
Український математичний вiсник
Том 16 (2019), № 4, 514 – 535

Isotone extensions and complete lattices
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Abstract. A set of necessary and sufficient conditions under which an
isotone mapping from a subset of a poset X to a poset Y has an isotone
extension to an isotone mapping from X to Y is found.
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1. Introduction

Let (X,6X) and (Y,6Y ) be partially ordered sets (posets). A map-
ping f : X → Y is isotone if the statement

(x 6X y) ⇒ (f(x) 6Y f(y))

holds for all x, y ∈ X. In particular, if f is an isotone bijection and f−1

is isotone, then f is an isomorphism between (X,6X) and (Y,6Y ). Let
A ⊆ X and f : A → Y be isotone as a mapping of the poset (A,6A)
with the order 6A:=6X ∩(A × A). A mapping g : X → Y is said to be
an isotone extension of f if g is isotone and f(x) = g(x) holds for every
x ∈ A.

The problem of extension of a mapping f : A → Y to an isotone
mapping g : X → Y is usually considered under additional restrictions on
f , g, X, A and Y . For example, in [3] an isotone extension is constructed
in the case if X and Y are closed cones in topological vector spaces, A is
the interior of the cone X, and g is continuous or semicontinuous.

Another typical situation is an extension of an isotone continuous
mapping defined on an ordered or preordered topological space to an
isotone continuous mapping on the compactification of this space. As it
is noted in [16], such a kind of investigations is motivated, in particular,
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by attempts to transfer the casual relations on the ideal bondaries of
Lorentz manifolds.

The problem of the monotone interpolation of monotone data which
arises in numerical analysis (see, e.g., [23]), and the theorem on extension
of a measure from a Boolean algebra to the corresponding σ-algebra (see,
e.g., [17, §1.5]) are also should be pointed out. Moreover, it is necessary
to note that an isotone extension of origin isotone data is carried out by
interpolation of cubic splines [23], while an extension of the measure is
naturally required its subadditivity.

In the present paper the problem of an isotone extension of a mapping
f : A → Y, A ⊆ X to an isotone mapping from X to Y is investigated
without algebraic or topological limitations.

It is proved that this problem is solvable for:

• every A, every X ⊇ A and each isotone f if and only if Y is a
complete lattice (Theorem 2.5);

• all Y and X, and each isotone f defined on a given A ⊆ X if and
only if A is a complete lattice (Theorem 2.8);

• all subsets A of a given X, every Y and each isotone f if and
only if X is isomorphic to a cardinal sum of subsets of the set Z
(Theorem 3.6);

• every A with cardinality less than a given cardinal number α, every
X ⊇ A and each isotone f : A → Y if and only if Y is a (< α)-
quasilattice (Definition 4.7 and Theorem 4.11).

It is also shown that for every X and every bounded A ⊆ X, each
isotone mapping f : A → Y can be extended to an isotone mapping
g : X → Y such that g(A) ⊆ [f(0A), f(1A)] if and only if Y is a complete
local lattice (Definition 5.1 and Theorem 5.2).

Some facts described in the paper can be formulated using the lan-
guage of category theory. Fore example, Theorem 2.5 claims that the
complete lattices coincide with the injective objects of the category Pos.
(See also [1] for similar results in categories other than Pos.) Neverthe-
less, we tried to make the presentation as simple as possible and do not
use the Category Theory language in what follows.
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2. Complete lattices and isotone extensions

Recall that a poset (Y,6Y ) is a complete lattice if its nonempty subsets
have both the supremum and the infimum. If the existence of the supre-
mum and the infimum is required only for finite nonempty sets B ⊆ Y,
then, by definition, (Y,6Y ) is a lattice.

Let (X,6X) be a nonempty poset. In what follows we denote by 1X
and by 0X the greatest element of X and, respectively, the least element
of X if these elements exist. If A is the empty subset of X which has 0X
and 1X , then we write

infX A := 1X and supX A := 0X . (2.1)

Let (Y,6Y ) be a poset and let A ⊆ Y . The upper cone of the set A
is the subset A∆ of the set Y, such that

y ∈ A∆ ⇔ a 6Y y

for every a ∈ A (see, e.g., [22, p. 6]). The lower cone A∇ can be defined
by duality. If A is a singleton, A = {a}, then

a∆ := A∆ and a∇ := A∇.

The elements of A∆ are called the majorants of the set A, and, respec-
tively, the elements of A∇ are the minorants of A.

It is known, that every poset (X,6X) is isomorphically embeddable
in the boolean (B(X),⊆) of X via the mapping

∇X : X → B(X), ∇X(t) = t∇, t ∈ X.

Thus, the following lemma holds.

Lemma 2.1. For every poset (Y,6Y ) there is a complete lattice
(M,6M ) and A ⊆ M such that A is isomorphic to Y. If the poset
Y is finite, then the lattice M also is finite.

Remark 2.2. The existence of the Dedekind–MacNeille completion (see.,
e.g., [18, p. 86]) is a much more deep result than Lemma 2.1 but this
result is not used in the paper .

Lemma 2.3. Let (X,6X) be a complete lattice and A ⊆ X. If the
identical mapping idA : A→ A has an isotone extension g : X → A, then
(A,6A) is a complete lattice with respect to the order 6A=6X ∩(A×A).
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Proof. Let g : X → A be an isotone extension of idA : A→ A. We prove
that there are supAB and infAB for every nonvoid subset B of A. Since
X is a complete lattice, there is b̄ := supX B. Let us show that g(b̄) is
supAB. Indeed, since the inequality x 6X b̄ holds for every x ∈ B and
g is an isotone extension of the mapping idA, we have

x = g(x) 6A g(b̄)

for every x ∈ B. Consequently, g(b̄) is a majorant of B in (A,6A). Let
t be an arbitrary majorant of B in (A,6A). Then t is a majorant of B
in (X,6X). Since b̄ = supX B, we have b̄ 6X t. Hence,

g(b̄) 6A g(t) = idA(t) = t.

It follows that g(b̄) = supAB. The existence of the infimum can be
obtained by duality.

Definition 2.4. Let (X,6X) and (Y,6Y ) be posets, A ⊆ X. Let f : A→
Y be an isotone mapping and let Ψ: X → Y be an isotone extension of
f . We shall say that Ψ is an upper (lower) isotone extension of f if for
every isotone extension X : X → Y of f and every x ∈ X the inequality

X (x) 6Y Ψ(x) (Ψ(x) 6Y X (x))

holds.

The construction of the upper isotone extension which is used in the
proof of the following theorem, was taken from [5].

Let (A,6A) be a poset. Denote by SA the class of all posets (X,6X),
for which A ⊆ X and 6A=6X ∩(A×A).

Theorem 2.5. Let (Y,6Y ) be a nonempty poset. The following state-
ments are equivalent.

(i) (Y,6Y ) is a complete lattice.

(ii) Each isotone mapping f : A→ Y has a lower isotone extension on
X for every poset (X,6X) ∈ SA.

(iii) Each isotone mapping f : A → Y has an upper isotone extension
on X for every poset (X,6X) ∈ SA.

(iv) Each isotone mapping f : A → Y has an isotone extension on X
for every poset (X,6X) ∈ SA.



518 Isotone extensions and complete lattices

Proof. (i)⇒(ii). Suppose (i) holds. Let (X,6X) be a poset and let
f : A→ Y be an isotone mapping. For every x ∈ X define

f∗(x) := supY {f(t) : t ∈ A ∩ x∇}. (2.2)

By (2.1), we have
f∗(x) = 0Y , (2.3)

if A ∩ x∇ = ∅. The mapping

X ∋ x 7→ f∗(x) ∈ Y

is isotone. Indeed, if x1 6X x2, then x
∇
1 ⊆ x∇2 holds. The last inclusion

and (2.2) imply f∗(x1) 6Y f∗(x2). We must prove that f∗ is an extension
of f . Let x ∈ A. Then t 6A x holds for every t ∈ A ∩ x∇. Hence, from
the isotonicity of f , it follows that f(t) 6Y f(x) for every t ∈ A ∩ x∇.
Now, using (2.2), we obtain

f∗(x) 6Y f(x).

To prove the equality f∗(x) = f(x) it is sufficient to note that

f∗(x) = supY {f(t) : t ∈ A ∩ x∇} >Y f(x)

because x ∈ A ∩ x∇ for x ∈ A. Thus, f∗ is an isotone extension of f .

Let X : X → Y be an arbitrary isotone extension of f . To prove that
f∗ is the lower isotone extension of f we show that

f∗(x) 6Y X (x) (2.4)

for every x ∈ X. If A ∩ x∇ = ∅, then (2.4) follows from (2.3). Let
A ∩ x∇ ̸= ∅ and let t ∈ A ∩ x∇. Since X is an isotone mapping, the
inequality X (t) 6Y X (x) holds. Moreover, since X extends f and t ∈ X,
we have

f(t) 6Y X (x)

for every t ∈ A ∩ x∇. Inequality (2.4) follows from the last inequality
and (2.2).

(i)⇒(iii). The proof of this implication can be obtained by duality.
Note, in particular, that the upper isotone extension f∗ of an isotone
mapping f : A→ Y satisfies the equality

f∗(x) = infY {f(t) : t ∈ A ∩ x∆} (2.5)

for every x ∈ X if (Y,6Y ) is a complete lattice.
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The implications (iii)⇒(iv) and (ii)⇒(iv) are obvious.

(iv)⇒(i). Let (iv) hold. We must show that (Y,6Y ) is a complete
lattice. By Lemma 2.1, there exists a complete lattice (X,6X) ∈ SY .
It follows from (iv) that the identical mapping idY : Y → Y can be
extended to an isotone mapping g : X → Y . Now, by Lemma 2.3, the
poset (Y,6Y ) is a complete lattice.

Let (Y,6Y ) be a complete lattice, (X,6X) be a poset, A ⊆ X, and
let f : A→ Y be an isotone mapping. Denote by CX

f the set of all isotone
extensions g : X → Y of the mapping f . Then, the equalities

f∗(x) = infY {g(x) : g ∈ CX
f } and f∗(x) = supY {g(x) : g ∈ CX

f }
(2.6)

hold. Indeed, if f∗ is defined by the first formula of (2.6), then

f∗(x1) 6Y g(x1) 6Y g(x2)

holds for all x1, x2 ∈ X with x1 6X x2, and every g ∈ CX
f . Now, from

the inequality f∗(x1) 6Y g(x2) it follows that f∗(x1) 6Y f∗(x2), i. e.
f∗ : X → Y is an isotone mapping. The equality f∗(x) = f(x) is obvious
for x ∈ A. Hence, f∗(x) is the lower isotone extension of f . The dual
statement shows that the f∗ is the upper isotone extension of f .

We define a partial order on CX
f by setting

(g 6CX
f
ψ) ⇔ (g(y) 6Y ψ(y) for every y ∈ Y ).

Corollary 2.6. Let (Y,6Y ) be a complete lattice. Then for every isotone
mapping f : A → Y and every (X,6X) ∈ SA the poset (CX

f ,6CX
f
) is a

complete lattice with

0CX
f
= f∗ and 1CX

f
= f∗. (2.7)

Remark 2.7. There are several results which are closely connected with
Theorem 2.5. The Sikorski Theorem, saying that every homomorphism
from a subalgebra of a boolean algebra to a complete boolean algebra
can be extended to a homomorphism of whole algebra (see [20] or [21,
p. 228]). A theorem of Fofanova, which says that every isotone mapping
from a poset to a complete lattice is extendable to an isotone mapping
defined on the lattice which is freely generated by this poset (see [9]). By
G. M. Bergman and G. Grätzer [2] every isotone mapping from arbitrary
partial lattice P to a latticeM has an isotone extension on its free lattice
Free (P ) if and only if M is complete.
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The necessary and sufficient conditions under which there exists an
isotone extension of an isotone mapping f : A → Y with finite A will
be presented in the fourth section of the paper (see Theorem 4.6). Note
only that there is a poset (Y,6Y ) which is not a lattice but admits such
extensions for every X and every finite A ⊆ X.

Theorem 2.8. A poset (A,6A) is a complete lattice, if and only if for
every isotone mapping f : A → Y and every (X,6X) ∈ SA there is an
isotone mapping Ψ: X → Y such that Ψ|A = f .

Proof. Let (A,6A) be a complete lattice, (Y,6Y ) be a poset, f : A→ Y
be an isotone mapping and let (X,6X) ∈ SA. By Theorem 2.5, the
identical mapping idA : A → A has an isotone extension g : X → A.

Then the mapping X
g−→ A

f−→ Y is an isotone extension of f .

Now suppose that every isotone mapping f : A → Y has an isotone
extension g : X → Y for every (X,6X) ∈ SA. By Lemma 2.1, there
is a complete lattice (X,6X) ∈ SA. Let Y = A with 6Y =6A and let
f = idA. Then f has an isotone extension g : X → A. By Lemma 2.3, A
is a complete lattice.

3. Chains and isotone extensions

Let (X,6X) be a poset. Elements a, b ∈ X are comparable if a 6X b
or b 6X a. We define the binary relation ρ on X by the rule: aρb holds if
and only if there is a finite sequence a1, . . . , am such that a1 = a, am = b
and the elements ai and ai+1 are comparable for i = 1, . . . ,m−1. Then ρ
is an equivalence relation on X. The equivalence classes of the relation ρ
are called the connected components of the poset (X,6X). In particular,
if xρy holds for all x, y ∈ X, then we say that X is connected.

Recall that a poset X is called a linearly ordered set or a chain if
every two distinct elements of X are comparable.

Lemma 3.1. Let (X,6X) be a connected poset. If (X,6X) is not a
chain, then there is A ⊆ X such that the identical mapping idA : A→ A
cannot be extended to an isotone mapping from X to A.

Proof. Assume that X is not a chain. Then there are incomparable
a, b ∈ X. We set A := {a, b} and show idA : A → A does not have any
isotone extension on X.

Suppose that, on the contrary, there is an isotone mapping g : X → A
with g|A = idA. SinceX is connected, there is a finite sequence a1, . . . , am
such that a1 = a, am = b and the elements ai and ai+1 are comparable
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for i = 1, . . . ,m−1. Let us consider the finite sequence g(a1), . . . , g(am).
Since g is an extension of idA and a1 = a, we have g(a1) = a. The
definition of the set A implies g(a2) = a or g(a2) = b. If g(a2) = b, then
b is comparable with a which is a contradiction. Consequently, g(a2) = a.
The equalities

a = g(a3) = . . . = g(am−1) = g(am).

can be proved similarly, i.e., a = g(am) = b, which contradicts a ̸= b.

Let (X,6X) be a chain and let x1, x2 ∈ X. The element x2 covers
x1, denote by x1 <X x2, if x1 6X x2 and no element x ∈ X lies strictly
between x1 and x2, i.e., such that x1 <X x <X x2.

Lemma 3.2. Let (X,6X) be a chain, x1 ∈ X and let A := {x ∈ X :
x <X x1}. Suppose that x1 is not 0X and there are no element y in X
such that y <X x1. Then the identical mapping idA : A → A cannot be
extended to an isotone mapping from X to A.

Proof. Suppose that g : X → A is an isotone extension of idA : A → A.
Write

x−1 := g(x1). (3.8)

From the definition of the set A it follows that x−1 <X x1. Since x−1 <X

x1 does not hold, we have

x−1 <X x0 <X x1. (3.9)

for some x0 ∈ A. Relations (3.9) and (3.8) imply

g(x−1) 6A g(x0) 6A g(x1) and x−1 6X x0 6X x−1

because g is an isotone extension of idA. Thus, x−1 = x0. The last
equality contradicts (3.9).

The next lemma is the dual statement to Lemma 3.2.

Lemma 3.3. Let (X,6X) be a chain, x1 ∈ X and let A := {x ∈
X : x >X x1}. Suppose that x1 is not 1X , and there are no the element y
in X such that x1 <X y. Then the identical mapping idA : A→ A cannot
be extended to an isotone mapping from X to A.

Denote by Z the set of all integer numbers with the standard order

. . .− 2 6 −1 6 0 6 1 6 2 . . . .

The following lemma gives a characteristic property of the order types of
subsets of the poset (Z,6).
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Lemma 3.4. Let (X,6X) be a linearly ordered set. The set (X,6X) is
isomorphic to a subset of (Z,6) if and only if the next statement holds
for every B ⊆ X and every b1 ∈ B.

(i) If b1 is not 0B, then there is b0 ∈ B such that b0 <B b1, moreover,
if b1 is not 1B, then there is b2 ∈ B such that b1 <B b2.

Proof. If (X,6X) is isomorphic to a subset of (Z,6), then (i) is trivial.

Conversely, let (i) hold. For every x ∈ X denote by x+1 the unique
element of X which covers x in (X,6X), if x ̸= 1X . If x = 1X , then write
x + 1 := x. Let a ∈ X. Consider the set A+ = {a + n : n ∈ N}, where
a+0 = a and a+(k+1) = (a+k)+1. We claim that A+ = a∆. Otherwise,
there is an element b ∈ X such that a 6X b and b ̸∈ A+. Then b has
no y ∈ A+ such that y <A+ b. Since b ̸= 0B, it contradicts condition
(i). The set A− = {a − n : n ∈ N} can be defined by duality. Hence,
A− = a∇ holds. Consequently, we have X = a∇ ∪ a∆ = {a+m : m ∈ Z}
and the existence of an embedding of (X,6X) in (Z,6) follows.

Remark 3.5. Statement (i) of Lemma 3.4 is equivalent to the fact that
B contains 1B if B∆ ̸= ∅ and contains 0B if B∇ ̸= ∅.

The order types of subsets of the poset (Z,6) play an important
role under investigations of the scattered sets [8, 12]. Lemma 3.4 can be
derived from Theorem 5.37 [19], where the scattered sets are characterized
through the so-called F -rank. However, we prefer the more simple proof
given above.

Theorem 3.6. Let (X,6X) be a poset. The following statements are
equivalent.

(i) Every connected component B of (X,6X) is isomorphic to a subset
of (Z,6).

(ii) Every isotone mapping f : A → Y can be extended to an isotone
mapping g : X → Y for every A ⊆ X and every poset (Y,6Y ).

Proof. (i)⇒(ii). Let (i) hold and let ∅ ̸= A ⊆ X. To prove (ii) it
is sufficient to show that the identical mapping idA : A → A has an
isotone extension g : X → A. Indeed, in this case, as it was noted in the
proof of Theorem 2.8, for every isotone mapping f : A→ Y the mapping

X
g−→ A

f−→ Y is an isotone extension of f.

At first, we consider the case when (X,6X) is connected. By state-
ment (i), we can assume that X ⊆ Z. The next alternatives hold for
every A ⊆ X:
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(i1) Neither 1A nor 0A exists in A;

(i2) A contains 1A but 0A does not exist;

(i3) A contains 0A but 1A does not exist;

(i4) There exist 0A and 1A.

If (i1) or (i2) holds, then the required isotone mapping g : X → A can
be given as

g(x) := supA(x
∇ ∩A), x ∈ X. (3.10)

Since A ⊆ X ⊆ Z, the mapping g is an isotone extension of idA . In the
case where (i3) or (i4) holds, mapping (3.10) will be an isotone extension
of f : A→ A if we set supA(∅) = 0A. Thus, (ii) holds if X is connected.

If X is disconnected, then X can be presented as the cardinal sum
of its connected components Xα, α ∈ I, where I is a set of indexes with
|I| > 2 (see, e.g., [22, p. 9]).

Let x0 be an arbitrary point of the set A and let Aα := A ∩Xα for
every α ∈ I. We define g : X → A by the rule:

g(x) =

{
supAα

(x∇ ∩Aα) if x ∈ Xα and Aα ̸= ∅,
x0 if x ∈ Xα and Aα = ∅.

(3.11)

Since {Xα : α ∈ I} is a partition of the set X, g(x) is defined for every
x ∈ X. The mapping g|Xα is an isotone extension of idAα for every α ∈ I.
(If Aα = ∅, then the mapping idAα is empty as the mapping from the
empty set. Consequently, every isotone mapping Xα → A is an isotone
extension of idAα .) The mapping g is isotone because if x 6X y, then
there is α ∈ I such that x, y ∈ Xα and the mapping g|Xα is isotone.

(ii)⇒(i). Let (ii) hold and let Xα be an arbitrary connected com-
ponent of X. Then, for every A ⊆ Xα, the mapping idA : A → A can
be extended to an isotone mapping on X, and, consequently, on Xα.
It follows from Lemma 3.1 that Xα is a chain. Using Lemma 3.2 and
Lemma 3.3 with X = Xα, we see that for every B ⊆ Xα and every b1 ∈ B
statement (i) of Lemma 3.4 holds. Now, Lemma 3.4 implies statement
(i) of the theorem.
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4. Isotone extension of mappings from subsets of bounded
cardinality

In the present section the problem of isotone extension of mappings
f : A→ Y is considered under the condition

|A| < α, (4.12)

where |A| = cardA and α is a given infinite cardinal number. In par-
ticular, for α = ℵ0, where as usually ℵ0 is the first infinite cardinal,
condition (4.12) is equivalent to the finiteness of A. The problem of iso-
tone extension with α > ℵ0 is, in a sense, less elementary. Thus, we begin
with the case α = ℵ0.

To formulate a criterion of the solvability of the problem it is necessary
to give a suitable generalization of lattices.

Definition 4.1. A poset (Y,6Y ) is a quasilattice if for all finite A,B ⊆ Y
satisfying the conditions

A ⊆ B∇ and B ⊆ A∆, (4.13)

there is y∗ ∈ Y such that

a 6Y y∗ 6Y b (4.14)

holds for all a ∈ A and b ∈ B.

Remark 4.2. If A = ∅, then from (4.13) we obtain that for every finite
B ⊆ Y there is a minorat. The existence of majorants for every finite
A ⊆ Y follows by duality.

Remark 4.3. Double inequality (4.14) holds for all a ∈ A and b ∈ B
if and only if it holds for all maximal elements a of the set A and all
minimal elements b of the set B. Consequently, instead of finite A,B ⊆
Y , satisfying condition (4.13) it is sufficient to consider finite antichains
A,B ⊆ Y which satisfy (4.13).

It is evident that every nonempty chain is a quasilattice. The converse
is also true for finite quasilattices.

Proposition 4.4. Every finite quasilattice is a chain.

Proof. Let (Y,6Y ) be a finite quasilattice and let A ⊆ Y.Write B := A∆.
Since the inclusion A ⊆ A∆∇ holds, we have

A ⊆ B∇ and B ⊆ A∆.

Consequently, there is y∗ ∈ Y such that (4.14) holds for all a ∈ A and
b ∈ A∆. Hence we have y∗ = supY A. Using the duality principle we
obtain the existence of infY A.
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An example of a countable quasilattice which is not a lattice, will be
given below after the proof of Theorem 4.6.

Lemma 4.5. Let (Y,6Y ) be a nonempty poset. Then (Y,6Y ) is a quasi-
lattice if and only if every isotone mapping f : A→ Y can be extended to
an isotone mapping from X to Y for every finite poset (X,6X) ∈ SA.

Proof. Necessity. Let (Y,6Y ) be a quasilattice. We must show that
for every finite poset (X,6X) and every A ⊆ X every isotone mapping
f : A→ Y has an isotone extension on X. The proof is by induction on
|X|. The existence of the desired extension is evident under |X| = 1.
Let m ∈ N. Assume that such an extension exists for |X| 6 m. Let
|X| = m + 1, A ⊆ X and let f : A → Y be an isotone mapping. If
A = X, then there is nothing to prove. Suppose there is x1 ∈ X \ A.
Write A1 := X \ {x1}. By induction assumption, there exists an isotone
extension g1 : A1 → Y of f . We set g(x) = g1(x) for all x ∈ A1. It
remains to define g(x1). Let X1 := x∇1 \ {x1} and let X1 := x∆1 \ {x1}.
Write

B := g1(X1) and B := g1(X1).

In accordance with the isotonicity of the mapping g1, the inequality b 6Y

b holds for all b ∈ B and b ∈ B. Now, using that (Y,6Y ) is a quasilattice,
we can find y∗ ∈ Y such that

b 6Y y∗ 6Y b (4.15)

holds for all b ∈ B and b ∈ B. Let us define the mapping g at the point
x1 as

g(x1) := y∗.

It is evident that g is an extension of f on X. Moreover, g is isotone if

((x <X x1) ⇒ (g(x) 6Y y∗)) and ((x1 <X x) ⇒ (y∗ 6Y g(x))). (4.16)

Let x <X x1. Then x ∈ X1, so that g(x) ∈ B holds. Since (4.15) holds
for every b ∈ B, we have g(x) 6Y y∗. The second implication in (4.16)
can be proved similarly. Thus if (Y,6Y ) is a quasilattice, then there
exists a required isotone extension.

Sufficiency. Suppose that every isotone mapping, defined on an
arbitrary subset of an finite poset X and taking the values in (Y,6Y ),
can be extended to an isotone mapping from X to Y . We must show
that (Y,6Y ) is a quasilattice. Suppose A and B are two finite subsets
of Y for which (4.13) holds. It is sufficient to find y∗ such that (4.14)
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holds for all a ∈ A and b ∈ B. Let C = A∪B and let (L,6L) be a finite
lattice such that C ⊆ L and

(C × C)∩ 6L= (C × C)∩ 6Y . (4.17)

Note that the existence of a finite lattice (L,6L) satisfying (4.17) follows
from Lemma 2.1. By Theorem 2.5, the mapping in: C → Y , in(c) = c for
every c ∈ C, can be extended to an isotone mapping g : L → Y . Write
ā = supLA. Then

a 6L ā 6L b (4.18)

for all a ∈ A and b ∈ B. The isotonicity of g and (4.18) imply

a = g(a) 6Y g(ā) 6Y g(b) = b.

Consequently (4.14) holds with y∗ = g(ā).

Denote by FS the set of all finite subsets of the set N.

Theorem 4.6. Let (Y,6Y ) be a nonempty poset. The following state-
ments are equivalent.

(i) (Y,6Y ) is a quasilattice.

(ii) Every isotone mapping f : A → Y has an isotone extension on X
for every finite poset (X,6X) ∈ SA.

(iii) Every isotone mapping f : A → Y has an isotone extension on X
for every poset (X,6X) and every finite A ⊆ X.

(iv) Every isotone mapping f : A→ Y has an isotone extension on FS
for every finite subset A of the poset (FS,⊆).

Proof. The logical equivalence (i)⇔(ii) is proved in Lemma 4.5. The
implications (iii)⇒(ii) and (iii)⇒(iv) are trivial.

(ii)⇒(iii). Suppose that (ii) holds. Let us consider an arbitrary
poset (X,6X), a finite set A ⊆ X and an isotone mapping f : A → X.
Let LX ∈ SX be a complete lattice and let LA be a sublattice of the
lattice LX generated by the set A. Since LA is finite, by Lemma 4.5
there is an isotone mapping g : LA → Y with g|A = f . Every finite
lattice is complete. Consequently, by Theorem 2.5 there is an isotone
extension Ψ: LX → LA of the identical mapping idL : LA → LA. Let
in : X → LX be the embedding of X in LX with in(x) = x for every
x ∈ X. It is easy to show that the mapping

X
in−→ LX

Ψ−→ LA
g−→ Y
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is a required isotone extension of the mapping f .

(iv)⇒(ii). Let (iv) hold, let (X,6X) be a finite poset, A ⊆ X and
let f : A → Y be an isotone mapping. Denote by XF a subset of FS
which is isomorphic to the poset (X,6X). Then there is AF ⊆ XF and
an isotone mapping fF : AF → Y such that AF and A are isomorphic
and the diagram

A

AF Y,
?

i
@
@

@@R

f

-
fF

is commutative, where i is an isomorphism between A and AF . The
existence of an isotone extension of the mapping fF on XF follows from
(iv).

Example. Let Q be the set of all rational numbers with the usual order
6. Write

Q = (Q \ {0}) ∪ {01, 02} ,

where Q ∩ {01, 02} = ∅. Define on Q an order 6Q by the rule:
if x, y ∈ Q \ {0}, then (x 6Q y) ⇔ (x 6 y);
if x ∈ Q \ {0}, y ∈ {01, 02}, then

(x 6Q y) ⇔ (x 6 0) and (y 6Q x) ⇔ (0 6 x);

if x, y ∈ {01, 02}, then (x 6Q y) ⇔ (x = y).

The poset (Q,6Q) is not a lattice because the set {01, 02} has no
the supremum in Q. It is easy to prove that (Q,6Q) is a quasilattice.
Consequently, from Theorem 4.6 it follows that every isotone mapping
f : A→ Q can be extended to an arbitrary (X,6X) ∈ SA if A is finite.

Let us consider now the problem of the isotone extension of isotone
mappings defined on A which satisfies (4.13) with α > ℵ0.

Definition 4.7. Let α be an infinite cardinal. A poset (Y,6Y ) is a (< α)-
quasillatice, if for all A,B ⊆ Y , satisfying (4.13) and the inequalities
|A| < α, |B| < α, there is y∗ ∈ Y, such that (4.14) holds for all a ∈ A
and b ∈ B.

It is clear that the quasilattices are precisely the (< ℵ0)-quasilattices.
The quasilattice from Example 4 is a (< ℵ0)-quasilattice, but it is not a
(< c)-quasilattice (here, as usual, c is the cardinality of the continuum).

The next definition is a counterpart of Definition 2.1 in [11, Section 5].
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Definition 4.8. Let β be an infinite cardinal. A poset P is (< β)-
universal, if for every poset X with |X| < β there is T ⊆ P such that T
is isomorphic to X.

Remark 4.9. The poset (N,⊆) is (< χ0)-universal. Some (< χ0)-
universal posets other than (FS,⊆) can be found in [13]. It is easy
to see that we can use any (< χ0)-universal poset instead of (FS,⊆) in
statement (iv) of Theorem 4.6.

Remark 4.10. In Theorem 4.11, that is the main result of the section, we
assume the following:

• every infinite cardinal β is identified with the smallest ordinal which
has the cardinality β, i.e., β = ℵα, where α is an ordinal number;

• 2ℵα = ℵα+1 for every ordinal α, i.e., the generalized continuum
hypothesis (GCH) holds;

• the ordinal numbers are transitive sets which are well-ordered by
the relation ∈. In particular, β = ℵα is the well-ordered set of all
ordinals which are strictly less than β (see, e.g., [14, Chapter 2]).

To find isotone extensions of mappings f : A → Y we shall use the
following construction. Let I be a chain. Suppose for every i ∈ I there
exist a set Ai ⊇ A and a mapping gi : Ai → Y, such that gi|A = f ,
Ai ⊆ Aj and gj |Ai = gi for i 6I j. Then, for the set X :=

∪
i∈I

Ai, there

exists a unique mapping g : X → Y such that g|Ai = gi for every i ∈ I.
We denote this mapping by the symbol Lim

i∈I
gi. It is easy to see, that if

X is equipped with an order 6X , and every Ai has an order 6Ai such
that

6Ai= (Ai ×Ai)∩ 6X ,

and the mappings gi are isotone, then Lim
i∈I

gi is an isotone extension of f

on X.

Theorem 4.11. (GCH) Let (Y,6Y ) be a nonempty poset and let α be
an infinite cardinal. The following statements are equivalent.

(i) (Y,6Y ) is a (< α)-quasilattice.

(ii) For every poset (X,6X) with |X| < α and every A ⊆ X, each
isotone mapping f : A→ Y has an isotone extension on X.

(iii) For every poset (X,6X) and every A ⊆ X with |A| < α, each
isotone mapping f : A→ Y has an isotone extension on X.
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(iv) Let (P,6P ) be (< α)-universal. Then for every A ⊆ P with |A| <
α, each isotone mapping f : A→ Y has an isotone extension on P

Proof. (i)⇒(ii). Let (Y,6Y ) be a (< α)-quasilattice, (X,6X) be a poset
with |X| < α, A ⊆ X, X\A ̸= ∅ and let a mapping f : A→ Y be isotone.
To prove that f has an isotone extension on X, we define on X \A a well-
ordering 4. For every t ∈ X \A denote by At the set {x ∈ X \A : x 4 t}.
There is xi ∈ X \ A such that for every xj ≺ xi the mapping f has an
isotone extension gxj : A ∪ Axj → Y with gxj |Axk

= gxk
if xk 4 xj . The

set of such xi is nonempty. In particular, it contains the least element of
(X \A,4). Write

g◦xi
:= Lim

xj∈A◦
xi

gxj , (4.19)

where A◦
xi

:= {x ∈ X \A : x ≺ xi}. Then g◦xi
: A∪A◦

xi
→ Y is an isotone

extension of f . Let us extend g◦xi
to an isotone mapping gxi : A∪Axi → Y .

Write

Xxi
:= x∇i ∩ (A ∪A◦

xi
) and Xxi := x∆i ∩ (A ∪A◦

xi
),

where x∇i and x∆i are, respectively, the lower cone and the upper cone
of the element xi in (X,6X). It is evident that x 6X xi 6X x for all
x ∈ Xxi and x ∈ Xxi

. For simplicity of notation, we write B := g◦xi
(Xxi

)

and B := g◦xi
(Xxi). Then the inequality b 6Y b holds for all b ∈ B and

b ∈ B and, moreover,

|B ∪B| 6 |Xxi
∪Xxi | 6 |X| < α.

Since (Y,6Y ) is a (< α)-quasilattice, there is y∗ ∈ Y such that

b 6Y y∗ 6Y b

holds for all b ∈ B and b ∈ B. Let us define a mapping gxi on A∪Axi as

gxi(x) :=

{
g◦xi

(x) if x ∈ A ∪A◦
xi

y∗ if x = xi.
(4.20)

Equalities (4.19) and (4.20) imply that the mapping gxi is isotone and

gxk
= gxi |A∪Axk

(4.21)

holds for every xk 4 xi. Using the transfinite induction, we see that for
every xi ∈ X\Axj there is gxi : A∪Axi → Y which extends f and satisfies
(4.21) for xk 4 xi. It remains to set

g := Lim
xi∈X\A

gxi (4.22)
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and the required isotone extension of f on X is found.

(ii)⇒(iii). Let (X,6X) be a poset, A ⊆ X, |A| < α and let f : A→
Y be an isotone mapping. Suppose that (ii) holds. We must find an
isotone extension of f on X. If |A| = |X|, then (iii) is trivial. Assume
that |X| is the first cardinal, which is strictly greater than |A|. Let β be
the smallest ordinal with |β| = |X|. We can define the well-ordering 4
such that (X\A,4) is isomorphic to β. As in the proof of the implication
(i)⇒(ii), we can extend f on A◦

xi
, where xi ∈ X \ A, as in (4.19). (The

designations from the first part of the proof are used.) In accordance
with Remark 4.10, |A◦

xi
| < α holds. Thus,

|A ∪A◦
i | = |A|+ |A◦

xi
| < α.

Consequently, by (ii), there is an isotone extension gxi : A ∪ Axi → Y of
f . The required isotone extension g : X → Y of the mapping f we obtain
as in (4.22). Let us prove the existence of an isotone extension of f in
the case where X has an arbitrary cardinality. Due to the generalized
continuum hypothesis, the cardinality of the boolean B(A) is the first
ordinal which is strictly greater than |A|. Using the previous case, we can
embed A in B(A) through ∇A : A→ B(A), where ∇A(x) = x∇ for every
x ∈ A, and construct a mapping g1 : B(A) → Y for which g1 ◦ ∇A = f .
Considering B(A) as a subset of B(X) and using Theorem 2.8, we find
an isotone mapping g2 : B(X) → Y which is an isotone extension of g1.

The mapping X
∇X−−→ B(X)

g2−→ Y is the desired isotone extension of f ,

B(A) B(X)

Y

A X

-InA

@
@@R

g1 �
��	

g26

∇A

�
�
��
f

-inA

6

∇X

where InA and inA are the corresponding embeddings.

(iii)⇒(i). Let (iii) hold, let A and B be subsets of Y with

max(|A| , |B|) < α,

and let a 6Y b be valid for all a ∈ A and b ∈ B. It is sufficient to prove
that there is y∗ ∈ Y satisfying the double inequality

a 6Y y∗ 6Y b
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for all a ∈ A and b ∈ B. Assume that such y∗ does not exist. Then,
using the embedding ∇Y : Y → B(Y ) we can find e∗ /∈ Y and a poset
(Y ,6Y ) such that

Y = Y ∪ e∗ and 6Y =6Y ∩(Y × Y )

and

a 6Y e∗ 6Y b (4.23)

for all a ∈ A and b ∈ B. Write

X := A ∪B ∪ {e∗} and 6X : =6Y ∩(X ×X).

By property (iii), the embedding in: A∪B → Y with in(t) = t for every
t ∈ A ∪ B has an isotone extension g : X → Y . It follows from (4.23)
that

a 6Y g(e∗) 6Y b (4.24)

for all a ∈ A, b ∈ B. Since g(e∗) ∈ Y , double inequality (4.24) contradicts
the above assumption. Consequently, (Y,6Y ) is a (< α)-quasilattice.

The implication (iii)⇒(iv) is evident, and the verification of (iv)⇒(ii)
can be done as in the proof of Theorem 4.6.

Remark 4.12. In Definition 2.1 [11] of the β-universal sets (P,6P ) it is
required that every (X,6X) with |X| = β is embeddable in P . If α is
an ordinal number, for which β = ℵα, then

(|X| 6 β) ⇔ (|X| < ℵα+1).

Consequently, every poset (P,6P ) which is β-universal in the sense of [11]
with β = ℵα also is (< ℵα+1)-universal in the sense of Definition 4.8.

If a poset (P,6P ) is (< β)-universal in the sense of Definition 4.8,
then using Theorem 4.11, we can prove that (P,6P ) is a (< β)-
quasilattice. Thus, the universal posets investigated earlier in [4, 6, 7,
10,15] are (< β)-quasilattices.

5. Complete local lattices and isotone extensions

Recall that a poset (A,6A) is bounded if it has both 0A and 1A [18,
p. 7]. Let (X,6X) be a poset and let A be a bounded subset of X. Then

f(0A) 6Y f(a) 6Y f(1A) (5.25)
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holds for all isotone mappings f : A→ Y and every a ∈ A. If g : X → Y
is an isotone extension of f : A → Y , then we say that g preserves the
extremal values if

f(0A) 6Y g(x) 6Y f(1A) (5.26)

holds for every x ∈ X.

Definition 5.1. A poset (Y,6Y ) is a complete local lattice if the interval

[y∗, y
∗]Y = {y ∈ Y : y∗ 6Y y 6Y y∗}

is a complete lattice for all y∗, y
∗ ∈ Y satisfying y∗ 6Y y∗.

It is evident that every complete lattice is a complete local lattice.
Note also, that every antichain is a complete local lattice. Thus, a com-
plete local lattice can be not a lattice.

The lexicographical sum of two antichains gives an example of the
complete local lattice which is no even a quasilattice. The quasilattice
Q from Example 4, is not a complete local lattice because the interval
[−1, 1]Q is not a lattice.

Theorem 5.2. Let (Y,6Y ) be a nonempty poset. The following state-
ments are equivalent.

(i) (Y,6Y ) is a complete local lattice.

(ii) For every poset (X,6X) and every bounded set A ⊆ X, each isotone
mapping f : A → Y has an isotone extension g : X → Y which
preserves the extremal values.

Proof. (i)⇒(ii). Let (Y,6Y ) be a complete local lattice, (X,6X) be
a poset, and let A ⊆ X be bounded. For an arbitrary isotone map-
ping f : A → Y and we must find an isotone extension g : X → Y such
that (5.26) holds for every x ∈ X. It is clear that (5.25) holds for every
a ∈ A, i.e.,

f(A) ⊆ [f(0A), f(1A)]Y .

Since (Y,6Y ) is a complete local lattice, the interval I = [f(0A), f(1A)]Y
is a complete lattice. By Theorem 2.5, there is an isotone extension

g1 : X → I

of the mapping A ∋ a 7→ f(a) ∈ IY . Now, we can define g : X → Y as

X
g1−→ IY

in−→ Y,
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where in(y) = y for every y ∈ IY .

(ii)⇒(i). Let (ii) hold. Let us consider an arbitrary interval I =
[y∗, y

∗]Y ⊆ Y , y∗ 6Y y∗. It is evident that y∗ = 0I and y∗ = 1I . Let
(L,6L) be a complete lattice, such that L ⊇ I and 6I= (I × I)∩ 6L.
Property (ii) implies the existence of an isotone extension of the identical
mapping idI : I → I on L. Using Lemma 2.3, we see that I is a complete
lattice.

Let us consider now the problem of isotone extension for isotone map-
pings defined on bounded A with |A| < α.

Definition 5.3. Let α be an infinite cardinal number. The poset (Y,6Y )
is a local (< α)-quasilattice if for all A,B ⊆ Y which satisfy (4.13) and
the condition A∇ ̸= ∅ ̸= B∆ and the inequality max(|A|, |B|) < α, there
is y∗ ∈ Y such that (4.14) holds for all a ∈ A and b ∈ B.

It is evident that every (< α)-quasilattice is a local (< α)-quasilattice.
Note also that every complete local lattice (Y,6Y ) is a local (< α)-
lattice for every α. Indeed, let A,B ⊆ Y satisfy (4.13) and the inequality
max(|A|, |B|) < α. Let b∗ be a majorant of B and let a∗ be a minorant
of A. Then A and B are subsets of the complete lattice I = [a∗, b

∗]Y and
(4.14) holds for all a ∈ A and b ∈ B with y∗ = infI B.

The following lemma directly follows from Definition 4.7 and Defini-
tion 5.3.

Lemma 5.4. Let α be an infinite cardinal, (Y,6Y ) be a local (< α)-
quasilattice and let y∗, y

∗ ∈ Y with y∗ 6Y y∗. Then I = [y∗, y∗]Y is an
(< α)-quasilattice with respect to the order 6I= (I × I)∩ 6Y .

Theorem 5.5. Let α be an infinite cardinal and let (Y,6Y ) be a
nonempty poset. The following statements are equivalent.

(i) (Y,6Y ) is a local (< α)-quasilattice.

(ii) For every poset (X,6X) and every bounded A ⊆ X which satisfies
the inequality |A| < α, each isotone mapping f : A → Y has an
isotone, preserving the extremal values extension on X.

(iii) For every poset (X,6X) with |X| < α and every bounded A ⊆ X,
each isotone mapping f : A → Y has an isotone, preserving the
extremal values extension on X.

(iv) Let (P,6P ) be (< α)-universal. Then for every bounded A ⊆ P
with |A| < α each isotone mapping f : A → Y has an isotone
preserving the extremal values extension on P.
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Proof. (i)⇒(ii). Let (i) hold. Let (X,6X) be a poset and let A ⊆ X
be bounded and satisfy |A| < α. Let us consider an arbitrary isotone
mapping f : A → Y . Write I := [f(0A), f(1A)]Y . By Lemma 5.4, the
poset (I,6I) is a (< α)-quasilattice. Consequently, from Theorem 4.11
it follows that the mapping

A ∋ a 7→ f(a) ∈ I

has an isotone extension g : X → I. It is evident that g preserves the
extremal values,

f(0A) 6Y g(x) 6Y f(1A)

for every x ∈ X. The mapping X
g−→ I

in−→ Y gives an isotone extension
of f which preservs the extremal values.

The implication (ii)⇒(iii) is evident. The implication (iii)⇒(i) can
be obtained by simple modification of the proof of Theorem 4.11.
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