \widetilde{A}_r respectively. Clearly, $C(\widetilde{A}_e) =$ $C(\widetilde{A}_\tau) \oplus C(\widetilde{A}_r)$. Moreover, since $C(\widetilde{A}_r)$ is a symmetric extension of the maximal symmetric operator A_r , it follows that $C(\widetilde{A}_r) = A_r$ and therefore

$$C(\widetilde{A}_e) = C(\widetilde{A}_\tau) \oplus A_r.$$
(3.11)

Let $C(\widetilde{A}_{\tau}) = A_{\theta_c}$ (in the triplet Π) with some $\theta_c \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$. Moreover, let $\Pi_e = \{\mathcal{H}_0, \Gamma_0^e, \Gamma_1^e\}$ be boundary triplet (3.1), (3.2) for A_e^* and let $C(\widetilde{A}_e) = A_{\theta_{ce}}$ (in the triplet Π_e) with some linear relation θ_{ce} in \mathcal{H}_0 . Then according to Proposition 3.4, (3) $\widetilde{A}_e = \widetilde{A}_{\tau_e}$ (in the triplet Π_e), where $\tau_e \in \widetilde{R}(\mathcal{H}_0)$ is of the form (3.8) with $\tau_{es} \in R_c[\mathcal{H}_0']$ given by (2.18). Let $\mathcal{B}_{\tau_{es}} \in \mathcal{B}(\mathcal{H}_0')$ be the operator corresponding to τ_{es} in accordance with Proposition 2.1. Since $\mathcal{B}_{\tau_{es}} = \mathcal{B}_{\tau_{es}}^*$, it follows from (2.18) that

$$\mathcal{B}_{\tau_{es}} = \begin{pmatrix} \mathcal{B}_{Q_1} & 0\\ 0 & 0 \end{pmatrix} : \mathcal{H}'_1 \oplus \mathcal{H}_2 \to \mathcal{H}'_1 \oplus \mathcal{H}_2.$$
(3.12)

Applying Theorem 2.18 to the triplet Π_e and taking (3.12) into account one obtains

$$\theta_{ce} = \{\{h \oplus h_2, (-N_{\tau_{es}}(h \oplus h_2) + \mathcal{B}_{Q_1}\psi) \oplus k\} : h \\ \oplus h_2 \in \operatorname{dom} N_{\tau_{es}}, \psi \in \mathcal{H}'_1, k \in \mathcal{K}\},$$
(3.13)

where

$$\operatorname{dom} N_{\tau_{es}} = \{h \oplus h_2 \in \mathcal{H}'_1 \oplus \mathcal{H}_2 : \lim_{y \to +\infty} y \operatorname{Im}(\tau_{es}(iy)(h \oplus h_2), h \oplus h_2) < \infty \}$$
$$N_{\tau_{es}}(h \oplus h_2) = \lim_{y \to +\infty} \tau_{es}(iy)(h \oplus h_2), \quad h \oplus h_2 \in \operatorname{dom} N_{\tau_{es}}.$$
(3.14)

It follows from (2.19) that

dom
$$N_{\tau_{es}} = \{h \oplus h_2 \in \mathcal{H}'_1 \oplus \mathcal{H}_2 : \lim_{y \to +\infty} y (\operatorname{Im}(Q_1(iy)h, h)) -\operatorname{Re}(Q_2(iy)h, h_2) + \frac{1}{2} ||h_2||^2) < \infty \}.$$
 (3.15)

Moreover, in view of (2.18) for $h \oplus h_2 \in \mathcal{H}'_1 \oplus \mathcal{H}_2$ one has

$$\tau_{es}(iy)(h \oplus h_2) = Q_1(iy)h \oplus (-iQ_2(iy)h + \frac{i}{2}h_2).$$
(3.16)

Therefore for each $h \oplus h_2 \in \text{dom} N_{\tau_{es}}$ there exist the limits $Q_1(\infty)h := \lim_{y \to +\infty} Q_1(iy)h, Q_2(\infty)h := \lim_{y \to +\infty} Q_2(iy)h$ and by (3.14), (3.16)

$$N_{\tau_{es}}(h \oplus h_2) = Q_1(\infty)h \oplus (-iQ_2(\infty)h + \frac{i}{2}h_2), \quad h \oplus h_2 \in \operatorname{dom} N_{\tau_{es}}$$

Hence (3.13) can be written as

$$\theta_{ce} = \{ \{ h \oplus h_2, (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus (iQ_2(\infty)h - \frac{i}{2}h_2) \oplus k \} : h \oplus h_2 \in \operatorname{dom} N_{\tau_{es}}, \psi \in \mathcal{H}'_1, k \in \mathcal{K} \}.$$
(3.17)

On the other hand, by (3.11) and Proposition 3.2 one has

$$\theta_{ce} = \{\{h \oplus h_2, h_1 \oplus \frac{i}{2}h_2\} : \{h \oplus h_2, h_1\} \in \theta_c\}.$$
 (3.18)

Now by using (3.17) and (3.18) we prove (3.10).

Let $\widehat{h} = \{h \oplus h_2, h_1\} \in \theta_c$ with $h \oplus h_2 \in \mathcal{H}_1 \oplus \mathcal{H}_2(=\mathcal{H}_0)$ and $h_1 \in \mathcal{H}_1$. Then by (3.18) $\{h \oplus h_2, h_1 \oplus \frac{i}{2}h_2\} \in \theta_{ce}$ and (3.17) yields $h \oplus h_2 \in \text{dom } N_{\tau_{es}}$,

$$h_1 = (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus k, \qquad \frac{i}{2}h_2 = iQ_2(\infty)h - \frac{i}{2}h_2, \qquad (3.19)$$

where $\psi \in \mathcal{H}'_1$ and $k \in \mathcal{K}$. It follows from (3.15) that $h \in \mathcal{H}'_1$. Moreover, by the second equality in (3.19) $h_2 = Q_2(\infty)h$ and hence $h \in \widetilde{L}_{\infty}(\subset \mathcal{H}'_1)$ (see Proposition 2.9). Note also that by (3.15) $\lim_{y\to+\infty} y\varphi_h(y) < \infty$, where $\varphi_h(y)$ is given by (2.15). Therefore by (2.16) $h \in L_{\infty}$ and the first equality in (3.19) yields

$$\widehat{h} = \{h \oplus Q_2(\infty)h, (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus k\}.$$
(3.20)

Conversely, assume that $h \in L_{\infty}$, $\psi \in \mathcal{H}'_1$, $k \in \mathcal{K}$ and $\hat{h} \in \mathcal{H}_0 \oplus \mathcal{H}_1$ is given by (3.20). Let us put

$$\widehat{m} := \{h \oplus Q_2(\infty)h, (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus \frac{i}{2}Q_2(\infty)h \oplus k\}$$
(3.21)
$$= \{h \oplus Q_2(\infty)h, (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus (iQ_2(\infty)h - \frac{i}{2}Q_2(\infty)h) \oplus k\}$$

Since $h \in L_{\infty}$, it follows from (3.15), (2.16) and (2.15) that $h \oplus Q_2(\infty)h \in$ dom $N_{\tau_{es}}$. Therefore by (3.17) $\hat{m} \in \theta_{ce}$ and in view of (3.18) there exists $\{h' \oplus h'_2, h'_1\} \in \theta_c$ such that $\hat{m} = \{h' \oplus h'_2, h'_1 \oplus \frac{i}{2}h'_2\}$ (here $h', h'_1 \in \mathcal{H}_1$ and $h'_2 \in \mathcal{H}_2$). Comparing this equality with (3.21) one gets $h' = h, h'_2 =$ $Q_2(\infty)h$ and $h'_1 = (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus k$. Hence $\hat{h} = \{h' \oplus h'_2, h'_1\}$, that is $\hat{h} \in \theta_c$. This proves (3.10).

Corollary 3.6. Let the assumptions of Theorem 3.5 be satisfied and let $A_0 = \ker \Gamma_0$. Then:

(1) $C(\tilde{A}_{\tau}) \subset A_0$ if and only if

$$\lim_{y \to +\infty} y \varphi_h(y) = \infty, \quad h \in \widetilde{L}_{\infty}, \quad h \neq 0$$
(3.22)

(for \widetilde{L}_{∞} and $\varphi_h(y)$ see Proposition 2.9). In this case

$$C(\widetilde{A}_{\tau}) = \{ \widehat{f} \in A^* : \Gamma_0 \widehat{f} = 0, \ \Gamma_1 \widehat{f} = \mathcal{B}_{Q_1} \psi \oplus k$$

with some $\psi \in \mathcal{H}'_1$ and $k \in \mathcal{K} \}.$ (3.23)

(2)
$$C(A_{\tau}) = A_0$$
 if and only if ker $\mathcal{B}_{Q_1} = \{0\}$.

(3) $C(\widetilde{A}_{\tau}) = A$ if and only if $\tau \in R(\mathcal{H}_0, \mathcal{H}_1)$ (that is $\mathcal{K} = \{0\}$), $\mathcal{B}_{Q_1} = 0$ and (3.22) is satisfied.

Proof. (1) According to Theorem 3.5 $C(\widetilde{A}_{\tau}) = A_{\theta_c}$ with $\theta_c \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$ given by (3.10). In the following we need the relations

$$\operatorname{mul} \theta_c = \operatorname{ran} \mathcal{B}_{Q_1} \oplus \mathcal{K}, \qquad \mathcal{H}_1 \ominus \operatorname{mul} \theta_c = \ker \mathcal{B}_{Q_1} \tag{3.24}$$

$$L_{\infty} \subset \ker \mathcal{B}_{Q_1} \tag{3.25}$$

$$\operatorname{dom} \theta_c = \{0\} \iff L_{\infty} = \{0\}. \tag{3.26}$$

The first equality in (3.24) directly follows from (3.10). Next,

$$\mathcal{H}_1 \ominus \operatorname{mul} \theta_c = \mathcal{H}'_1 \ominus \operatorname{ran} \mathcal{B}_{Q_1} = \ker \mathcal{B}_{Q_1},$$

that is the second equality in (3.24) holds. The inclusion (3.25) is implied by (3.24), (2.7) and the obvious equality $P_1 \text{dom } \theta_c = L_{\infty}$. Finally, (3.26) directly follows from (3.10).

Clearly, $C(\tilde{A}_{\tau}) \subset A_0$ if and only if dom $\theta_c = \{0\}$. Therefore by (3.26) $C(\tilde{A}_{\tau}) \subset A_0$ if and only if $L_{\infty} = \{0\}$, which is equivalent to (3.22). Moreover, in this case the first equality in (3.24) gives

$$\theta_c = \{0\} \oplus \operatorname{mul} \theta_c = \{\{0, \mathcal{B}_{Q_1} \psi \oplus k\}; \psi \in \mathcal{H}'_1, k \in \mathcal{K}\},\$$

which implies (3.23).

Next, the equality $C(\widetilde{A}_{\tau}) = A_0$ holds if and only if dom $\theta_c = \{0\}$ and mul $\theta_c = \mathcal{H}_1$. Moreover, by the second equality in (3.24) mul $\theta_c = \mathcal{H}_1$ if and only if ker $\mathcal{B}_{Q_1} = \{0\}$. Therefore by (3.26) $C(\widetilde{A}_{\tau}) = A_0$ if and only if $L_{\infty} = \{0\}$ and ker $\mathcal{B}_{Q_1} = \{0\}$, which in view of (3.25) yields statement (2).

Finally, by Proposition 2.12, (1) $C(\widetilde{A}_{\tau}) = A$ if and only if $\theta_c = \{0\}$, i.e., dom $\theta_c = \{0\}$ and mul $\theta_c = \{0\}$. Therefore by (3.24) and (3.26) $C(\widetilde{A}_{\tau}) = A$ if and only if $\mathcal{K} = \{0\}$, $\mathcal{B}_{Q_1} = 0$ and $L_{\infty} = \{0\}$. This yields statement (3).

Remark 3.7. Assume that A is a closed densely defined symmetric operator in \mathfrak{H} . Then each exit space extension $\widetilde{A} = \widetilde{A}^*$ of A is a densely defined operator and according to M. A. Naimark [19] (see also [1, ch. 9]) an extension \widetilde{A} of A is said to be of the second kind if dom $\widetilde{A} \cap \mathfrak{H} = \operatorname{dom} A$ or equivalently if $C(\widetilde{A}) = A$. Clearly, Corollary 3.6, (3) gives a parametrization of all extensions \widetilde{A} of the second kind of an operator A with unequal deficiency indices $n_-(A) < n_+(A)$ in terms of the parameter τ from Krein resolvent formula (2.25). Note that for an operator A with equal deficiency indices $n_-(A) = n_+(A) \leq \infty$ the criterion for an extension \widetilde{A}_{τ} of A with $\tau \in R[\mathcal{H}]$ to be of the second kind was obtained in [4]. This criterion is of the form

$$\mathcal{B}_{\tau} = 0 \quad \text{and} \quad \lim_{y \to +\infty} y \operatorname{Im}(\tau(iy)h, h) = \infty, \ h \in \mathcal{H}, \ h \neq 0.$$
 (3.27)

Later on the sufficiency of conditions (3.27) was rediscovered in [8] for a more restrictive case $n_{-}(A) = n_{+}(A) < \infty$. In the case $n_{-}(A) =$ $n_{+}(A) \leq \infty$ a description of all extensions \widetilde{A}_{τ} of the second kind with the closed relation $T(\widetilde{A}_{\tau}) := \{\{P_{\mathfrak{H}}f, P_{\mathfrak{H}}\widetilde{A}f\} : f \in \operatorname{dom} \widetilde{A}_{\tau}\}$ was obtained in our paper [18]. Observe also that a somewhat other parametrization of the second kind extensions can be found in [20].

In the following theorem we describe all exit space extensions \widetilde{A}_{τ} of A such that the compression of \widetilde{A}_{τ} is a maximal symmetric relation.

Theorem 3.8. Let the assumptions of Theorem 3.5 be satisfied. Then $C(\widetilde{A}_{\tau})$ is maximal symmetric if and only if ker $\mathcal{B}_{Q_1} \subset \widetilde{L}_{\infty}$ and

$$\lim_{y \to +\infty} y \varphi_h(y) < \infty, \quad h \in \ker \mathcal{B}_{Q_1}$$

(here $\varphi_h(y)$ is given by (2.15)).

Proof. It follows from Theorem 3.5 and Proposition 2.12, (3) that $C(A_{\tau})$ is maximal symmetric if and only if $\theta_c \in \operatorname{Sym}(\mathcal{H}_0, \mathcal{H}_1)$, where θ_c is given by (3.10). Moreover, by Lemma 2.3 $\theta_c \in \operatorname{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ if and only if $L_{\infty} = \mathcal{H}_1 \ominus \operatorname{mul} \theta_c$. Therefore by the second equality in (3.24) $\theta_c \in$ $\operatorname{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ if and only if $L_{\infty} = \ker \mathcal{B}_{Q_1}$. This and (3.25) yield the equivalence $\theta_c \in \operatorname{Sym}(\mathcal{H}_0, \mathcal{H}_1) \iff \ker \mathcal{B}_{Q_1} \subset L_{\infty}$, which implies the statement of the theorem.

References

- N. I. Akhiezer, I. M.Glazman, Theory of linear operators in Hilbert space, vol. I and II, Pitman, Boston–London–Melbourne, 1981.
- [2] V. M. Bruk, Extensions of symmetric relations // Math. Notes, 22 (1977), No. 6, 953–958.
- [3] V. A. Derkach, S. Hassi, M. M. Malamud, and H.S.V. de Snoo, *Generalized resolvents of symmetric operators and admissibility* // Methods of Functional Analysis and Topology, 6 (2000), No. 3, 24–55.
- [4] V. A. Derkach, S. Hassi, M. M. Malamud, and H.S.V. de Snoo, Boundary relations and generalized resolvents of symmetric operators // Russian J. Math. Ph., 16 (2009), No. 1, 17–60.
- [5] V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps // J. Funct. Anal., 95 (1991), 1–95.
- [6] V. A. Derkach, M. M. Malamud, Extension theory of symmetric operators and boundary value problems // Proceedings of Institute of Mathematics NAS of Ukraine, V. 104, Institute of Mathematics NAS of Ukraine, Kyiv, 2017.
- [7] A. Dijksma, H. Langer, Finite-dimensional self-adjoint extensions of a symmetric operator with finite defect and their compressions // Advances in complex analysis and operator theory, Festschrift in honor of Daniel Alpay, Birkhäuser, Basel, (2017), 135–163.
- [8] A. Dijksma, H. Langer, Compressions of self-adjoint extensions of a symmetric operator and M.G. Krein's resolvent formula // Integr. Equ. Oper. Theory, 90:41 (2018).
- [9] A. Dijksma, H.S.V. de Snoo, Self-adjoint extensions of symmetric subspaces // Pasif. J. Math., 54 (1974), No. 1, 71–100.

- [10] V. I. Gorbachuk, M. L. Gorbachuk, Boundary problems for differential-operator equations, Kluver Acad. Publ., Dordrecht-Boston-London, 1991. (Russian edition: Naukova Dumka, Kiev, 1984).
- [11] M. G. Krein, H. Langer, On defect subspaces and generalized resolvents of a Hermitian operator in the space Π_κ // Funct. Anal. Appl., 5 (1971/1972), 136–146, 217–228.
- [12] H. Langer, B. Textorious, On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space // Pacif. J. Math., 72(1977), No. 1, 135–165.
- [13] M. M. Malamud, On the formula of generalized resolvents of a nondensely defined Hermitian operator // Ukr. Math. Zh., 44 (1992), No. 12, 1658–1688.
- [14] V. I. Mogilevskii, Nevanlinna type families of linear relations and the dilation theorem // Methods Funct. Anal. Topology, 12 (2006), No. 1, 38–56.
- [15] V. I. Mogilevskii, Boundary triplets and Krein type resolvent formula for symmetric operators with unequal defect numbers // Methods Funct. Anal. Topology, 12 (2006), No. 3, 258–280.
- [16] V. I. Mogilevskii, On exit space extensions of symmetric operators with applications to first order symmetric systems // Methods Funct. Anal. Topology 19 (2013), No. 3, 268–292.
- [17] V. I. Mogilevskii, Symmetric extensions of symmetric linear relations (operators) preserving the multivalued part // Methods Funct. Anal. Topology 24 (2018), No. 2, 152–177.
- [18] V. I. Mogilevskii, On compressions of self-adjoint extensions of a symmetric linear relation // Integr. Equ. Oper. Theory, 91 (2019), No. 9.
- [19] M. A. Naimark, On selfadjoint extensions of the 2-nd kind of a symmetric operator // Izv. Akad. Nauk SSSR, Ser. Matem., 4 (1940), 53–104.
- [20] A. V. Shtraus, On one-parameter families of extensions of a symmetric operator // Izv. Akad. Nauk SSSR, Ser. Matem., 30 (1966), 1325–1352.
- [21] A. V. Shtraus, Extensions and generalized resolvents of a symmetric operator which is not densely defined // Izv. Akad. Nauk SSSR. Ser. Matem., 34 (1970), No.1, 175–202 (in Russian); transl.: Mathematics of the USSR-Izvestiya, 4 (1970), No. 1, 179–208.

CONTACT INFORMATION

Vadim I.	Poltava National V. G. Korolenko
Mogilevskii	Pedagogical University,
	Poltava, Ukraine
	<i>E-Mail:</i> vadim.mogilevskii@gmail.com