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On compressions of self-adjoint extensions
of a symmetric linear relation with
unequal deficiency indices

VaADIM I. MOGILEVSKII
(Presented by V. A. Derkach)

Abstract. Let A be a symmetric linear relation in the Hilbert space
$ with unequal deficiency indices n-A < n4(A). A self-adjoint linear
relation A O A in some Hilbert space $ O § is called an (exit space)
extension of A. We study the compressions C(A) = Py A | § of exten-
sions A = A*. Our main result is a description of compressions C(A)
by means of abstract boundary conditions, which are given in terms of
limit value of the Nevanlinna parameter 7(\) from the Krein formula for

generalized resolvents. We describe also all extensions A = A* of A with
the maximal symmetric compression C(A) and all extensions A = A* of
the second kind in the sense of M.A. Naimark. These results generalize
the recent results by A. Dijksma, H. Langer and the author obtained for
symmetric operators A with equal deficiency indices ny(A) = n_(A).
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1. Introduction

Assume that A is a closed not necessarily densely defined symmetric
operator in a Hilbert space $). Recall that a self-adjoint linear relation
(in particular operator) A O A in a Hilbert space $ O §) is called an (exit
space) extension of A and a linear relation C(A) := PyA | $ is called
a compression of A A description of all extensions A = A* and their
compressions C' (A) is an important problem in the extension theory of
symmetric operators (note that C'(A) is a symmetric extension of A). In
[9,20,21] all extensions A = A* of an operator A with arbitrary (equal or
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unequal) deficiency indices n(A) < 0o and their compressions C/(A) were
described by means of holomorphic operator-functions F(A)(A € Cy),
whose values are contractions between defect subspaces of A. In the case
ny(A) = n_(A) another description of extensions A = A* of A is given by
the Krein formula for generalized resolvents [11,12]. This formula gives a
parametrization A = A, of all extensions A = A* by means of Nevanlinna
functions 7 = 7(\), whose values are linear relations in the auxiliary
Hilbert space. In the recent papers by A. Dijksma and H. Langer [7, 8]
the compressions C'(A;) of extensions A, are investigated in terms of the
parameter 7 from the Krein formula. The results of [7,8] were essentially
strengthened in our paper [18]. The investigations in this paper are based
on the theory of boundary triplets for symmetric operators A with equal
deficiency indices n4(A) = n_(A) and Weyl functions of these triplets
(see |5,6,10,13] and references therein). By using such an approach we
described in [18] the compressions C(A;) in terms of the parameter 7.
This enables us to describe, in particular, all extensions A, with self-
adjoint compressions.

In our papers [15,16] the theory of boundary triplets and their Weyl
functions was extended to symmetric operators A with unequal deficiency
indices n_(A) < ny(A). In particular, we showed that in this case the
Krein formula for generalized resolvents

Py(Ar =27 1H=(A0 = A = (N + My (V) 2 (V) AeCy

(1.1)
establishes a bijective correspondence A= AT between all Nevanlinna
type functions 7 = 7()\) and all extensions A = A* of A. In (1.1) Ag
is a fixed maximal symmetric extension of A and 74+ (A) (the v-fields)
and My (A) (the Weyl function) are the operator functions defined in
terms of a boundary triplet for A. In the present paper we extend the
results of [18] to symmetric operators A with unequal deficiency indices
n_(A) < ny(A) (clearly, in this case n_(A) < oo and ny(A) < o0). Our
main result (see Theorem 3.5) is a description of compressions C/(A;)
of extensions A, = A* in terms of the parameter 7 = 7()\) from (1.1).
This description is given by means of an abstract boundary parameter
0., which is a certain limit value of 7(\) at infinity. By using this result
we describe extensions /L with some special properties. In particular, we
describe in terms of 7 all extensions ZT of the second kind in the sense of
M. A. Naimark (see Remark 3.7) and all extensions A, with the maximal
symmetric compression C(A,).
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2. Preliminaries

2.1 Notations

The following notations will be used throughout the paper: $, H
denote separable Hilbert spaces; B(H1,H2) is the set of all bounded
linear operators defined on H; with values in Ho; B(H) := B(H,H);
A | Lis arestriction of the operator A € B(H1,Hz2) to the linear manifold
L C Hi; Pr is the orthoprojection in $) onto the subspace £ C $; C4 (C_)
is the open upper (lower) half-plane of the complex plane.

Recall that a linear manifold 7" in the Hilbert space Ho®H1 (H®H)
is called a linear relation from Hg to H1 (resp. in H). The set of all closed
linear relations from Hg to H; (in ) will be denoted by C(Ho, H1) (resp.
5(7—[)) Clearly for each linear operator T' : domT — H1, domT C Ho,
its graph grT = {{f,Tf} : f € domT} is a linear relation from Hy to
H1. This fact enables one to consider an operator as a linear relation.

For a linear relation T' from Hg to 1 we denote by

domT := {ho € Ho : Ih1 € H1 {ho,hn} € T}
ker T':= {ho € Ho : {ho,0} € T}

ranT :={hy € Hy : 3hg € Ho {ho,h1} €T}
mulT :={h; € H1: {0, } € T}

the domain, kernel, range and multivalued part of T respectively. De-
note also by T~ and T* the inverse and adjoint linear relations of T'
respectively.

As is known a linear relation 7" in H is called symmetric (self-adjoint)
if T'CT* (resp. T =T%).

2.2 Nevanlinna functions

Recall that a holomorphic operator function M : Cy — B(H) is
called a Nevanlinna function if ImM(X) > 0, A € C;. The class of
all Nevanlinna B(H)-valued functions will be denoted by R[H]. The
operator-function M € R[H] is referred to the class R.[H], if ran ImM ()
is closed for all A € C\ R.

The following proposition is well known (see e.g. [13]).
Proposition 2.1. If M € R[H], then the equality

By =s— lim LM(iy) (2.1)

y—+oo W
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defines the operator Byy € B(H) such that By > 0. Moreover, for each
h € H there exists the limit EIJP yIm(M (iy)h, h) < oo and the equality
y 00

——+o00

domNy ={heH: lim ylm(M((iy)h,h) < oo} (2.2)
y

defines the (not necessarily closed) linear manifold dom Ny C H such
that for each h € dom Ny there exists the limit

Nyh = lim M(iy)h, h € domN)y,. (2.3)
Y—r—+00

Hence the equalities (2.2) and (2.3) define the linear operator Ny :
domNM — H.

2.3 The classes Sym(Ho, 1) and R(Ho, H1)

In the following Hg is a Hilbert space, H; is a subspace in Hg, Ha =
Ho © H1 and P; is the orthoprojection in Hy onto H;, j € {1,2}.

Definition 2.2. [14] A linear relation 6 from H( to H; belongs to the
class Symg(Ho, H1) if

2Im(h1, ho)%o + ||P2h0||2 =0, {ho, hl} € 0. (24)

A relation 6 € Symq(Ho,H;1) belongs to the class Sym(Ho, H1) if there
is not an extension 6 D 0, 6 # 6 such that 6 € Symg(Ho, H1)-

Note that in the case Ho = H1 =: H the classes Symg(Hg, H1) and
Sym(Ho, H1) coincide with the known classes of symmetric and maximal
symmetric linear relations in H respectively.

Let 6 € Symg(Ho, H1), let K := mul 8 be a closed subspace in H; and
let #} :=H1 6 K and H{, := Ho © K. Then Hy = H| & Ha,

Hi=H ®K, Ho=H, DK =H| ®@Ha BK (2.5)
———
Ho
and according to [14]

0 =gro, ®K = {{hl),0.h, &k} : hjy € dom b, k € K}, (2.6)

where K = {0} &K and 0, € Symg(H), ) is an operator with dom 0 =
dom @. Moreover, 6 € Sym(Ho, H1) if and only if 0 € Sym(H(, H}). The
operator 65 in (2.6) is called the operator part of 6.

It follows from (2.5) and (2.6) that

Pidom 0 C Hi © mulé. (2.7)
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Lemma 2.3. Let dimH; < oo and let 6 € Symo(Ho, H1), so that de-
compositions (2.5) and (2.6) hold with I = mulé. Then there ezist a
subspace L' C H) and operators Q1 € B(L',H}) and Q2 € B(L', H2)
such that

0= {{I & Qul, Qi Bk} : W € L k € K}. (2.8)
Moreover, 8 € Sym(Ho, H1) if and only if L' = H).

Proof. Since dom 65 C H) @ Ho, it follows that dom 6, is a linear relation
from H) to Ho. Let L' C H) be the domain of this relation. Assume
that 0 @ hy € dom 65 with some hy € Ha. Then {0 @ ho, )} € 05 with
some h} € H} and by equality (2.4) for 5 one has ||hz||> = 0. Hence
he = 0 and consequently there exists an operator Qo € B(L', Hz) such
that dom 6 = {{h ® Q2h'} : b’ € L'}. Moreover, the equality

th/ = Gs(h’ D th/), Wel
correctly defines the operator Q1 € B(L', H)) such that
groy = {{h' ® Qz1',Q:h'} : W' € L'}.
This and (2.6) imply (2.8).
Next according to [17, Proposition 2.7] the operator 65 belongs to
Sym (H(, H}) if and only if dim(grfs) = dim H}. This and the obvious

equality dim L' = dim(gr 6,) yield the last statement of the theorem. [

Definition 2.4. [14,16] A function 7 : C; — C(Ho, H1) is referred to
the class R(Ho, H1) if:

(i) 21m(h1,h0) — ‘|P2ho‘|2 >0, {ho, hl} S T()\), AeCyy

(i) (t(\) +iP1)~t € B(H1,Ho), A € C4, and the operator-function
(7(X\) +4P;)~! is holomorphic on C.

A function 7 € R(Ho, M) is referred to the class R(Ho, M) if its
values are operators, i.e., if mul7(\) = {0}, A € C,

According to [14,16] the equality
T(A) = {{KO()‘)thl()\)h} che Hl}, A€ (C+

establishes a bijective correspondence between all functions 7 €

R(Ho,H1) and all pairs {Ky, K1} of holomorphic operator-functions
K;:Cy — B(H1,H;), j € {0,1}, with the block representation

Ko(A) = (Ko1(A), Ko2(A) T = Hy — H1 & Ho (2.9)
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satisfying for all A € C the following relations:

2Im (K (N EK1(N) — Ki(A\)Ko2(A) >0, (K1(A\) +iKei (V)™ € B(Hy).
(2.10)
In the following we write 7 = {Ky, K1} identifying a function 7 €

R(Ho,H1) and the corresponding pair {Ky, K1} of holomorphic oper-
ator functions satisfying (2.10)(more precisely the equivalence class of
such pairs [14]).

Lemma 2.5. [14,16] Let 7 € R(Ho,H1). Then the multivalued part
K := mul7(\)(C Hi) of 7(\) does not depend on A € C4. Moreover,
decompositions (2.5) and

AN =gr(A ek, AeCy (2.11)

hold with T4 € R(H}, H}) and K = {0} & K.
The operator function 75 in (2.11) is called the operator part of .

Remark 2.6. In the case H1 = Ho =: H the class R(H,H) coincides
with the well-known class R(H) of Nevanlinna C(H)-valued functions
(Nevanlinna operator pairs) T = {Ko(A), K1(\)}, A € Cy (see e.g [3]).
Denote by R(H) the set of all T € R(H) such that T()\) is an operator,
A € Cy. For a function T € R(H) decompositions (2.5) and (2.11) take
the following well known form (see e.g. [11]):

H=HaKk  t\N=grr(\)BK, IeCy, (2.12)

where 75 € R(H') is the operator part of T.
It is clear that R[H] C R(H) C R(H).

Let decompositions (2.5) hold and let @Q1(\)(€ B(H})) and Q2(N)(€
B(H),H2)) be holomorphic on C; operator functions.

Definition 2.7. For a function 7 € R(Ho, H1) we write 7 = {H}| &
K, Qu1,Q2} if

T(A) = {{h] ® Q2(Nh, Q1N @k} : b e H, k€ K}, XeCy
(2.13)

If 7= {H, ®K,Q1,Q2}, then K =mul7(\), A € C4, and in view of
the inequality

2mQ1(\) — Q3(NQ2(N) =0, AeCy (2.14)

one has Q; € R[H}].



V. I. MOGILEVSKII 573

Proposition 2.8. In the case dim H;1 < oo each function T € ]TZ(’HO,"Hl)
admits the representation T = {H} ® K, Q1,Q2}.

Proof. Let 75 = {Qo, Q1} with operator-functions @j : C4 — B(H1, M),
j € 40,1}, and let

Qo(N) = (Qui(N), QoaA\) T : Hy — M| ®Ha, NeCe

be the block representation of Qg()). Since 7, € R( 0, H1), it follows
that

2Im(Q1(A)A7, Qur(AAY) = [IQo2(MAIII> 20, A€ Coy R € Hy.

Therefore for each h} € ker Qoi(\) one has B, € ker Qua()). Hence
hy € ker Qo(\), which implies that ker Qoi(A) C kerQo()). Since
7s(A) is an operator, it follows that ker QO(A) = {0} and, consequently,
ker Qo1(A) = {0}. Since dimH] < oo, this implies that the operator
@01()\) is invertible, that is @611 : C4+ — B(H}) is a holomorphic op-
erator function. Clearly, 7, admits the representation 7, = {Qo, @1}
with

Qo(N) = QoM Qp' () = (I, Q2(N) T, @1(N) = QN Qq; (M),
where Qa(\) = Qoa(A\) Qg (V). Hence
grrs(A) = {{h1 ® Qa(N)h, Q1(Vhi} - hy € Hi}, A e Cy,
which in view of (2.11) yields (2.13). O

Proposition 2.9. Let 7 = {H] ® K,Q1,Q2} € R(Ho, H1), let Loo(C
Hy) be a linear manifold of all h € H) such that there exists the limit
EIJP Q2(iy)h and let Q2(00) : Loo — Ha be the linear operator given by
y 00

Qa(c0)h = lim Qs(iy)h, h € L.

Yy——+00
For h € EOO put
en(y) =Im(Q1(iy)h, h)—
Re (Q2(iy)h, Q2(c0)h) + 1[|Q2(c0)h|?, y € Ry (2.15)

Then for each h € Eoo there exists the limait liril yon(y) < oo and the
y—+00
equality

Loo ={h € Loo: lim ypu(y) < oo} (2.16)
Yy—r—+00
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defines the linear manifold Loo C H) such that for each h € Lo, there
exists the limat

Qi(c0)h = lim Q1(iy)h, h € L. (2.17)
Y—r—+00
Thus the equalities (2.16) and (2.17) define the linear operator Q1(o0) :
Loo — Hj.

Proof. Let

Tes(A) = ( le io > CH, D He = H DHe, AeCr. (2.18)
—ZQQ()\) 5[7.[2 N—— N—_——
Ho Ho

Then

_1ox
ImTes()\) = (I_Hllgl ((i)) 216122()\)> : Hll ® Ho — 7‘[/1 G Hay, ME (C+.
22 24H2

(2.19)

and by (2.14) Im7.s(\) > 0, A € C4. Therefore 7.5 € R[H(]. Next, the
immediate calculations show that for each h € L

Im(7es(iy) (h © Q2(00)h), h & Qa(00)h) = ¢n(y)- (2.20)

Therefore by Proposition 2.1 for each h € Lo there exists the limit

ygrfoo Tes(1y) (h @ Q2(00)h). Since

Tes (1) (h @ Q2(00)h) = Qu(iy)h & (~iQa(iy)h + 5Q2(c0)h),

this implies that there exists the limit in (2.17). O

2.4 Boundary triplets

In the following we denote by A a closed symmetric linear relation
(in particular closed not necessarily densely defined symmetric operator)
in a Hilbert space ). Let 91\(A) = ker (A" — A) (A € C\ R) be a defect
subspace of A, let My(A) = {{f,Af} : f € M(A)} and let ny(A) =
dim Ny (A) < oo, A € C4, be deficiency indices of A. Denote by ext(A)
the set of all proper extensions of A (i.e., the set of all relations A in
9 such that A C A C A*) and by ext(A) the set of closed extensions
A € ext(A). Clearly, each symmetric extension A of A belongs to ext(A).



V. I. MOGILEVSKII 575

As before we assume that Hg is a Hilbert space, H; is a subspace in
Ho and Ho := Ho © Hq, so that Ho = H1 ® Ha. Moreover, denote by P;
the orthoprojections in Ho and H;, j € 1,2.

Below within this subsection we specify some definitions and results
from [15,16].

Definition 2.10. A collection IT = {Ho @ H1,T0,T'1}, where I'; : A* —
H;, j €{0,1}, are linear mapplngs is called a boundary trlplet for A*,
if the mapping I' : f — {Fof,Flf} f € A*, from A* into Ho @ Hy is
surjective and the following Green’s identity holds for all f {f,f}, 9=

{g9,4'} € A*:

(f'.9) = (f.9') = (C1f.Do@)ae — (Lo f T19)2, + i(P2Lof, PaLod)n,
(2.21)

In the following propositions some properties of boundary triplets are
specified.

Proposition 2.11. If IT = {Ho ® H1,T,T'1} is a boundary triplet for
A*, then

dimH; = n_(A) < ny(A) = dimH. (2.22)

Conversely, let A be a symmetric relation with n_(A) < ny(A). Then
for any Hilbert space Ho and a subspace H1 C Ho satisfying (2.22) there
exists a boundary triplet Il = {Ho & H1,T9,I'1} for A*.

Proposition 2.12. Let IT = {Ho ® H1,T0,'1} be a boundary triplet for
A*. Then:

(1) kerI'goNkerI'y = A and I'; is a bounded operator from A* onto
Hj, jE {0, 1}.

(2) The equality Ag := kerT'g = {f €A :Tof = 0} define a maximal
symmetric extension Ay of A such that n_(Ap) = 0.

(3) The equality

Ay = {]/E\E A" {Fgf/: Flf} € 9}

gives a bijective correspondence A= Ay between all linear relations 0
from Ho to Hi and all extensions A€ ext(A). Moreover, Ay is sym-
metric (mazimal symmetric) if and only if 6 € Symg(Ho, H1) (resp.
6 € Sym(Ho, H1)).
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IfII = {HoDH1,T0,I'1} is a boundary triplet for A*, then the equal-
ities

Y+ (A) = m1(To | M(A) 7!, A€ Cy;
¥-(A) = m (Pl T‘JA?A(A )7l AeCo
Ty [ 9 (A) = My (Mo [ Mi(4), AeCy

correctly define the holomorphic operator functions v4 : Cy — B(Hy, ),

_:C_ = B(H1,9) and M, : C4 — B(Ho,H1) (here 7 is the ortho-
projection in $ @& $ onto $H @ {0}). The operator-functions 4+ and M,
are called the «-fields and the Weyl function of the triplet II respectively.

2.5 Self-adjoint extensions and their compressions

As is known a linear relation A = A* i~n a Hilbert space ;’) D $His called
an exit space extension of A if A C A and the minimality condition
span{$9, (A A)7H: e C\R} = 9 is satisfied. For an exit space
extension A € C($) of A the compressed resolvent

R\ =Py(A=N)"'19H, MeC\R (2.23)

is called a generalized resolvent of A (here Py is the orthoprojection in
§ onto H). If two exit space extensions A; € C(H;) and A2 eC (5’)2)
of A generates the same generalized resolvent R(\), then Ay and A,
are equivalent. The latter means that there exists a unitary operator
V S B(.ﬁl o 9, 552 © 9) such that Ag UA1 with the unitary operator
U=Is0V)® (Ig® V) € B(H2,H2). Hence each exit space extension
A of A is defined by the generalized resolvent (2.23) uniquely up to the
equivalence.

The following proposition is well known.

Proposition 2.13. If ny(A) = 0, then there evists a unique exit space
extension A = A* of A and

Po(A=XN"'1H=A"—N"" recC,. (2.24)

A parametrization of all exit space self-adjoint extensions Aofa sym-
metric relation A is given by the following theorem.

Theorem 2.14. [15,16] Assume that n_(A) < ni(A), II = {Ho &
H1,To,T1} is a boundary triplet for A*, Ay = kerI'g and v+ and My are
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the ~v-fields and the Weyl function of 11 respectively. Then the equality
(Krein formula for generalized resolvent)

Py(A- =N o= (49— )"
— NN + ML) (X), AeCp (2.25)

establishes a bijective correspondence A= fL— between all relation valued
functions T = 7()\) € R(Ho,H1) and all exit space self-adjoint extensions
A of A. The same correspondence is given by the Shitraus formula

PE(AVT - )‘)_1 [ 9= (A/()‘) - )‘)_17 AeCy, (2'26)

where A(\) = A_r(n), A € Cy (see Proposition 2.12, (3)).

Remark 2.15. Ifn_(A) < oo and I1 = {Ho® H1,T0,I'1} is a boundary
triplet for A*, then by (2.22) dimH; < oo and according to Proposition

2.8 each function T € R(Ho,H1) admits the representation 7 = {H} @
KC,Q1,Q2} in the sense of Definition 2.7.

Remark 2.16. If Hy = H1 := H, then the triplet 11 = {HoDH1,To, 1}
in the sense of Definition 2.10 turns into the boundary triplet (boundary
value space) I1 = {H,Ty,T'1} for A* in the sense of [2,10]. In this case:

(i) the relation A has equal deficiency indices ny(A) = n_(A)(=
dimH);

(i) Af = Ao and the ~y-fields v+(-) and the Weyl function M, (-)
of II turn into the vy-field v : C\ R — B(H,$) and the Weyl function
M :C\R — B(H) from [5,13]

(iii) M (-) is a Q-function of the pair (A, Ag) and formula (2.25) turns
into the classical Krein formula for generalized resolvents of a symmetric
relation A with equal deficiency indices [5, 11-13]. This formula gives a
parametrization A=A of all exit space extensions A= A* of A by
means of functions T = 7(\) € R(H).

Assume that 5~ D His a HNilberE space, )y = 5 © 9, Py is the
orthoprojection in $) onto $ and A = A* € C(9) is an exit space extension
of A.

Definition 2.17. A linear relation C'(A) in $) defined by

CA)=PaA 1 55:={{f, [y > {f./'® f} € A with some f. € $,}
(2.27)

is called the compression of A.
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Clearly, C(A) is a (not necessarily closed) symmetric extension of A.

Theorem 2.18. [18] Assume that ny(A) =n_(A), Il = {H,To,I'1} is
a boundary triplet for A*, T € E(H), Ts 1S the operator part of T (see
(2.12)), A, = A* is the corresponding exit space estension of A and
C(A,) is the compression of A;. Assume also that 7 € Re[H'] and let
B;, € B(H') and N;, : domN;, — H' (domN,, C H') be operators
corresponding to Ts in accordance with Proposition 2.1. If ranB;, is

closed, then C(A;) = Ay, (in the triplet I1) with the symmetric linear
relation 0. in H given by

0. ={{h, N h+ B, +k}:hedomN,,»eH kek} (2.28)

3. Description of compressions of exit space self-adjoint
extensions

The following lemma directly follows from [16, Proposition 4.2].

Lemma 3.1. Let Il = {Ho®H1,T0,T'1} be a boundary triplet for A*, let
A, be a mazimal symmetric operator in a Hilbert space ), withny(A,) =
0, n_(A;) = dimHsy and let He := H D Hy. Then Ae := AD A, is a
symmetric relation in H., A = A* & A} and there exists a surjective
linear mapping 'y : AY — Ha such that the operators

6fe = PiTof @ (PLof + T fr) (€ Hi @ M), (3.1)
ife=Tif @ 4(PTof ~Tifi)(€ i@ Ha), fe=FfofreA @A
(3.2)
form a boundary triplet 11, = {Ho,'§, I'{} for A%.

Proposition 3.2. Let II = {Ho ® H1,00,T'1} be a boundary triplet for
A*, let Ay, 9y, Ae, He be the same as in Lemma 3.1 and let 11, =
{Ho, TG, T} be boundary triplet (3.1), (3.2) for AL. Then for each linear
relation 0 from Ho to Hi the equalities

Ac=Agd A5, A =Ay® A, (3.3)

define proper extensions A, and Efe of Ae and A, = Ay, g’e = Ag (in
the triplet 11.), where 0. and 0, are linear relations in Ho(= Hi & Hz)
given by

Oc = {{ho1 ® (hoz2 + hs), 1 @ %(hoz —hy)}:
{hol @ hgo, hl} €0, h, € 'Hg} (3.4)

0. = {{ho1 ® ho2, h1 & Sho2} : {ho1 & ho2, b1} € 6}. (3.5)
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Proof. The inclusions é{e,gﬁz € ext(Ae) are obvious. Next assume that
fe=f®fr € Ac with f € Ag and f, € A%, Then by (3.1) and (3.2)

T5f. = hor @ (hoz + hr), $fo=h1® L(hoz — hy),

where hg1 = Plroﬁ hoo = PQFOJ?, h1 = Flf and h, =T fr SIHCG {h01 b
ho2,h1} = {Fof Flf} € 0 and h, € Ho, it follows that {I'§ fe,Fefe} € 6..
Conversely, let he 0., so that

?L = {{hOI S (h02 + hr)> hi1 & 1(h02 - h,«)}

with some {hg1 < ho2,h1} € 6 and h, € Hy. Then there exists f € Ag
such that P f = ho1, Pl f = hge and Fl f = hj. Moreover since
the mapping I, is surjective, there exists fr € Ay such that T’ fr = hy.
Clearly, fe = f@fr € A, and by (3.1) and (3.2) one has {I'§ fe, Fffe} h.
This implies that A, = A .

Next assume that ﬁ € A,. Then fe =06 fr € A, and by (3.1)
1"8]/”; = T, f.. On the other hand, according to Proposition 2.12, (1)
FS]?G = 0 and, consequently, I‘rﬁ =0, ﬁ € A,. This and (3.1), (3 2)
yield the equality g’e = Ag:.

Lemma 3.3. Let Hq1 and Ho be Hilbert spaces, let dim Hq, < oo and let
T € B(H1 @ Ha) be an operator with the block representation

T = @ ;;) L H1 @My — M © Ha.

Then ranT' is closed.

Proof. Let "y = ker Ty and Hfy = Ha © HY, so that Ho = Hby @ H5 and
Ty = (T4, 0) : Hy, © Hy — Hi.

Since ker 75 = {0} and dim H; < oo, it follows that dim H/, < oco. More-

over,

™nOT, 0
T= (1) 3Ly 0 | HiOH,OHY —Hi®HyDHY
0 0 %IHIQI
and hence

= (T O ) Aen - Haen,
0 Ll

where H = Hy @ H, and T € B(#H). Since dimH < oo, the subspace
ranT C H is closed. Moreover, ranT = ranT ® M4 and hence ranT is
closed. O
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Proposition 3.4. Let Il = {Ho © H1,[0,['1} be a boundary triplet for
A*, let T = {Ko, K1} € R(Ho, H1), let Ko(\) has the block representation

_ (Kon(V) |
KO(A)— (KOQ()\)> H1 > H1PHay, AeCy

and let ﬁT be the corresponding exit space self-adjoint extension of A
in the Hilbert space $ D $). Assume also that $,, Ay, He, Ae, L'y are the
same as in Lemma 3.1, Il = {Ho, TG, T'{} is the boundary triplet (3.1),
(3.2) for A% and let A, = A* be a (unique) exit space extension of A, in
the Hilbert space 537» D 9. Then:

(1) A, = Z @ A, is an exit space self-adjoint extension of Ae in the
Hilbert space fJe HoH,.

(2) A. = A, (in the triplet 11.), where 7o = {Koe, K1c} € R(Ho)
with

_(Kou(\) 0.
Kope(N) = (K()Q()\) IHg) TH1 B He = H1 B He, AeChp (3.6)

7—[0 HO

) cH1 ®Ho = H1 D Hay, AeCp (3.7)
A
0 0

Ki(\) 0
Kle(/\) = (;éOQ()‘) %I"Hz

(3) If in addition n_(A) < 0o and T = {H} O, Q1,Q2} (see Remark
2.15), then
Te(\) =gres(N) @K, XeCy, (3.8)
where T.s € Rc[H| (the operator part of T.) is given by (2.18).

Proof. Statement (1) is obvious.

(2) Clearly, (Ae — A) ™' = (A, — A)"' @ (A, — A)~L. This and Propo-
sition 2.13 give

Py (A= N1 9= Ps(A- N 9@ (A2 - M) AeCy.

Let A, = A, (in the triplet II.) with some 7. € R(Ho). Then by Shtraus
formula (2.26)

(A =N = -V e =N AeCy
and, consequently,

Aoy =A ) DAL (3.9)
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Since

—T(/\) = {{Kgl()\)h D K()Q()\)h, —Kl(A)h} the 7‘[1}, A E (C+,
it follows from (3.9) and Proposition 3.2 that

Te(A) = {{EKot (M) h @ (Ko2(AN)h + hy), K1(A)h
@(—%KOQ(A)h + %hr)} cheHy,h, € Hg}

Therefore 7. = {Koe, K1} with Kope(\) and Ki.(\) given by (3.6) and
(3.7) respectively.

(3) It follows from (2.13) that

Ly 0
Ko(\) = 0 O0|:H eoKk—H &oKaHs
@2(N) 0

Ha Ha
A
Ki(\) = <Q10( ) ;}1) H, DK H ok
H1 Ha

and by statement (2) 7. = {Koe, K1¢}, where

Ly 00
Koe(\) = 0 0 0 |- HoeKoHs—>H &KDHs
QZ(A) 0 IH2

@A) 0 0

Kie(N) = 0 Ix 0 |:HieoKoHs — H ©KOHa.
—5Q2(0) 0 3y,

Let

~——
Hy Hp

Iy
KOS(A):( w0 ) CH, D He — H) D Ho,

Ku(\) = < @ 0 ) H ® Ho — H D Ha .
Ho Ho
Then 7.(A) = 7es(A) & K, A € C4, where K = {0} & K and
Tes()\) = {{Kos()\)ho,Kls(/\)ho} : h() S H6}, A E C+

is the operator part of 7.. Since the operator Kys(\) is invertible, it
follows that 7.s € R[H{] and

B = Q) 0N T 0
Tes(A) = K1s(\) Ko (A) = <_§ég2(>\) ;‘I) (—QZ()‘) I>’
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which implies (2.18). Moreover, Im7.s(A) is of the form (2.19) and by
Lemma 3.3 ranIm7.4(\) is closed. Hence 7.5 € Re[H{). O

In the following theorem the compression C' (A,) of the exit space
extension A, is characterized in terms of limit values of the parameter .

Theorem 3.5. Assume that A is a symmetric linear relation in £ with
n_(A) < oo, I = {Ho & Hi1,T0, 1} is a boundary triplet for A*,

= (M} ®K,Q1,Q2} € R(Ho,H1) (see Remark 2.15), A, = A* is
the corresponding exit space extension of A and C’(/L) is the compres-
sion of A,. Then C(A,) = Ay, (in the triplet I1) with the linear relation
0. € Symg(Ho, H1) given by

0. = {{h & Qa(c0)h, (—~Q1(00)h + Bo,t)) Dk} + h € Log,tp € M),k € K}
(3.10)

Here Lo, C HY is the subspace and Q1(o0) and Qa(c0) are operators
defined in Proposition 2.9; Bg, € B(H}) is the operator corresponding
to Q1 € R[H}] in accordance with Proposition 2.1.

Proof. Let Ay, $; and Ae, $e be the same as in Lemma 3.1. Moreover,
let AT — A* be a (unique) exit space extension of A, in the Hilbert
space 53,, Then according to Proposition 3.4, (1 ) Ae = A @ AT is an
exit space self-adjoint extension of A, in 5’)6 =HDHN,. Let C (Ae) and
C(A,) be compressions of A, and g respectively. Clearly, C(A,) =
C(A,) ® C(A,). Moreover, since C’(ﬁr) is a symmetric extension of
the maximal symmetric operator A,, it follows that C(4,) = A, and

therefore

C(A,) = C(A,) & A,. (3.11)

Let C(A;) = Ay, (in the triplet II) with some 6, € Symg(Ho, H1)-
Moreover, let II, = {Ho,I'§,I';} be boundary triplet (3.1), (3.2) for A}
and let C(A.) = Ag,. (in the triplet II,) with some linear relation 0. in
Ho. Then according to Proposition 3.4, (3) A, = A;, (in the triplet II,),
where 7, € R(Hy) is of the form (3.8) with 75 € R [H{] given by (2.18).
Let B, € B(H() be the operator corresponding to 7.s in accordance
with Proposition 2.1. Since B,,, = B, , it follows from (2.18) that

Tes

B, = <B§1 8) :Hy & Hy — Hy & Ho. (3.12)
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Applying Theorem 2.18 to the triplet II. and taking (3.12) into account
one obtains

Oce = {{h @ ha, (=Nr,(h © h2) + Bg,¥)) © k} : h (3.13)
®h2€d0mNTes7¢€,Hll7k€K}7 '
where

dom N, = {h®hy € H} ®Hs : ygrfoo yIm(7es(iy) (h @ ha), h @ he) < oo}

Ny (h @ hy) = Jm Tes(iy)(h ® ha), h@®hy € dom N, . (3.14)
It follows from (2.19) that
dom Ny, = {h @ hs € H} ©Ha: (Im(Q1(iy)h, h)
—Re (Qa(iy)h, ha) + 5|ha|?) < co}. (3.15)

lim
y—r+0oo y

Moreover, in view of (2.18) for h @ hy € H) @ Ho one has
Tes(iy) (h @ ha) = Q1(iy)h & (—iQa(iy)h + Lha). (3.16)
Therefore for each h @ ho € dom N, there exist the limits Q1 (c0)h :=
i Quliy)h, Qa(o0)h = lim_Qa(iy)h and by (3.14), (3.16)
Nr,,(h @ ha) = Q1(00)h & (—iQ2(c0)h + $ha), h & hy € dom Ny,

Hence (3.13) can be written as

Oce = {{h @ ha, (~Q1(c0)h + B, ) @ (iQ2(c0)h — Fha) © k} -
h&®hy € dom N, _,¢ € Hi, ke K} (3.17)
On the other hand, by (3.11) and Proposition 3.2 one has
Oce = {{h ® ha,h1 ® Lha} : {h @ ha,h1} € 0.} (3.18)

Now by using (3.17) and (3.18) we prove (3.10).

Let h = {h®hg, h1} € 0 with he hy € Hy & Ha(= Ho) and hy € Hy.
Then by (3.18) {h ® ha,h1 © Sha} € 0O and (3.17) yields h @ ho €
dom N, _,

hi = (=Qi(c0)h + Bo, ) @k, %hy = iQa(c0)h — Shy,  (3.19)

where ¢ € H) and k € K. It follows from (3.15) that h € H}. Moreover,
by the second equality in (3.19) he = Q2(00)h and hence h € Loo(C HY)
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(see Proposition 2.9). Note also that by (3.15) lilll ypn(y) < oo, where
y——+o0

vn(y) is given by (2.15). Therefore by (2.16) h € Lo and the first
equality in (3.19) yields

h = {h & Qa(c0)h, (—Q1(c0)h + Bo,1b) & k}. (3.20)

Conversely, assume that h € Lo, ¥ € H|, k € K and he Ho @ Hy is
given by (3.20). Let us put

i = {h & Qa(00)h, (~Q1(00)h + Bo,¥) ® §Q2(c0)h @k} (3.21)
= {h ® Q2(c0)h, (—Q1(0)h + B, ) @ (iQ2(c0)h — §Q2(c0)h) @ k}

Since h € Lo, it follows from (3.15), (2.16) and (2.15) that h&Q2(c0)h €
dom N,_,. Therefore by (3.17) m € 6. and in view of (3.18) there exists
{W ®hly, b} € 0, such that m = {h' @R}, b} ®Lh,} (here B/, B € Hy and
hY, € Hy). Comparing this equality with (3.21) one gets b’ = h, h}, =
Q2(c0)h and b, = (=Q1(c0)h+Bg, ) ® k. Hence h = {I' &k, b} }, that
is i € 6. This proves (3.10). O

Corollary 3.6. Let the assumptions of Theorem 3.5 be satisfied and let
A() = ker Fo. Then:

(1) C(A;) C Ag if and only if

lim yop(y) =00, h€ Lo, h#0 (3.22)

Yy—r—+00

(for Les and op(y) see Proposition 2.9). In this case

CA)={fe A :Tof=0,T1f=Bo,v &k
with some ¢ € H} and k€ K}. (3.23)

(2) C(Ar) = Ap if and only if ker B, = {0}.
(3) C(A;) = A if and only if 7 € R(Ho,H1) (that is K = {0}),
Bgo, = 0 and (3.22) is satisfied.

Proof. (1) According to Theorem 3.5 C(A;) = Ay, with 6. €
Symo(Ho, H1) given by (3.10). In the following we need the relations

mul 0, = ran By, @ K, H1 © mulf, = ker Bg, (3.24)
Lo C ker By, (3.25)
dom@. = {0} <= L. = {0}. (3.26)

The first equality in (3.24) directly follows from (3.10). Next,

H1 ©mulf. = H) SranBg, = ker By, ,
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that is the second equality in (3.24) holds. The inclusion (3.25) is implied
by (3.24), (2.7) and the obvious equality Pydom 6, = L. Finally, (3.26)
directly follows from (3.10).

Clearly, C(A;) C Ay if and only if dom 6. = {0}. Therefore by (3.26)
C(A;) C Ap if and only if Lo, = {0}, which is equivalent to (3.22).
Moreover, in this case the first equality in (3.24) gives

0. = {0} ® mulb,. = {{0,Bg, v ® k};v € H}, k € K},
which implies (3.23).

Next, the equality C(A;) = Ap holds if and only if dom 6. = {0} and
mul§, = H;. Moreover, by the second equality in (3.24) mulf. = H; if
and only if ker By, = {0}. Therefore by (3.26) C(A;) = A if and only
if Lo, = {0} and ker By, = {0}, which in view of (3.25) yields statement
(2).

Finally, by Proposition 2.12, (1) C(A,) = A if and only if §, = {0},
ie., domf. = {0} and mulf. = {0}. Therefore by (3.24) and (3.26)
C(A;) = A if and only if K = {0}, Bg, = 0 and Lo, = {0}. This yields
statement (3). O

Remark 3.7. Assume that A is a closed densely defined symmetric op-
erator in §). Then each exit space extension A= A of A is a densely de-
fined operator and according to M. A. Naimark [19] (see also [1, ch. 9]) an
extension A of A is said to be of the second kind if dom AN$ = dom A or
equivalently ifC(ﬁ) = A. Clearly, Corollary 3.6, (3) gives a parametriza-
tion of all extensions A of the second kind of an operator A with unequal
deficiency indices n_(A) < ny(A) in terms of the parameter T from
Krein resolvent formula (2.25). Note that for an operator A with equal
deficiency indices n_(A) = ny(A) < oo the criterion for an extension
A, of A with T € R[H] to be of the second kind was obtained in [}]. This
criterion is of the form

B; =0 and yli)r_{looylm(T(iy)h, h)=o00, heHH, h#0. (3.27)
Later on the sufficiency of conditions (3.27) was rediscovered in [8] for
a more restrictive case n_(A) = ny(A) < oco. In the case n_(A) =
n4(A) < oo a description of all extensions A, of the second kind with
the closed relation T(A,) := {{Pyf, PoAf} : f € dom A, } was obtained
in our paper [18]. Observe also that a somewhat other parametrization
of the second kind extensions can be found in [20)].

In the following theorem we describe all exit space extensions ﬁT of
A such that the compression of A, is a maximal symmetric relation.
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Theorem 3.8. Let the assumptions of Theorem 3.5 be satisfied. Then
C(A;) is maximal symmetric if and only if ker By, C Lo and

lim yn(y) < oo, h € kerBg,

y—r+00

(here on(y) is given by (2.15)).

Proof. 1t follows from Theorem 3.5 and Proposition 2.12, (3) that C'(A,)
is maximal symmetric if and only if 6. € Sym(Ho, H1), where 6, is given
by (3.10). Moreover, by Lemma 2.3 6. € Sym(#Ho,H1) if and only if
Lo = H1 © mulf.. Therefore by the second equality in (3.24) 6. €
Sym(#Ho, #H1) if and only if Lo, = ker Bg,. This and (3.25) yield the
equivalence 0. € Sym(Ho,H1) <= kerBq, C Lo, which implies the
statement of the theorem. O
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