$\mathcal{V} \mathcal{M}^{\,q}$

On compressions of self-adjoint extensions of a symmetric linear relation with unequal deficiency indices

Vadim I. Mogilevskii

(Presented by V. A. Derkach)

Abstract. Let *A* be a symmetric linear relation in the Hilbert space \mathfrak{H} with unequal deficiency indices $n_{−}A < n_{+}(A)$. A self-adjoint linear relation $\tilde{A} \supseteq A$ in some Hilbert space $\tilde{D} \supseteq \tilde{D}$ is called an (exit space) extension of *A*. We study the compressions $C(\widetilde{A}) = P_{\widetilde{A}} \widetilde{A} \restriction \widetilde{B}$ of extensions $A = A^*$. Our main result is a description of compressions $C(A)$ by means of abstract boundary conditions, which are given in terms of limit value of the Nevanlinna parameter $\tau(\lambda)$ from the Krein formula for generalized resolvents. We describe also all extensions $A = A^*$ of A with the maximal symmetric compression $C(A)$ and all extensions $A = A^*$ of the second kind in the sense of M.A. Naimark. These results generalize the recent results by A. Dijksma, H. Langer and the author obtained for symmetric operators *A* with equal deficiency indices $n_{+}(A) = n_{-}(A)$.

2010 MSC. 47A06, 47A20, 47A56, 47B25.

Key words and phrases. Symmetric and self-adjoint linear relation (operator), exit space self-adjoint extension, compression, boundary triplet.

1. Introduction

Assume that *A* is a closed not necessarily densely defined symmetric operator in a Hilbert space \mathfrak{H} . Recall that a self-adjoint linear relation (in particular operator) $A \supseteq A$ in a Hilbert space $\mathfrak{H} \supseteq \mathfrak{H}$ is called an (exit space) extension of *A* and a linear relation $C(A) := P_{\mathfrak{H}}A \restriction \mathfrak{H}$ is called a compression of \widetilde{A} . A description of all extensions $\widetilde{A} = \widetilde{A}^*$ and their compressions $C(A)$ is an important problem in the extension theory of symmetric operators (note that $C(A)$ is a symmetric extension of A). In [9,20,21] all extensions $\ddot{A} = \ddot{A}^*$ of an operator \ddot{A} with arbitrary (equal or

Received 22.07.2019

unequal) deficiency indices $n_{+}(A) \leq \infty$ and their compressions $C(\widetilde{A})$ were described by means of holomorphic operator-functions $F(\lambda)(\lambda \in \mathbb{C}_+),$ whose values are contractions between defect subspaces of *A*. In the case $n_{+}(A) = n_{-}(A)$ another description of extensions $A = A^*$ of A is given by the Krein formula for generalized resolvents [11,12]. This formula gives a parametrization $\ddot{A} = \ddot{A}_{\tau}$ of all extensions $\ddot{A} = \ddot{A}^*$ by means of Nevanlinna functions $\tau = \tau(\lambda)$, whose values are linear relations in the auxiliary Hilbert space. In the recent papers by A. Dijksma and H. Langer [7, 8] the compressions $C(A_\tau)$ of extensions A_τ are investigated in terms of the parameter τ from the Krein formula. The results of [7,8] were essentially strengthened in our paper [18]. The investigations in this paper are based on the theory of boundary triplets for symmetric operators *A* with equal deficiency indices $n_{+}(A) = n_{-}(A)$ and Weyl functions of these triplets (see $[5, 6, 10, 13]$ and references therein). By using such an approach we described in [18] the compressions $C(A_\tau)$ in terms of the parameter τ . This enables us to describe, in particular, all extensions A_{τ} with selfadjoint compressions.

In our papers [15, 16] the theory of boundary triplets and their Weyl functions was extended to symmetric operators *A* with unequal deficiency indices $n_-(A) < n_+(A)$. In particular, we showed that in this case the Krein formula for generalized resolvents

$$
P_{\mathfrak{H}}(\widetilde{A}_{\tau}-\lambda)^{-1}\upharpoonright \mathfrak{H}=(A_0-\lambda)^{-1}-\gamma_+(\lambda)(\tau(\lambda)+M_+(\lambda))^{-1}\gamma_-^*(\overline{\lambda}), \ \lambda\in\mathbb{C}_+(1.1)
$$

establishes a bijective correspondence $\widetilde{A} = \widetilde{A}_{\tau}$ between all Nevanlinna type functions $\tau = \tau(\lambda)$ and all extensions $\widetilde{A} = \widetilde{A}^*$ of *A*. In (1.1) A_0 is a fixed maximal symmetric extension of *A* and $\gamma_{\pm}(\lambda)$ (the *γ*-fields) and $M_{+}(\lambda)$ (the Weyl function) are the operator functions defined in terms of a boundary triplet for *A*. In the present paper we extend the results of [18] to symmetric operators *A* with unequal deficiency indices $n_-(A) < n_+(A)$ (clearly, in this case $n_-(A) < \infty$ and $n_+(A) \leq \infty$). Our main result (see Theorem 3.5) is a description of compressions $C(A_\tau)$ of extensions $A_{\tau} = A_{\tau}^*$ in terms of the parameter $\tau = \tau(\lambda)$ from (1.1). This description is given by means of an abstract boundary parameter *θc*, which is a certain limit value of *τ* (*λ*) at infinity. By using this result we describe extensions A_{τ} with some special properties. In particular, we describe in terms of τ all extensions A_{τ} of the second kind in the sense of M. A. Naimark (see Remark 3.7) and all extensions A_{τ} with the maximal symmetric compression $C(A_\tau)$.

2. Preliminaries

2.1 Notations

The following notations will be used throughout the paper: \mathfrak{H} , \mathcal{H} denote separable Hilbert spaces; $B(\mathcal{H}_1, \mathcal{H}_2)$ is the set of all bounded linear operators defined on \mathcal{H}_1 with values in \mathcal{H}_2 ; $B(\mathcal{H}) := B(\mathcal{H}, \mathcal{H})$; *A* \upharpoonright *L* is a restriction of the operator *A* ∈ $\mathbf{B}(\mathcal{H}_1, \mathcal{H}_2)$ to the linear manifold $\mathcal{L} \subset \mathcal{H}_1$; $P_{\mathcal{L}}$ is the orthoprojection in \mathfrak{H} onto the subspace $\mathcal{L} \subset \mathfrak{H}$; \mathbb{C}_+ (\mathbb{C}_-) is the open upper (lower) half-plane of the complex plane.

Recall that a linear manifold *T* in the Hilbert space $\mathcal{H}_0 \oplus \mathcal{H}_1$ ($\mathcal{H} \oplus \mathcal{H}$) is called a linear relation from \mathcal{H}_0 to \mathcal{H}_1 (resp. in \mathcal{H}). The set of all closed linear relations from \mathcal{H}_0 to \mathcal{H}_1 (in \mathcal{H}) will be denoted by $\mathcal{C}(\mathcal{H}_0, \mathcal{H}_1)$ (resp. $\mathcal{C}(\mathcal{H})$. Clearly for each linear operator $T : \text{dom } T \to \mathcal{H}_1$, $\text{dom } T \subset \mathcal{H}_0$, its graph $grT = \{\{f, Tf\} : f \in \text{dom } T\}$ is a linear relation from \mathcal{H}_0 to \mathcal{H}_1 . This fact enables one to consider an operator as a linear relation.

For a linear relation *T* from \mathcal{H}_0 to \mathcal{H}_1 we denote by

$$
\text{dom } T := \{ h_0 \in \mathcal{H}_0 : \exists h_1 \in \mathcal{H}_1 \{ h_0, h_1 \} \in T \}
$$
\n
$$
\text{ker } T := \{ h_0 \in \mathcal{H}_0 : \{ h_0, 0 \} \in T \}
$$
\n
$$
\text{ran } T := \{ h_1 \in \mathcal{H}_1 : \exists h_0 \in \mathcal{H}_0 \{ h_0, h_1 \} \in T \}
$$
\n
$$
\text{mul } T := \{ h_1 \in \mathcal{H}_1 : \{ 0, h_1 \} \in T \}
$$

the domain, kernel, range and multivalued part of *T* respectively. Denote also by *T [−]*¹ and *T ∗* the inverse and adjoint linear relations of *T* respectively.

As is known a linear relation T in H is called symmetric (self-adjoint) if $T \subset T^*$ (resp. $T = T^*$).

2.2 Nevanlinna functions

Recall that a holomorphic operator function $M : \mathbb{C}_+ \to B(\mathcal{H})$ is called a Nevanlinna function if $\text{Im}M(\lambda) \geq 0$, $\lambda \in \mathbb{C}_+$. The class of all Nevanlinna $\mathbf{B}(\mathcal{H})$ -valued functions will be denoted by $R[\mathcal{H}]$. The operator-function $M \in R[H]$ is referred to the class $R_c[H]$, if ran Im $M(\lambda)$ is closed for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

The following proposition is well known (see e.g. [13]).

Proposition 2.1. *If* $M \in R[H]$ *, then the equality*

$$
\mathcal{B}_M = s - \lim_{y \to +\infty} \frac{1}{iy} M(iy) \tag{2.1}
$$

defines the operator $\mathcal{B}_M \in \mathbf{B}(\mathcal{H})$ *such that* $\mathcal{B}_M \geq 0$ *. Moreover, for each h ∈ H there exists the limit* lim *y→*+*∞* $yIm(M(iy)h, h) \leq \infty$ *and the equality*

$$
\text{dom}\,\mathcal{N}_M = \{h \in \mathcal{H} : \lim_{y \to +\infty} y \text{Im}(M(iy)h, h) < \infty\} \tag{2.2}
$$

defines the (not necessarily closed) linear manifold dom $\mathcal{N}_M \subset \mathcal{H}$ such *that for each* $h \in \text{dom } \mathcal{N}_M$ *there exists the limit*

$$
\mathcal{N}_M h := \lim_{y \to +\infty} M(iy)h, \quad h \in \text{dom}\,\mathcal{N}_M. \tag{2.3}
$$

Hence the equalities (2.2) *and* (2.3) *define the linear operator* \mathcal{N}_M : dom $\mathcal{N}_M \to \mathcal{H}$ *.*

2.3 The classes Sym $(\mathcal{H}_0, \mathcal{H}_1)$ and $\widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$

In the following \mathcal{H}_0 is a Hilbert space, \mathcal{H}_1 is a subspace in \mathcal{H}_0 , \mathcal{H}_2 = $\mathcal{H}_0 \oplus \mathcal{H}_1$ and P_j is the orthoprojection in \mathcal{H}_0 onto \mathcal{H}_j , $j \in \{1, 2\}$.

Definition 2.2. [14] A linear relation θ from \mathcal{H}_0 to \mathcal{H}_1 belongs to the class $Sym_0(\mathcal{H}_0, \mathcal{H}_1)$ if

$$
2\mathrm{Im}(h_1, h_0)_{\mathcal{H}_0} + ||P_2 h_0||^2 = 0, \quad \{h_0, h_1\} \in \theta. \tag{2.4}
$$

A relation $\theta \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$ belongs to the class $\text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ if there is not an extension $\theta \supset \theta$, $\theta \neq \theta$ such that $\theta \in \text{Sym}_{0}(\mathcal{H}_{0}, \mathcal{H}_{1})$.

Note that in the case $\mathcal{H}_0 = \mathcal{H}_1 =: \mathcal{H}$ the classes $Sym_0(\mathcal{H}_0, \mathcal{H}_1)$ and $Sym(\mathcal{H}_0, \mathcal{H}_1)$ coincide with the known classes of symmetric and maximal symmetric linear relations in *H* respectively.

Let $\theta \in \text{Sym}_{0}(\mathcal{H}_{0}, \mathcal{H}_{1})$, let $\mathcal{K} := \text{mul } \theta$ be a closed subspace in \mathcal{H}_{1} and let $\mathcal{H}'_1 := \mathcal{H}_1 \ominus \mathcal{K}$ and $\mathcal{H}'_0 := \mathcal{H}_0 \ominus \mathcal{K}$. Then $\mathcal{H}'_0 = \mathcal{H}'_1 \oplus \mathcal{H}_2$,

$$
\mathcal{H}_1 = \mathcal{H}'_1 \oplus \mathcal{K}, \qquad \mathcal{H}_0 = \mathcal{H}'_0 \oplus \mathcal{K} = \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0} \oplus \mathcal{K} \tag{2.5}
$$

and according to [14]

$$
\theta = \operatorname{gr} \theta_s \oplus \mathcal{K} = \{ \{ h'_0, \theta_s h'_0 \oplus k \} : h'_0 \in \operatorname{dom} \theta_s, k \in \mathcal{K} \},\tag{2.6}
$$

where $\mathcal{K} = \{0\} \oplus \mathcal{K}$ and $\theta_s \in \text{Sym}_0(\mathcal{H}'_0, \mathcal{H}'_1)$ is an operator with dom $\theta_s =$ dom *θ*. Moreover, $\theta \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ if and only if $\theta_s \in \text{Sym}(\mathcal{H}'_0, \mathcal{H}'_1)$. The operator θ_s in (2.6) is called the operator part of θ .

It follows from (2.5) and (2.6) that

$$
P_1 \text{dom}\,\theta \subset \mathcal{H}_1 \ominus \text{mul}\,\theta. \tag{2.7}
$$

Lemma 2.3. Let $\dim \mathcal{H}_1 < \infty$ and let $\theta \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$ *, so that decompositions* (2.5) *and* (2.6) *hold with* $K = \text{mul } \theta$ *. Then there exist a* subspace $L' \subset \mathcal{H}'_1$ and operators $Q_1 \in \mathcal{B}(L', \mathcal{H}'_1)$ and $Q_2 \in \mathcal{B}(L', \mathcal{H}_2)$ *such that*

$$
\theta = \{ \{ h' \oplus Q_2 h', Q_1 h' \oplus k \} : h' \in L', k \in \mathcal{K} \}. \tag{2.8}
$$

Moreover, $\theta \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ *if and only if* $L' = \mathcal{H}'_1$ *.*

Proof. Since dom $\theta_s \subset \mathcal{H}'_1 \oplus \mathcal{H}_2$, it follows that dom θ_s is a linear relation from \mathcal{H}'_1 to \mathcal{H}_2 . Let $L' \subset \mathcal{H}'_1$ be the domain of this relation. Assume that $0 \oplus h_2 \in \text{dom } \theta_s$ with some $h_2 \in \mathcal{H}_2$. Then $\{0 \oplus h_2, h'_1\} \in \theta_s$ with some $h'_1 \in \mathcal{H}'_1$ and by equality (2.4) for θ_s one has $||h_2||^2 = 0$. Hence $h_2 = 0$ and consequently there exists an operator $Q_2 \in \mathbf{B}(L', \mathcal{H}_2)$ such that dom $\theta_s = \{ \{ h' \oplus Q_2 h' \} : h' \in L' \}$. Moreover, the equality

$$
Q_1h' = \theta_s(h' \oplus Q_2h'), \quad h' \in L'
$$

correctly defines the operator $Q_1 \in \mathbf{B}(L', \mathcal{H}'_1)$ such that

$$
\text{gr}\,\theta_s = \{ \{ h' \oplus Q_2h', Q_1h' \} : h' \in L' \}.
$$

This and (2.6) imply (2.8) .

Next according to [17, Proposition 2.7] the operator θ_s belongs to $\text{Sym}(\mathcal{H}'_0, \mathcal{H}'_1)$ if and only if $\dim(\text{gr}\,\theta_s) = \dim \mathcal{H}'_1$. This and the obvious equality $\dim L' = \dim(\text{gr }\theta_s)$ yield the last statement of the theorem. \Box

Definition 2.4. [14, 16] A function $\tau : \mathbb{C}_+ \to \widetilde{\mathcal{C}}(\mathcal{H}_0, \mathcal{H}_1)$ is referred to the class $R(\mathcal{H}_0, \mathcal{H}_1)$ if:

(i) $2\text{Im}(h_1, h_0) - ||P_2h_0||^2 ≥ 0$, $\{h_0, h_1\} ∈ τ(λ)$, $λ ∈ ℂ_+$;

(ii) $(\tau(\lambda) + iP_1)^{-1} \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_0)$, $\lambda \in \mathbb{C}_+$, and the operator-function $(\tau(\lambda) + iP_1)^{-1}$ is holomorphic on \mathbb{C}_+ .

A function $\tau \in R(\mathcal{H}_0, \mathcal{H}_1)$ is referred to the class $R(\mathcal{H}_0, \mathcal{H}_1)$ if its values are operators, i.e., if $\text{mul } \tau(\lambda) = \{0\}, \lambda \in \mathbb{C}_+$

According to [14, 16] the equality

$$
\tau(\lambda) = \{ \{ K_0(\lambda)h, K_1(\lambda)h \} : h \in \mathcal{H}_1 \}, \ \lambda \in \mathbb{C}_+
$$

establishes a bijective correspondence between all functions *τ ∈* $R(\mathcal{H}_0, \mathcal{H}_1)$ and all pairs $\{K_0, K_1\}$ of holomorphic operator-functions $K_i: \mathbb{C}_+ \to \mathbf{B}(\mathcal{H}_1, \mathcal{H}_i)$, $j \in \{0, 1\}$, with the block representation

$$
K_0(\lambda) = (K_{01}(\lambda), K_{02}(\lambda))^\top : \mathcal{H}_1 \to \mathcal{H}_1 \oplus \mathcal{H}_2 \tag{2.9}
$$

satisfying for all $\lambda \in \mathbb{C}_+$ the following relations:

 $2 \operatorname{Im}(K_{01}^*(\lambda)K_1(\lambda)) - K_{02}^*(\lambda)K_{02}(\lambda) \geq 0$, $(K_1(\lambda) + iK_{01}(\lambda))^{-1} \in \mathbf{B}(\mathcal{H}_1)$. (2.10)

In the following we write $\tau = \{K_0, K_1\}$ identifying a function $\tau \in$ $R(\mathcal{H}_0, \mathcal{H}_1)$ and the corresponding pair $\{K_0, K_1\}$ of holomorphic operator functions satisfying (2.10)(more precisely the equivalence class of such pairs [14]).

Lemma 2.5. [14, 16] *Let* $\tau \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$ *. Then the multivalued part* $K := \text{mul } \tau(\lambda) (\subset \mathcal{H}_1)$ *of* $\tau(\lambda)$ *does not depend on* $\lambda \in \mathbb{C}_+$ *. Moreover, decompositions* (2.5) *and*

$$
\tau(\lambda) = \operatorname{gr} \tau_s(\lambda) \oplus \widehat{\mathcal{K}}, \quad \lambda \in \mathbb{C}_+ \tag{2.11}
$$

hold with $\tau_s \in R(\mathcal{H}'_0, \mathcal{H}'_1)$ and $\mathcal{K} = \{0\} \oplus \mathcal{K}$.

The operator function τ_s in (2.11) is called the operator part of τ .

Remark 2.6. In the case $\mathcal{H}_1 = \mathcal{H}_0 =: \mathcal{H}$ the class $\widetilde{R}(\mathcal{H}, \mathcal{H})$ coincides *with the well-known class* $R(\mathcal{H})$ *of Nevanlinna* $C(\mathcal{H})$ -valued functions *(Nevanlinna operator pairs)* $\tau = \{K_0(\lambda), K_1(\lambda)\}, \lambda \in \mathbb{C}_+$ *(see e.g [3]). Denote by* $R(\mathcal{H})$ *the set of all* $\tau \in R(\mathcal{H})$ *such that* $\tau(\lambda)$ *is an operator,* $\lambda \in \mathbb{C}_+$ *. For a function* $\tau \in R(\mathcal{H})$ *decompositions* (2.5) *and* (2.11) *take the following well known form (see e.g. [11]):*

$$
\mathcal{H} = \mathcal{H}' \oplus \mathcal{K}, \qquad \tau(\lambda) = \text{gr}\,\tau_s(\lambda) \oplus \hat{\mathcal{K}}, \quad \lambda \in \mathbb{C}_+, \tag{2.12}
$$

where $\tau_s \in R(\mathcal{H}')$ *is the operator part of* τ *.*

 $It is clear that $R[\mathcal{H}] \subset R(\mathcal{H}) \subset R(\mathcal{H})$.$

Let decompositions (2.5) hold and let $Q_1(\lambda)$ (\in $B(\mathcal{H}'_1)$) and $Q_2(\lambda)$ (\in $B(\mathcal{H}'_1, \mathcal{H}_2)$ be holomorphic on \mathbb{C}_+ operator functions.

Definition 2.7. For a function $\tau \in R(\mathcal{H}_0, \mathcal{H}_1)$ we write $\tau = {\mathcal{H}'_1 \oplus \mathcal{H}'_2 \oplus \mathcal{H}'_3}$ \mathcal{K}, Q_1, Q_2 if

$$
\tau(\lambda) = \{ \{ h'_1 \oplus Q_2(\lambda)h'_1, Q_1(\lambda)h'_1 \oplus k \} : h'_1 \in \mathcal{H}'_1, k \in \mathcal{K} \}, \quad \lambda \in \mathbb{C}_+ \tag{2.13}
$$

If $\tau = {\mathcal{H}'_1 \oplus \mathcal{K}, Q_1, Q_2}$, then $\mathcal{K} = \text{mul }\tau(\lambda)$, $\lambda \in \mathbb{C}_+$, and in view of the inequality

$$
2\mathrm{Im}Q_1(\lambda) - Q_2^*(\lambda)Q_2(\lambda) \ge 0, \quad \lambda \in \mathbb{C}_+ \tag{2.14}
$$

one has $Q_1 \in R[\mathcal{H}_1']$.

Proposition 2.8. *In the case* dim $H_1 < \infty$ *each function* $\tau \in \widetilde{R}(\mathcal{H}_0, \mathcal{H}_1)$ *admits the representation* $\tau = {\mathcal{H}'_1 \oplus \mathcal{K}, Q_1, Q_2}.$

Proof. Let $\tau_s = \{Q_0, Q_1\}$ with operator-functions $Q_j : \mathbb{C}_+ \to \mathbf{B}(\mathcal{H}'_1, \mathcal{H}'_j)$, $j \in \{0, 1\}$ *,* and let

$$
\widetilde{Q}_0(\lambda) = (\widetilde{Q}_{01}(\lambda), \widetilde{Q}_{02}(\lambda))^{\top} : \mathcal{H}_1' \to \mathcal{H}_1' \oplus \mathcal{H}_2, \quad \lambda \in \mathbb{C}_+
$$

be the block representation of $Q_0(\lambda)$. Since $\tau_s \in R(\mathcal{H}'_0, \mathcal{H}'_1)$, it follows that

$$
2\mathrm{Im}(\widetilde{Q}_1(\lambda)h'_1,\widetilde{Q}_{01}(\lambda)h'_1)-||\widetilde{Q}_{02}(\lambda)h'_1||^2\geq 0, \quad \lambda\in\mathbb{C}_+,\ \ h'_1\in\mathcal{H}'_1.
$$

Therefore for each $h'_1 \in \text{ker } Q_{01}(\lambda)$ one has $h'_1 \in \text{ker } Q_{02}(\lambda)$. Hence $h'_1 \in \text{ker } Q_0(\lambda)$, which implies that ker $Q_{01}(\lambda) \subset \text{ker } Q_0(\lambda)$. Since $\tau_s(\lambda)$ is an operator, it follows that ker $\tilde{Q}_0(\lambda) = \{0\}$ and, consequently, $\ker Q_{01}(\lambda) = \{0\}.$ Since $\dim \mathcal{H}'_1 < \infty$, this implies that the operator $\widetilde{Q}_{01}(\lambda)$ is invertible, that is \widetilde{Q}_{01}^{-1} : $\mathbb{C}_+ \rightarrow B(\mathcal{H}_1')$ is a holomorphic operator function. Clearly, τ_s admits the representation $\tau_s = \{Q_0, Q_1\}$ with

$$
Q_0(\lambda) = \widetilde{Q}_0(\lambda)\widetilde{Q}_{01}^{-1}(\lambda) = (I_{\mathcal{H}_1'}, Q_2(\lambda))^\top, \qquad Q_1(\lambda) = \widetilde{Q}_1(\lambda)\widetilde{Q}_{01}^{-1}(\lambda),
$$

where $Q_2(\lambda) = \widetilde{Q}_{02}(\lambda)\widetilde{Q}_{01}^{-1}(\lambda)$. Hence

$$
\operatorname{gr} \tau_s(\lambda) = \{ \{ h'_1 \oplus Q_2(\lambda) h'_1, Q_1(\lambda) h'_1 \} : h'_1 \in \mathcal{H}'_1 \}, \quad \lambda \in \mathbb{C}_+,
$$

which in view of (2.11) yields (2.13) .

Proposition 2.9. *Let* $\tau = {\mathcal{H}'_1 \oplus \mathcal{K}, Q_1, Q_2} \in R(\mathcal{H}_0, \mathcal{H}_1)$ *, let* $L_\infty(\subset \mathcal{H}_0)$ \mathcal{H}'_1) *be a linear manifold of all* $h \in \mathcal{H}'_1$ such that there exists the limit lim $\lim_{y \to +\infty} Q_2(iy)h$ and let $Q_2(\infty) : L_{\infty} \to H_2$ be the linear operator given by

$$
Q_2(\infty)h = \lim_{y \to +\infty} Q_2(iy)h, \quad h \in \widetilde{L}_{\infty}.
$$

For $h \in \widetilde{L}_{\infty}$ *put*

$$
\varphi_h(y) = \text{Im}(Q_1(iy)h, h) -
$$

Re $(Q_2(iy)h, Q_2(\infty)h) + \frac{1}{2}||Q_2(\infty)h||^2, y \in \mathbb{R}_+$. (2.15)

Then for each $h \in L_{\infty}$ *there exists the limit* $\lim_{y \to +\infty} y \varphi_h(y) \leq \infty$ *and the equality*

$$
L_{\infty} = \{ h \in \widetilde{L}_{\infty} : \lim_{y \to +\infty} y \varphi_h(y) < \infty \} \tag{2.16}
$$

$$
\qquad \qquad \Box
$$

defines the linear manifold $L_{\infty} \subset \mathcal{H}'_1$ such that for each $h \in L_{\infty}$ there *exists the limit*

$$
Q_1(\infty)h = \lim_{y \to +\infty} Q_1(iy)h, \quad h \in L_{\infty}.
$$
 (2.17)

Thus the equalities (2.16) *and* (2.17) *define the linear operator* $Q_1(\infty)$: $L_{\infty} \to \mathcal{H}'_1$.

Proof. Let

$$
\tau_{es}(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0 \\ -iQ_2(\lambda) & \frac{i}{2}I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0} \to \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0}, \quad \lambda \in \mathbb{C}_+.
$$
 (2.18)

Then

$$
\mathrm{Im}\tau_{es}(\lambda) = \begin{pmatrix} \mathrm{Im}Q_1(\lambda) & -\frac{1}{2}Q_2^*(\lambda) \\ -\frac{1}{2}Q_2(\lambda) & \frac{1}{2}I_{\mathcal{H}_2} \end{pmatrix} : \mathcal{H}_1' \oplus \mathcal{H}_2 \to \mathcal{H}_1' \oplus \mathcal{H}_2, \quad \lambda \in \mathbb{C}_+.
$$
\n(2.19)

and by $(2.14) \text{ Im}\tau_{es}(\lambda) \geq 0, \ \lambda \in \mathbb{C}_+$. Therefore $\tau_{es} \in R[\mathcal{H}_0']$. Next, the immediate calculations show that for each $h \in L_{\infty}$

$$
\operatorname{Im}(\tau_{es}(iy)(h \oplus Q_2(\infty)h), h \oplus Q_2(\infty)h) = \varphi_h(y). \tag{2.20}
$$

Therefore by Proposition 2.1 for each $h \in L_{\infty}$ there exists the limit lim $\lim_{y \to +\infty} \tau_{es}(iy)(h \oplus Q_2(\infty)h)$. Since

$$
\tau_{es}(iy)(h \oplus Q_2(\infty)h) = Q_1(iy)h \oplus (-iQ_2(iy)h + \frac{i}{2}Q_2(\infty)h),
$$

this implies that there exists the limit in (2.17).

2.4 Boundary triplets

In the following we denote by *A* a closed symmetric linear relation (in particular closed not necessarily densely defined symmetric operator) in a Hilbert space \mathfrak{H} . Let $\mathfrak{N}_{\lambda}(A) = \ker (A^* - \lambda)$ ($\lambda \in \mathbb{C} \setminus \mathbb{R}$) be a defect subspace of *A*, let $\mathfrak{N}_{\lambda}(A) = \{ \{f, \lambda f\} : f \in \mathfrak{N}_{\lambda}(A) \}$ and let $n_{\pm}(A) :=$ $\dim \mathfrak{N}_{\lambda}(A) \leq \infty$, $\lambda \in \mathbb{C}_{+}$, be deficiency indices of *A*. Denote by $ext(A)$ the set of all proper extensions of A (i.e., the set of all relations A in $\widetilde{\mathfrak{H}}$ such that $A \subset A \subset A^*$ and by $\overline{\text{ext}}(A)$ the set of closed extensions $A \in ext(A)$. Clearly, each symmetric extension *A* of *A* belongs to $ext(A)$.

$$
\Box
$$

As before we assume that \mathcal{H}_0 is a Hilbert space, \mathcal{H}_1 is a subspace in \mathcal{H}_0 and $\mathcal{H}_2 := \mathcal{H}_0 \ominus \mathcal{H}_1$, so that $\mathcal{H}_0 = \mathcal{H}_1 \oplus \mathcal{H}_2$. Moreover, denote by P_j the orthoprojections in \mathcal{H}_0 and \mathcal{H}_j , $j \in 1, 2$.

Below within this subsection we specify some definitions and results from $[15, 16]$.

Definition 2.10. A collection $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$, where $\Gamma_i : A^* \to$ \mathcal{H}_j , $j \in \{0, 1\}$, are linear mappings, is called a boundary triplet for A^* , if the mapping $\Gamma : f \to {\Gamma_0 f, \Gamma_1 f}, f \in A^*$, from A^* into $\mathcal{H}_0 \oplus \mathcal{H}_1$ is surjective and the following Green's identity holds for all $\hat{f} = \{f, f'\}, \hat{g} =$ *{g, g′} ∈ A∗* :

$$
(f',g) - (f,g') = (\Gamma_1 \hat{f}, \Gamma_0 \hat{g})_{\mathcal{H}_0} - (\Gamma_0 \hat{f}, \Gamma_1 \hat{g})_{\mathcal{H}_0} + i(P_2 \Gamma_0 \hat{f}, P_2 \Gamma_0 \hat{g})_{\mathcal{H}_2}
$$
\n(2.21)

In the following propositions some properties of boundary triplets are specified.

Proposition 2.11. *If* $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ *is a boundary triplet for A∗ , then*

$$
\dim \mathcal{H}_1 = n_-(A) \le n_+(A) = \dim \mathcal{H}_0. \tag{2.22}
$$

Conversely, let A be a symmetric relation with $n_-(A) \leq n_+(A)$ *. Then for any Hilbert space* H_0 *and a subspace* $H_1 \subset H_0$ *satisfying* (2.22) *there exists a boundary triplet* $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ *for* A^* *.*

Proposition 2.12. *Let* $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ *be a boundary triplet for A∗ . Then:*

(1) ker $\Gamma_0 \cap \ker \Gamma_1 = A$ *and* Γ_j *is a bounded operator from* A^* *onto* $\mathcal{H}_j, j \in \{0, 1\}.$

(2) *The equality* $A_0 := \ker \Gamma_0 = {\hat{f} \in A^* : \Gamma_0 \hat{f} = 0}$ *define a maximal symmetric extension* A_0 *of* A *such that* $n_-(A_0) = 0$.

(3) *The equality*

$$
A_{\theta} = \{ \widehat{f} \in A^* : \{ \Gamma_0 \widehat{f}, \Gamma_1 \widehat{f} \} \in \theta \}
$$

gives a bijective correspondence $\widetilde{A} = A_{\theta}$ *between all linear relations* θ *from* \mathcal{H}_0 *to* \mathcal{H}_1 *and all extensions* $\widetilde{A} \in ext(A)$ *. Moreover,* A_{θ} *is symmetric (maximal symmetric) if and only if* $\theta \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$ (resp. $\theta \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$.

If $\Pi = \{H_0 \oplus H_1, \Gamma_0, \Gamma_1\}$ is a boundary triplet for A^* , then the equalities

$$
\gamma_{+}(\lambda) = \pi_{1}(\Gamma_{0} \upharpoonright \widehat{\mathfrak{N}}_{\lambda}(A))^{-1}, \ \ \lambda \in \mathbb{C}_{+};
$$

$$
\gamma_{-}(\lambda) = \pi_{1}(P_{1}\Gamma_{0} \upharpoonright \widehat{\mathfrak{N}}_{\lambda}(A))^{-1}, \ \ \lambda \in \mathbb{C}_{-}
$$

$$
\Gamma_{1} \upharpoonright \widehat{\mathfrak{N}}_{\lambda}(A) = M_{+}(\lambda)\Gamma_{0} \upharpoonright \widehat{\mathfrak{N}}_{\lambda}(A), \ \ \lambda \in \mathbb{C}_{+}
$$

correctly define the holomorphic operator functions $\gamma_+ : \mathbb{C}_+ \to \mathbf{B}(\mathcal{H}_0, \mathfrak{H})$, *γ*[−] : \mathbb{C} ^{*−*} \rightarrow *B*(\mathcal{H}_1 *, f*) and M_+ : \mathbb{C} ₊ \rightarrow *B*(\mathcal{H}_0 *,* \mathcal{H}_1) (here π_1 is the orthoprojection in $\mathfrak{H} \oplus \mathfrak{H}$ onto $\mathfrak{H} \oplus \{0\}$). The operator-functions γ_{\pm} and M_{+} are called the γ -fields and the Weyl function of the triplet Π respectively.

2.5 Self-adjoint extensions and their compressions

As is known a linear relation $A = A^*$ in a Hilbert space $\mathfrak{H} \supset \mathfrak{H}$ is called an exit space extension of *A* if $A \subset \widetilde{A}$ and the minimality condition $\overline{\text{span}}\{\mathfrak{H},(\mathcal{A}-\lambda)^{-1}\mathfrak{H}:\lambda\in\mathbb{C}\setminus\mathbb{R}\}=\tilde{\mathfrak{H}}$ is satisfied. For an exit space extension $\widetilde{A} \in \widetilde{\mathcal{C}}(\widetilde{\mathfrak{H}})$ of *A* the compressed resolvent

$$
R(\lambda) = P_{\mathfrak{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright \mathfrak{H}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R} \tag{2.23}
$$

is called a generalized resolvent of *A* (here $P_{\mathfrak{H}}$ is the orthoprojection in $\tilde{\mathfrak{H}}$ onto $\tilde{\mathfrak{H}}$). If two exit space extensions $\tilde{A}_1 \in \tilde{\mathcal{C}}(\mathfrak{H}_1)$ and $\tilde{A}_2 \in \tilde{\mathcal{C}}(\mathfrak{H}_2)$ of *A* generates the same generalized resolvent $R(\lambda)$, then A_1 and A_2 are equivalent. The latter means that there exists a unitary operator $V \in \mathbf{B}(\widetilde{\mathfrak{H}}_1 \ominus \mathfrak{H}, \widetilde{\mathfrak{H}}_2 \ominus \mathfrak{H})$ such that $\widetilde{A}_2 = \widetilde{U} \widetilde{A}_1$ with the unitary operator $\widetilde{U} = (I_5 \oplus V) \oplus (I_5 \oplus V) \in B(\widetilde{5}_1^2, \widetilde{5}_2^2)$. Hence each exit space extension *A* of *A* is defined by the generalized resolvent (2.23) uniquely up to the equivalence.

The following proposition is well known.

Proposition 2.13. *If* $n_{+}(A) = 0$ *, then there exists a unique exit space* $ext{exclusion A} = A^*$ *of A and*

$$
P_{\mathfrak{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright \mathfrak{H} = (A^* - \lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.
$$
 (2.24)

A parametrization of all exit space self-adjoint extensions \widetilde{A} of a symmetric relation *A* is given by the following theorem.

Theorem 2.14. [15, 16] *Assume that* $n_-(A) \leq n_+(A)$, $\Pi = \{H_0 \oplus$ $\mathcal{H}_1, \Gamma_0, \Gamma_1$ *} is a boundary triplet for* A^* *,* $A_0 = \ker \Gamma_0$ *and* γ_{\pm} *and* M_+ *are* *the γ-fields and the Weyl function of* Π *respectively. Then the equality (Krein formula for generalized resolvent)*

$$
P_{\mathfrak{H}}(\widetilde{A}_{\tau} - \lambda)^{-1} \upharpoonright \mathfrak{H} = (A_0 - \lambda)^{-1}
$$

$$
- \gamma_+(\lambda)(\tau(\lambda) + M_+(\lambda))^{-1} \gamma_-^*(\overline{\lambda}), \ \lambda \in \mathbb{C}_+ \quad (2.25)
$$

establishes a bijective correspondence $\widetilde{A} = \widetilde{A}_{\tau}$ *between all relation valued functions* $\tau = \tau(\lambda) \in R(\mathcal{H}_0, \mathcal{H}_1)$ *and all exit space self-adjoint extensions ^A*^e *of ^A. The same correspondence is given by the Shtraus formula*

$$
P_{\mathfrak{H}}(\widetilde{A}_{\tau} - \lambda)^{-1} \upharpoonright \mathfrak{H} = (\widetilde{A}(\lambda) - \lambda)^{-1}, \quad \lambda \in \mathbb{C}_{+}, \tag{2.26}
$$

where $A(\lambda) = A_{-\tau(\lambda)}, \lambda \in \mathbb{C}_+$ (see Proposition 2.12, (3)).

Remark 2.15. *If* $n_-(A) < \infty$ *and* $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ *is a boundary triplet for* A^* , then by (2.22) dim $H_1 < \infty$ and according to Proposition *2.8 each function* $\tau \in R(\mathcal{H}_0, \mathcal{H}_1)$ *admits the representation* $\tau = {\mathcal{H}'_1 \oplus \mathcal{H}'_2 \oplus \mathcal{H}'_3}$ *K, Q*1*, Q*2*} in the sense of Definition 2.7.*

Remark 2.16. *If* $\mathcal{H}_0 = \mathcal{H}_1 := \mathcal{H}$ *, then the triplet* $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ *in the sense of Definition 2.10 turns into the boundary triplet (boundary value space*) $\Pi = {\mathcal{H}, \Gamma_0, \Gamma_1}$ *for* A^* *in the sense of* [2, 10]. In this case:

(i) the relation *A* has equal deficiency indices $n_{+}(A) = n_{-}(A)(=$ $\dim \mathcal{H}$ *)*;

(ii) $A_0^* = A_0$ *and the γ-fields* $\gamma_{\pm}(\cdot)$ *and the Weyl function* $M_+(\cdot)$ *of* Π *turn into the* γ -field $\gamma : \mathbb{C} \setminus \mathbb{R} \to B(\mathcal{H}, \mathfrak{H})$ *and the Weyl function* $M: \mathbb{C} \setminus \mathbb{R} \to \mathcal{B}(\mathcal{H})$ *from [5, 13]*

 (iii) $M(\cdot)$ *is a Q-function of the pair* (A, A_0) *and formula* (2.25) *turns into the classical Krein formula for generalized resolvents of a symmetric relation A with equal deficiency indices [5, 11–13]. This formula gives a parametrization* $\ddot{A} = \ddot{A}_{\tau}$ *of all exit space extensions* $\widetilde{A} = \widetilde{A}^*$ *of* A *by means of functions* $\tau = \tau(\lambda) \in R(H)$.

Assume that $\tilde{\mathfrak{H}} \supset \tilde{\mathfrak{H}}$ is a Hilbert space, $\mathfrak{H}_r := \tilde{\mathfrak{H}} \ominus \mathfrak{H}$, $P_{\tilde{\mathfrak{H}}}$ is the orthoprojection in \tilde{H} onto \tilde{H} and $\tilde{A} = \tilde{A}^* \in \tilde{C}(\tilde{\mathfrak{H}})$ is an exit space extension of *A*.

Definition 2.17. A linear relation $C(\widetilde{A})$ in \mathfrak{H} defined by

$$
C(\widetilde{A}) = P_{\mathfrak{H}} \widetilde{A} \upharpoonright \mathfrak{H} := \{ \{ f, f' \} \in \mathfrak{H}^2 : \{ f, f' \oplus f'_r \} \in \widetilde{A} \text{ with some } f'_r \in \mathfrak{H}_r \}
$$
\n
$$
(2.27)
$$

is called the compression of \widetilde{A} .

Clearly, $C(\widetilde{A})$ is a (not necessarily closed) symmetric extension of A.

Theorem 2.18. [18] *Assume that* $n_{+}(A) = n_{-}(A)$, $\Pi = \{H, \Gamma_0, \Gamma_1\}$ *is a boundary triplet for* A^* , $\tau \in R(\mathcal{H})$, τ_s *is the operator part of* τ *(see*) (2.12) *),* $A_{\tau} = A_{\tau}^{*}$ is the corresponding exit space extension of A and $C(A_{\tau})$ *is the compression of* A_{τ} *. Assume also that* $\tau_s \in R_c[H']$ *and let* $\mathcal{B}_{\tau_s} \in B(\mathcal{H}')$ and \mathcal{N}_{τ_s} : dom $\mathcal{N}_{\tau_s} \to \mathcal{H}'$ (dom $\mathcal{N}_{\tau_s} \subset \mathcal{H}'$) be operators *corresponding to* τ_s *in accordance with Proposition 2.1.* If $\text{ran } \mathcal{B}_{\tau_s}$ *is closed, then* $C(A_{\tau}) = A_{\theta_c}$ (in the triplet Π) with the symmetric linear *relation* θ_c *in* $\mathcal H$ *given by*

$$
\theta_c = \{ \{ h, -\mathcal{N}_{\tau_s} h + \mathcal{B}_{\tau_s} \psi + k \} : h \in \text{dom}\,\mathcal{N}_{\tau_s}, \psi \in \mathcal{H}', k \in \mathcal{K} \}. \tag{2.28}
$$

3. Description of compressions of exit space self-adjoint extensions

The following lemma directly follows from [16, Proposition 4.2].

Lemma 3.1. Let $\Pi = \{H_0 \oplus H_1, \Gamma_0, \Gamma_1\}$ be a boundary triplet for A^* , let A_r *be a maximal symmetric operator in a Hilbert space* \mathfrak{H}_r *with* $n_+(A_r)$ 0*,* $n_-(A_r) = \dim \mathcal{H}_2$ and let $\mathfrak{H}_e := \mathfrak{H} \oplus \mathfrak{H}_r$. Then $A_e := A \oplus A_r$ is a $symmetric$ relation in \mathfrak{H}_e , $A_e^* := A^* \oplus A_r^*$ and there exists a surjective *linear mapping* $\Gamma_r : A_r^* \to \mathcal{H}_2$ *such that the operators*

$$
\Gamma_0^e \hat{f}_e = P_1 \Gamma_0 \hat{f} \oplus (P_2 \Gamma_0 \hat{f} + \Gamma_r \hat{f}_r) (\in \mathcal{H}_1 \oplus \mathcal{H}_2), \tag{3.1}
$$

 $\Gamma_1^e \hat{f}_e = \Gamma_1 \hat{f} \oplus \frac{i}{2}$ $\frac{1}{2}(P_2\Gamma_0f - \Gamma_rf_r)(\in \mathcal{H}_1 \oplus \mathcal{H}_2), \quad f_e = f \oplus f_r \in A^* \oplus A^*_r$ (3.2)

form a boundary triplet $\Pi_e = \{ \mathcal{H}_0, \Gamma_0^e, \Gamma_1^e \}$ *for* A_e^* *.*

Proposition 3.2. Let $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ be a boundary triplet for A^* *, let* A_r *,* \mathfrak{H}_r *,* A_e *,* \mathfrak{H}_e *be the same as in Lemma 3.1 and let* Π_e = $\{\mathcal{H}_0, \Gamma_0^e, \Gamma_1^e\}$ *be boundary triplet* (3.1)*,* (3.2) *for* A_e^* *. Then for each linear relation* θ *from* \mathcal{H}_0 *to* \mathcal{H}_1 *the equalities*

$$
\widetilde{A}_e = A_\theta \oplus A_r^*, \qquad \widetilde{A}_e' = A_\theta \oplus A_r \tag{3.3}
$$

define proper extensions A_e and A'_e of A_e and $A_e = A_{\theta_e}$, $A'_e = A_{\theta'_e}$ (in *the triplet* Π_e), where θ_e and θ'_e are linear relations in $\mathcal{H}_0(=\mathcal{H}_1 \oplus \mathcal{H}_2)$ *given by*

$$
\theta_e = \{ \{ h_{01} \oplus (h_{02} + h_r), h_1 \oplus \frac{i}{2}(h_{02} - h_r) \} : \{ h_{01} \oplus h_{02}, h_1 \} \in \theta, h_r \in \mathcal{H}_2 \} \quad (3.4)
$$

$$
\theta'_e = \{ \{ h_{01} \oplus h_{02}, h_1 \oplus \frac{i}{2}h_{02} \} : \{ h_{01} \oplus h_{02}, h_1 \} \in \theta \}. \tag{3.5}
$$

Proof. The inclusions $A_e, A'_e \in \text{ext}(A_e)$ are obvious. Next assume that $f_e = f \oplus f_r \in A_e$ with $f \in A_\theta$ and $f_r \in A_r^*$. Then by (3.1) and (3.2)

$$
\Gamma_0^e \hat{f}_e = h_{01} \oplus (h_{02} + h_r), \qquad \Gamma_1^e \hat{f}_e = h_1 \oplus \frac{i}{2}(h_{02} - h_r),
$$

where $h_{01} = P_1\Gamma_0\hat{f}$, $h_{02} = P_2\Gamma_0\hat{f}$, $h_1 = \Gamma_1\hat{f}$ and $h_r = \Gamma_r\hat{f}_r$. Since $\{h_{01} \oplus$ h_{02}, h_1 } = { $\Gamma_0 \hat{f}, \Gamma_1 \hat{f}$ } $\in \theta$ and $h_r \in \mathcal{H}_2$, it follows that { $\Gamma_0^e \hat{f}_e, \Gamma_1^e \hat{f}_e$ } $\in \theta_e$. Conversely, let $\hat{h} \in \theta_e$, so that

$$
\widehat{h} = \{ \{ h_{01} \oplus (h_{02} + h_r), h_1 \oplus \frac{i}{2}(h_{02} - h_r) \}
$$

with some $\{h_{01} \oplus h_{02}, h_1\} \in \theta$ and $h_r \in \mathcal{H}_2$. Then there exists $\hat{f} \in A_\theta$ such that $P_1\Gamma_0\hat{f} = h_{01}$, $P_2\Gamma_0\hat{f} = h_{02}$ and $\Gamma_1\hat{f} = h_1$. Moreover, since the mapping Γ_r is surjective, there exists $f_r \in A_r^*$ such that $\Gamma_r f_r = h_r$. Clearly, $\hat{f}_e := \hat{f} \oplus \hat{f}_r \in \tilde{A}_e$ and by (3.1) and (3.2) one has $\{\Gamma^e_0 \hat{f}_e, \Gamma^e_1 \hat{f}_e\} = \hat{h}$. This implies that $A_e = A_{\theta_e}$.

Next assume that $f_r \in A_r$. Then $f_e := 0 \oplus f_r \in A_e$ and by (3.1) $\Gamma_{\epsilon}^{\epsilon}\hat{f}_{\epsilon} = \Gamma_{r}\hat{f}_{r}$. On the other hand, according to Proposition 2.12, (1) $\Gamma_0^e \hat{f}_e = 0$ and, consequently, $\Gamma_r \hat{f}_r = 0$, $\hat{f}_r \in A_r$. This and (3.1), (3.2) yield the equality $A'_e = A_{\theta'_e}$.

Lemma 3.3. Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces, let $\dim \mathcal{H}_1 < \infty$ and let $T \in \mathbf{B}(\mathcal{H}_1 \oplus \mathcal{H}_2)$ *be an operator with the block representation*

$$
T=\begin{pmatrix}T_1&T_2\\T_2^*&\frac{1}{2}I_{{\mathcal H}_2}\end{pmatrix}:{\mathcal H}_1\oplus{\mathcal H}_2\to{\mathcal H}_1\oplus{\mathcal H}_2.
$$

Then ran *T is closed.*

Proof. Let $\mathcal{H}_2'' = \ker T_2$ and $\mathcal{H}_2' = \mathcal{H}_2 \ominus \mathcal{H}_2''$, so that $\mathcal{H}_2 = \mathcal{H}_2' \oplus \mathcal{H}_2''$ and $T_2 = (T'_2, 0) : \mathcal{H}'_2 \oplus \mathcal{H}''_2 \rightarrow \mathcal{H}_1.$

Since ker $T_2' = \{0\}$ and dim $\mathcal{H}_1 < \infty$, it follows that dim $\mathcal{H}_2' < \infty$. Moreover,

$$
T = \begin{pmatrix} T_1 & T_2' & 0 \\ (T_2')^* & \frac{1}{2}I_{\mathcal{H}_2'} & 0 \\ 0 & 0 & \frac{1}{2}I_{\mathcal{H}_2''} \end{pmatrix} : \mathcal{H}_1 \oplus \mathcal{H}_2' \oplus \mathcal{H}_2'' \rightarrow \mathcal{H}_1 \oplus \mathcal{H}_2' \oplus \mathcal{H}_2''
$$

and hence

$$
T=\begin{pmatrix} \widetilde{T} & 0 \\ 0 & \frac{1}{2}I_{\mathcal{H}_2''} \end{pmatrix} : \widetilde{\mathcal{H}} \oplus \mathcal{H}_2'' \to \widetilde{\mathcal{H}} \oplus \mathcal{H}_2'',
$$

where $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}'_2$ and $T \in \mathcal{B}(\mathcal{H})$. Since $\dim \mathcal{H} < \infty$, the subspace ran $T \subset \mathcal{H}$ is closed. Moreover, $\text{ran } T = \text{ran } T \oplus \mathcal{H}_2''$ and hence $\text{ran } T$ is closed. \Box **Proposition 3.4.** *Let* $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ *be a boundary triplet for* A^* *, let* $\tau = \{K_0, K_1\} \in R(\mathcal{H}_0, \mathcal{H}_1)$ *, let* $K_0(\lambda)$ *has the block representation*

$$
K_0(\lambda) = \begin{pmatrix} K_{01}(\lambda) \\ K_{02}(\lambda) \end{pmatrix} : \mathcal{H}_1 \to \mathcal{H}_1 \oplus \mathcal{H}_2, \quad \lambda \in \mathbb{C}_+
$$

and let \widetilde{A}_{τ} be the corresponding exit space self-adjoint extension of A *in the Hilbert space* $\mathfrak{H} \supset \mathfrak{H}$ *. Assume also that* $\mathfrak{H}_r, A_r, \mathfrak{H}_e, A_e, \Gamma_r$ *are the same as in Lemma 3.1,* $\Pi_e = \{ \mathcal{H}_0, \Gamma_0^e, \Gamma_1^e \}$ *is the boundary triplet* (3.1)*,* (3.2) *for* A_e^* *and let* $A_r = A_r^*$ *be a (unique) exit space extension of* A_r *in the Hilbert space* $\mathfrak{H}_r \supset \mathfrak{H}_r$ *. Then:*

(1) $\widetilde{A}_e := \widetilde{A}_\tau \oplus \widetilde{A}_r$ *is an exit space self-adjoint extension of* A_e *in the Hilbert space* $\tilde{p}_e = \tilde{p}_e \oplus \tilde{p}_r$.

 $A_e = A_{\tau_e}$ (in the triplet Π_e), where $\tau_e = \{K_{0e}, K_{1e}\} \in R(\mathcal{H}_0)$ *with*

$$
K_{0e}(\lambda) = \begin{pmatrix} K_{01}(\lambda) & 0 \\ K_{02}(\lambda) & I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}_1 \oplus \mathcal{H}_2}_{\mathcal{H}_0} \to \underbrace{\mathcal{H}_1 \oplus \mathcal{H}_2}_{\mathcal{H}_0}, \quad \lambda \in \mathbb{C}_+ \qquad (3.6)
$$

$$
K_{1e}(\lambda) = \begin{pmatrix} K_1(\lambda) & 0 \\ -\frac{i}{2}K_{02}(\lambda) & \frac{i}{2}I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}_1 \oplus \mathcal{H}_2}_{\mathcal{H}_0} \to \underbrace{\mathcal{H}_1 \oplus \mathcal{H}_2}_{\mathcal{H}_0}, \quad \lambda \in \mathbb{C}_+ \quad (3.7)
$$

(3) *If in addition n−*(*A*) *< ∞ and τ* = *{H′* ¹ *⊕K, Q*1*, Q*2*} (see Remark 2.15), then*

$$
\tau_e(\lambda) = \operatorname{gr} \tau_{es}(\lambda) \oplus \widehat{\mathcal{K}}, \quad \lambda \in \mathbb{C}_+, \tag{3.8}
$$

where $\tau_{es} \in R_c[\mathcal{H}_0']$ (the operator part of τ_e) is given by (2.18).

Proof. Statement (1) is obvious.

(2) Clearly, $(\widetilde{A}_e - \lambda)^{-1} = (\widetilde{A}_\tau - \lambda)^{-1} \oplus (\widetilde{A}_r - \lambda)^{-1}$. This and Proposition 2.13 give

$$
P_{\mathfrak{H}_e}(\widetilde{A}_e - \lambda)^{-1} \upharpoonright \mathfrak{H}_e = P_{\mathfrak{H}}(\widetilde{A} - \lambda)^{-1} \upharpoonright \mathfrak{H} \oplus (A_r^* - \lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.
$$

Let $A_e = A_{\tau_e}$ (in the triplet Π_e) with some $\tau_e \in R(\mathcal{H}_0)$. Then by Shtraus formula (2.26)

$$
(A_{-\tau_e(\lambda)} - \lambda)^{-1} = (A_{-\tau(\lambda)} - \lambda)^{-1} \oplus (A_r^* - \lambda)^{-1}, \quad \lambda \in \mathbb{C}_+
$$

and, consequently,

$$
A_{-\tau_e(\lambda)} = A_{-\tau(\lambda)} \oplus A_r^*.
$$
\n(3.9)

Since

$$
-\tau(\lambda) = \{ \{ K_{01}(\lambda)h \oplus K_{02}(\lambda)h, -K_1(\lambda)h \} : h \in \mathcal{H}_1 \}, \quad \lambda \in \mathbb{C}_+,
$$

it follows from (3.9) and Proposition 3.2 that

$$
\tau_e(\lambda) = \{ \{ K_{01}(\lambda)h \oplus (K_{02}(\lambda)h + h_r), K_1(\lambda)h \oplus (-\frac{i}{2}K_{02}(\lambda)h + \frac{i}{2}h_r) \} : h \in \mathcal{H}_1, h_r \in \mathcal{H}_2 \}.
$$

Therefore $\tau_e = \{K_{0e}, K_{1e}\}\$ with $K_{0e}(\lambda)$ and $K_{1e}(\lambda)$ given by (3.6) and (3.7) respectively.

(3) It follows from (2.13) that

$$
K_0(\lambda) = \begin{pmatrix} I_{\mathcal{H}'_1} & 0 \\ 0 & 0 \\ Q_2(\lambda) & 0 \end{pmatrix} : \underbrace{\mathcal{H}'_1 \oplus \mathcal{K}}_{\mathcal{H}_1} \to \underbrace{\mathcal{H}'_1 \oplus \mathcal{K}}_{\mathcal{H}_1} \oplus \mathcal{H}_2
$$

$$
K_1(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0 \\ 0 & I_{\mathcal{K}} \end{pmatrix} : \underbrace{\mathcal{H}'_1 \oplus \mathcal{K}}_{\mathcal{H}_1} \to \underbrace{\mathcal{H}'_1 \oplus \mathcal{K}}_{\mathcal{H}_1}
$$

and by statement (2) $\tau_e = \{K_{0e}, K_{1e}\}$, where

$$
K_{0e}(\lambda) = \begin{pmatrix} I_{\mathcal{H}'_1} & 0 & 0 \\ 0 & 0 & 0 \\ Q_2(\lambda) & 0 & I_{\mathcal{H}_2} \end{pmatrix} : \mathcal{H}'_1 \oplus \mathcal{K} \oplus \mathcal{H}_2 \to \mathcal{H}'_1 \oplus \mathcal{K} \oplus \mathcal{H}_2
$$

$$
K_{1e}(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0 & 0 \\ 0 & I_{\mathcal{K}} & 0 \\ -\frac{i}{2}Q_2(\lambda) & 0 & \frac{i}{2}I_{\mathcal{H}_2} \end{pmatrix} : \mathcal{H}'_1 \oplus \mathcal{K} \oplus \mathcal{H}_2 \to \mathcal{H}'_1 \oplus \mathcal{K} \oplus \mathcal{H}_2.
$$

Let

$$
K_{0s}(\lambda) = \begin{pmatrix} I_{\mathcal{H}'_1} & 0 \\ Q_2(\lambda) & I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0} \rightarrow \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0},
$$

$$
K_{1s}(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0 \\ -\frac{i}{2}Q_2(\lambda) & \frac{i}{2}I_{\mathcal{H}_2} \end{pmatrix} : \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0} \rightarrow \underbrace{\mathcal{H}'_1 \oplus \mathcal{H}_2}_{\mathcal{H}'_0}.
$$

Then $\tau_e(\lambda) = \tau_{es}(\lambda) \oplus \widehat{K}$, $\lambda \in \mathbb{C}_+$, where $\widehat{K} = \{0\} \oplus \mathcal{K}$ and

$$
\tau_{es}(\lambda) = \{ \{ K_{0s}(\lambda)h_0, K_{1s}(\lambda)h_0 \} : h_0 \in \mathcal{H}'_0 \}, \quad \lambda \in \mathbb{C}_+
$$

is the operator part of τ_e . Since the operator $K_{0s}(\lambda)$ is invertible, it follows that $\tau_{es} \in R[\mathcal{H}'_0]$ and

$$
\tau_{es}(\lambda) = K_{1s}(\lambda) K_{0s}^{-1}(\lambda) = \begin{pmatrix} Q_1(\lambda) & 0 \\ -\frac{i}{2}Q_2(\lambda) & \frac{i}{2}I \end{pmatrix} \begin{pmatrix} I & 0 \\ -Q_2(\lambda) & I \end{pmatrix},
$$

which implies (2.18). Moreover, $\text{Im}\tau_{es}(\lambda)$ is of the form (2.19) and by Lemma 3.3 ran $\text{Im}\tau_{es}(\lambda)$ is closed. Hence $\tau_{es} \in R_c[\mathcal{H}_0']$. \Box

In the following theorem the compression $C(\tilde{A}_{\tau})$ of the exit space extension A_{τ} is characterized in terms of limit values of the parameter τ .

Theorem 3.5. Assume that A is a symmetric linear relation in \mathfrak{H} with $n_-(A) < \infty$, $\Pi = {\mathcal{H}_0 \oplus \mathcal{H}_1, \Gamma_0, \Gamma_1}$ *is a boundary triplet for* A^* , $\tau = {\mathcal{H}'_1 \oplus \mathcal{K}, Q_1, Q_2} \in R(\mathcal{H}_0, \mathcal{H}_1)$ *(see Remark 2.15),* $A_\tau = A_\tau^*$ *is the corresponding exit space extension of A* and $C(A_\tau)$ *is the compression of* A_{τ} . Then $C(A_{\tau}) = A_{\theta_c}$ (in the triplet Π) with the linear relation $\theta_c \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$ *given by*

$$
\theta_c = \{ \{ h \oplus Q_2(\infty)h, (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus k \} : h \in L_\infty, \psi \in \mathcal{H}'_1, k \in \mathcal{K} \}. \tag{3.10}
$$

Here $L_{\infty} \subset \mathcal{H}'_1$ *is the subspace and* $Q_1(\infty)$ *and* $Q_2(\infty)$ *are operators defined in Proposition 2.9;* $B_{Q_1} \in B(\mathcal{H}'_1)$ *is the operator corresponding* $to Q_1 \in R[\mathcal{H}']$ *in accordance with Proposition 2.1.*

Proof. Let A_r , \mathfrak{H}_r and A_e , \mathfrak{H}_e be the same as in Lemma 3.1. Moreover, let $A_r = A_r^*$ be a (unique) exit space extension of A_r in the Hilbert space \mathfrak{H}_r . Then according to Proposition 3.4, (1) $A_e := A_\tau \oplus A_r$ is an exit space self-adjoint extension of A_e in $\mathfrak{H}_e = \mathfrak{H} \oplus \mathfrak{H}_r$. Let $C(A_e)$ and $C(\widetilde{A}_r)$ be compressions of A_e and A_r respectively. Clearly, $C(A_e)$ = $C(A_{\tau}) \oplus C(A_{r})$. Moreover, since $C(A_{r})$ is a symmetric extension of the maximal symmetric operator A_r , it follows that $C(A_r) = A_r$ and therefore

$$
C(\tilde{A}_e) = C(\tilde{A}_\tau) \oplus A_r.
$$
\n(3.11)

Let $C(A_\tau) = A_{\theta_c}$ (in the triplet Π) with some $\theta_c \in \text{Sym}_0(\mathcal{H}_0, \mathcal{H}_1)$. Moreover, let $\Pi_e = \{ \mathcal{H}_0, \Gamma_0^e, \Gamma_1^e \}$ be boundary triplet (3.1), (3.2) for A_e^* and let $C(A_e) = A_{\theta_{ce}}$ (in the triplet Π_e) with some linear relation θ_{ce} in *H*₀. Then according to Proposition 3.4, (3) $A_e = A_{\tau_e}$ (in the triplet Π_e), where $\tau_e \in R(\mathcal{H}_0)$ is of the form (3.8) with $\tau_{es} \in R_c[\mathcal{H}'_0]$ given by (2.18). Let $\mathcal{B}_{\tau_{es}} \in \mathcal{B}(\mathcal{H}'_0)$ be the operator corresponding to τ_{es} in accordance with Proposition 2.1. Since $\mathcal{B}_{\tau_{es}} = \mathcal{B}_{\tau_{es}}^*$, it follows from (2.18) that

$$
\mathcal{B}_{\tau_{es}} = \begin{pmatrix} \mathcal{B}_{Q_1} & 0 \\ 0 & 0 \end{pmatrix} : \mathcal{H}'_1 \oplus \mathcal{H}_2 \to \mathcal{H}'_1 \oplus \mathcal{H}_2. \tag{3.12}
$$

Applying Theorem 2.18 to the triplet Π*^e* and taking (3.12) into account one obtains

$$
\theta_{ce} = \{ \{ h \oplus h_2, (-N_{\tau_{es}}(h \oplus h_2) + \mathcal{B}_{Q_1}\psi) \oplus k \} : h
$$

$$
\oplus h_2 \in \text{dom}\, N_{\tau_{es}}, \psi \in \mathcal{H}'_1, k \in \mathcal{K} \},
$$
 (3.13)

where

$$
\text{dom}\, N_{\tau_{es}} = \{h \oplus h_2 \in \mathcal{H}'_1 \oplus \mathcal{H}_2 : \lim_{y \to +\infty} y \text{Im}(\tau_{es}(iy)(h \oplus h_2), h \oplus h_2) < \infty\}
$$
\n
$$
N_{\tau_{es}}(h \oplus h_2) = \lim_{y \to +\infty} \tau_{es}(iy)(h \oplus h_2), \quad h \oplus h_2 \in \text{dom}\, N_{\tau_{es}}.\tag{3.14}
$$

It follows from (2.19) that

dom
$$
N_{\tau_{es}} = \{h \oplus h_2 \in \mathcal{H}'_1 \oplus \mathcal{H}_2 : \lim_{y \to +\infty} y (\text{Im}(Q_1(iy)h, h) -\text{Re}(Q_2(iy)h, h_2) + \frac{1}{2}||h_2||^2) < \infty\}
$$
. (3.15)

Moreover, in view of (2.18) for $h \oplus h_2 \in \mathcal{H}'_1 \oplus \mathcal{H}_2$ one has

$$
\tau_{es}(iy)(h \oplus h_2) = Q_1(iy)h \oplus (-iQ_2(iy)h + \frac{i}{2}h_2). \tag{3.16}
$$

Therefore for each $h \oplus h_2 \in \text{dom } N_{\tau_{es}}$ there exist the limits $Q_1(\infty)h :=$ lim $\lim_{y \to +\infty} Q_1(iy)h$, $Q_2(\infty)h := \lim_{y \to +\infty} Q_2(iy)h$ and by (3.14), (3.16)

$$
N_{\tau_{es}}(h \oplus h_2) = Q_1(\infty)h \oplus (-iQ_2(\infty)h + \frac{i}{2}h_2), \quad h \oplus h_2 \in \text{dom}\, N_{\tau_{es}}
$$

Hence (3.13) can be written as

$$
\theta_{ce} = \{ \{ h \oplus h_2, (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus (iQ_2(\infty)h - \frac{i}{2}h_2) \oplus k \} : h \oplus h_2 \in \text{dom}\, N_{\tau_{es}}, \psi \in \mathcal{H}'_1, k \in \mathcal{K} \}. \tag{3.17}
$$

On the other hand, by (3.11) and Proposition 3.2 one has

$$
\theta_{ce} = \{ \{ h \oplus h_2, h_1 \oplus \frac{i}{2}h_2 \} : \{ h \oplus h_2, h_1 \} \in \theta_c \}.
$$
 (3.18)

Now by using (3.17) and (3.18) we prove (3.10).

Let $\hat{h} = \{h \oplus h_2, h_1\} \in \theta_c$ with $h \oplus h_2 \in \mathcal{H}_1 \oplus \mathcal{H}_2 (= \mathcal{H}_0)$ and $h_1 \in \mathcal{H}_1$. Then by $(3.18) \{h \oplus h_2, h_1 \oplus \frac{i}{2}\}$ $\left\{\frac{i}{2}h_2\right\} \in \theta_{ce}$ and (3.17) yields $h \oplus h_2 \in$ dom $N_{\tau_{es}}$,

$$
h_1 = (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus k, \qquad \frac{i}{2}h_2 = iQ_2(\infty)h - \frac{i}{2}h_2,\tag{3.19}
$$

where $\psi \in \mathcal{H}'_1$ and $k \in \mathcal{K}$. It follows from (3.15) that $h \in \mathcal{H}'_1$. Moreover, by the second equality in (3.19) $h_2 = Q_2(\infty)h$ and hence $h \in L_\infty(\subset \mathcal{H}'_1)$

(see Proposition 2.9). Note also that by (3.15) lim $\lim_{y \to +\infty} y \varphi_h(y) < \infty$, where $\varphi_h(y)$ is given by (2.15). Therefore by (2.16) $h \in L_\infty$ and the first equality in (3.19) yields

$$
\widehat{h} = \{ h \oplus Q_2(\infty)h, \left(-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi \right) \oplus k \}. \tag{3.20}
$$

Conversely, assume that $h \in L_{\infty}$, $\psi \in \mathcal{H}'_1$, $k \in \mathcal{K}$ and $h \in \mathcal{H}_0 \oplus \mathcal{H}_1$ is given by (3.20). Let us put

$$
\hat{m} := \{ h \oplus Q_2(\infty)h, (-Q_1(\infty)h + B_{Q_1}\psi) \oplus \frac{i}{2}Q_2(\infty)h \oplus k \} \qquad (3.21)
$$

= $\{ h \oplus Q_2(\infty)h, (-Q_1(\infty)h + B_{Q_1}\psi) \oplus (iQ_2(\infty)h - \frac{i}{2}Q_2(\infty)h) \oplus k \}$

Since $h \in L_{\infty}$, it follows from (3.15), (2.16) and (2.15) that $h \oplus Q_2(\infty)h \in$ dom $N_{\tau_{es}}$. Therefore by (3.17) $\hat{m} \in \theta_{ce}$ and in view of (3.18) there exists ${h' \oplus h'_2, h'_1} \in \theta_c$ such that $\hat{m} = {h' \oplus h'_2, h'_1 \oplus \frac{i}{2}}$
 h' $\in \mathcal{H}_2$) Comparing this equality with (3.2) $\frac{1}{2}h'_2$ (here $h', h'_1 \in \mathcal{H}_1$ and $h'_2 \in \mathcal{H}_2$). Comparing this equality with (3.21) one gets $h' = h$, $h'_2 =$ $Q_2(\infty)h$ and $h'_1 = (-Q_1(\infty)h + \mathcal{B}_{Q_1}\psi) \oplus k$. Hence $h = \{h' \oplus h'_2, h'_1\}$, that is $\hat{h} \in \theta_c$. This proves (3.10).

Corollary 3.6. *Let the assumptions of Theorem 3.5 be satisfied and let* $A_0 = \ker \Gamma_0$. *Then:*

(1) $C(A_\tau) \subset A_0$ *if and only if*

$$
\lim_{y \to +\infty} y \varphi_h(y) = \infty, \quad h \in \widetilde{L}_{\infty}, \quad h \neq 0 \tag{3.22}
$$

(for \tilde{L}_{∞} *and* $\varphi_h(y)$ *see Proposition 2.9). In this case*

$$
C(\tilde{A}_{\tau}) = \{ \tilde{f} \in A^* : \Gamma_0 \tilde{f} = 0, \Gamma_1 \tilde{f} = \mathcal{B}_{Q_1} \psi \oplus k
$$

with some $\psi \in \mathcal{H}'_1$ and $k \in \mathcal{K} \}$. (3.23)

(2)
$$
C(A_{\tau}) = A_0
$$
 if and only if ker $B_{Q_1} = \{0\}$.

(3) $C(A_{\tau}) = A$ *if and only if* $\tau \in R(\mathcal{H}_0, \mathcal{H}_1)$ *(that is* $K = \{0\}$ *),* $B_{Q_1} = 0$ *and* (3.22) *is satisfied.*

Proof. (1) According to Theorem 3.5 $C(\widetilde{A}_{\tau}) = A_{\theta_c}$ with $\theta_c \in$ $Sym_0(\mathcal{H}_0, \mathcal{H}_1)$ given by (3.10). In the following we need the relations

$$
\operatorname{mul}\theta_c = \operatorname{ran}\mathcal{B}_{Q_1} \oplus \mathcal{K}, \qquad \mathcal{H}_1 \ominus \operatorname{mul}\theta_c = \ker\mathcal{B}_{Q_1} \tag{3.24}
$$

$$
L_{\infty} \subset \ker \mathcal{B}_{Q_1} \tag{3.25}
$$

$$
\text{dom}\,\theta_c = \{0\} \iff L_{\infty} = \{0\}.\tag{3.26}
$$

The first equality in (3.24) directly follows from (3.10). Next,

$$
\mathcal{H}_1 \ominus \operatorname{mul} \theta_c = \mathcal{H}'_1 \ominus \operatorname{ran} \mathcal{B}_{Q_1} = \ker \mathcal{B}_{Q_1},
$$

that is the second equality in (3.24) holds. The inclusion (3.25) is implied by (3.24), (2.7) and the obvious equality P_1 dom $\theta_c = L_\infty$. Finally, (3.26) directly follows from (3.10) .

Clearly, $C(\widetilde{A}_{\tau}) \subset A_0$ if and only if dom $\theta_c = \{0\}$. Therefore by (3.26) $C(A_\tau) \subset A_0$ if and only if $L_\infty = \{0\}$, which is equivalent to (3.22). Moreover, in this case the first equality in (3.24) gives

$$
\theta_c = \{0\} \oplus \text{mul}\,\theta_c = \{\{0, \mathcal{B}_{Q_1}\psi \oplus k\}; \psi \in \mathcal{H}'_1, k \in \mathcal{K}\},\
$$

which implies (3.23).

Next, the equality $C(\widetilde{A}_{\tau}) = A_0$ holds if and only if dom $\theta_c = \{0\}$ and mul $\theta_c = \mathcal{H}_1$. Moreover, by the second equality in (3.24) mul $\theta_c = \mathcal{H}_1$ if and only if ker $\mathcal{B}_{Q_1} = \{0\}$. Therefore by $(3.26) C(A_\tau) = A_0$ if and only if $L_{\infty} = \{0\}$ and ker $\mathcal{B}_{Q_1} = \{0\}$, which in view of (3.25) yields statement (2).

Finally, by Proposition 2.12, (1) $C(\widetilde{A}_{\tau}) = A$ if and only if $\theta_c = \{0\}$, i.e., dom $\theta_c = \{0\}$ and mul $\theta_c = \{0\}$. Therefore by (3.24) and (3.26) *C*(*A*_{τ}) = *A* if and only if $K = \{0\}$, $B_{Q_1} = 0$ and $L_{\infty} = \{0\}$. This yields statement (3). statement (3).

Remark 3.7. *Assume that A is a closed densely defined symmetric operator in* \mathfrak{H} *. Then each exit space extension* $A = A^*$ *of A is a densely defined operator and according to M. A. Naimark [19] (see also [1, ch. 9]) an extension A of A is said to be of the second kind if* dom $A \cap \mathfrak{H} = \text{dom } A$ *or equivalently if* $C(A) = A$ *. Clearly, Corollary 3.6, (3) gives a parametrization of all extensions ^A*^e *of the second kind of an operator ^A with unequal deficiency indices* $n_-(A) < n_+(A)$ *in terms of the parameter* τ *from Krein resolvent formula* (2.25)*. Note that for an operator A with equal deficiency indices* $n_-(A) = n_+(A) \leq \infty$ *the criterion for an extension* A_{τ} *of A with* $\tau \in R[H]$ *to be of the second kind was obtained in [4]. This criterion is of the form*

$$
\mathcal{B}_{\tau} = 0 \quad \text{and} \quad \lim_{y \to +\infty} y \operatorname{Im}(\tau(iy)h, h) = \infty, \ \ h \in \mathcal{H}, \ h \neq 0. \tag{3.27}
$$

Later on the sufficiency of conditions (3.27) *was rediscovered in [8] for a* more restrictive case $n_-(A) = n_+(A) < \infty$. In the case $n_-(A) =$ $n_{+}(A) \leq \infty$ *a description of all extensions* A_{τ} *of the second kind with the closed relation* $T(A_\tau) := \{ \{ P_{\mathfrak{H}}f, P_{\mathfrak{H}}Af \} : f \in \text{dom } A_\tau \}$ was obtained *in our paper [18]. Observe also that a somewhat other parametrization of the second kind extensions can be found in [20].*

In the following theorem we describe all exit space extensions \widetilde{A}_{τ} of *A* such that the compression of \tilde{A}_{τ} is a maximal symmetric relation.

Theorem 3.8. *Let the assumptions of Theorem 3.5 be satisfied. Then* $C(\widetilde{A}_{\tau})$ *is maximal symmetric if and only if* ker $\mathcal{B}_{Q_1} \subset L_{\infty}$ *and*

$$
\lim_{y \to +\infty} y \varphi_h(y) < \infty, \quad h \in \ker \mathcal{B}_{Q_1}
$$

(here $\varphi_h(y)$ *is given by* (2.15) *)*.

Proof. It follows from Theorem 3.5 and Proposition 2.12, (3) that $C(\tilde{A}_{\tau})$ is maximal symmetric if and only if $\theta_c \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$, where θ_c is given by (3.10). Moreover, by Lemma 2.3 $\theta_c \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1)$ if and only if $L_{\infty} = H_1 \oplus \text{mul } \theta_c$. Therefore by the second equality in (3.24) $\theta_c \in$ Sym(\mathcal{H}_0 , \mathcal{H}_1) if and only if $L_{\infty} = \ker \mathcal{B}_{Q_1}$. This and (3.25) yield the equivalence $\theta_c \in \text{Sym}(\mathcal{H}_0, \mathcal{H}_1) \iff \ker \mathcal{B}_{Q_1} \subset L_\infty$, which implies the statement of the theorem. \Box

References

- [1] N. I. Akhiezer, I. M.Glazman, *Theory of linear operators in Hilbert space*, vol. I and II, Pitman, Boston–London–Melbourne, 1981.
- [2] V. M. Bruk, *Extensions of symmetric relations* // Math. Notes, **22** (1977), No. 6, 953–958.
- [3] V. A. Derkach, S. Hassi, M. M. Malamud, and H.S.V. de Snoo, *Generalized resolvents of symmetric operators and admissibility* // Methods of Functional Analysis and Topology, **6** (2000), No. 3, 24–55.
- [4] V. A. Derkach, S. Hassi, M. M. Malamud, and H.S.V. de Snoo, *Boundary relations and generalized resolvents of symmetric operators* // Russian J. Math. Ph., **16** (2009), No. 1, 17–60.
- [5] V. A. Derkach, M. M. Malamud, *Generalized resolvents and the boundary value problems for Hermitian operators with gaps* // J. Funct. Anal., **95** (1991), 1–95.
- [6] V. A. Derkach, M. M. Malamud, *Extension theory of symmetric operators and boundary value problems* // Proceedings of Institute of Mathematics NAS of Ukraine, V. 104, Institute of Mathematics NAS of Ukraine, Kyiv, 2017.
- [7] A. Dijksma, H. Langer, *Finite-dimensional self-adjoint extensions of a symmetric operator with finite defect and their compressions* // Advances in complex analysis and operator theory, Festschrift in honor of Daniel Alpay, Birkhäuser, Basel, (2017), 135–163.
- [8] A. Dijksma, H. Langer,*Compressions of self-adjoint extensions of a symmetric operator and M.G. Krein's resolvent formula* // Integr. Equ. Oper. Theory, **90:41** (2018).
- [9] A. Dijksma, H.S.V. de Snoo, *Self-adjoint extensions of symmetric subspaces* // Pasif. J. Math., **54** (1974), No. 1, 71–100.
- [10] V. I. Gorbachuk, M. L. Gorbachuk, *Boundary problems for differential-operator equations*, Kluver Acad. Publ., Dordrecht-Boston-London, 1991. (Russian edition: Naukova Dumka, Kiev, 1984).
- [11] M. G. Krein, H. Langer,*On defect subspaces and generalized resolvents of a Hermitian operator in the space* Π_{κ} // Funct. Anal. Appl., **5** (1971/1972), 136–146, 217–228.
- [12] H. Langer, B. Textorious, *On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space* // Pacif. J. Math., **72**(1977), No. 1 , 135–165.
- [13] M. M. Malamud, *On the formula of generalized resolvents of a nondensely defined Hermitian operator* // Ukr. Math. Zh., **44** (1992), No. 12, 1658–1688.
- [14] V. I. Mogilevskii, *Nevanlinna type families of linear relations and the dilation theorem* // Methods Funct. Anal. Topology, **12** (2006), No. 1, 38–56.
- [15] V. I. Mogilevskii, *Boundary triplets and Krein type resolvent formula for symmetric operators with unequal defect numbers* // Methods Funct. Anal. Topology, **12** (2006), No. 3, 258–280.
- [16] V. I. Mogilevskii, *On exit space extensions of symmetric operators with applications to first order symmetric systems* // Methods Funct. Anal. Topology **19** (2013), No. 3, 268–292.
- [17] V. I. Mogilevskii, *Symmetric extensions of symmetric linear relations (operators) preserving the multivalued part* // Methods Funct. Anal. Topology **24** (2018), No. 2, 152–177.
- [18] V. I. Mogilevskii, *On compressions of self-adjoint extensions of a symmetric linear relation* // Integr. Equ. Oper. Theory, **91** (2019), No. 9.
- [19] M. A. Naimark, *On selfadjoint extensions of the 2-nd kind of a symmetric operator* // Izv. Akad. Nauk SSSR, Ser. Matem., **4** (1940), 53–104.
- [20] A. V. Shtraus, *On one-parameter families of extensions of a symmetric operator* // Izv. Akad. Nauk SSSR, Ser. Matem., **30** (1966), 1325–1352.
- [21] A. V. Shtraus, *Extensions and generalized resolvents of a symmetric operator which is not densely defined* // Izv. Akad. Nauk SSSR. Ser. Matem., **34** (1970), No.1, 175–202 (in Russian); transl.: Mathematics of the USSR-Izvestiya, **4** (1970), No. 1, 179–208.

CONTACT INFORMATION

