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“Predator and prey” model revisited –
influence of external fluxes and noise

Yaroslav Huriev, Andriy Gusak

(Presented by I. I. Skrypnik)

Abstract. Well-known predator-prey model is modified in two ways.
First, regular adding or regular deleting of preys or/and predators is
considered. Steady-state and stability diagram is found. Second, random
fluctuations of the birthrate and other kinetic coefficients are studied –
parabolic law of random walk in (X,Y)-space is found and proved for
small deviations from steady-state.
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1. Introduction

Predator-prey model, introduced by Lotka and Volterra, is a basic
synergetic model demonstrating oscillatory behavior of the nonlinear bi-
ological, chemical or economic systems [1–4]. It is governed by the simple
set of two nonlinear equations taking into account the natural birthrate
k1 of preys, natural death rate k4 of predators, as well as “collisions” of
preys with predators, unlucky for preys (rate k2) and lucky for feeding
the new generations of predators (rate k̄3 ):

dX̄

dt̄
= k̄1X̄ − k̄2X̄Ȳ

dȲ

dt̄
= k̄3X̄Ȳ − k̄4Ȳ (1.1)
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(X – number of preys, Y - number of predators, ). If the “CREATOR”
of this ecosystem, choosing the initial numbers of both species,“misses”
the stationary numbers X̄st = k̄4/k̄3, Ȳ

st = k̄1/k̄2, system demon-
strates the oscillatory behavior, all oscillations proceeding around the
mentioned stationary point. Transition to non-dimensional variables,
X = X̄/X̄st, Y = Ȳ /Ȳ st, t =

√
k̄1k̄4t̄ ,provides the set of two univer-

sal equations:

1

a

dX

dt
= k1X − k2X · Y

a
dY

dt
= k3X · Y − k4Y (1.2)

with a =
√
k̄1/k̄4, k1 = 1, k2 = 1, k3 = 1, k4 = 1. This model is very

idealized and almost closed (excluding unlimited feed for preys). It is a
main reason why the phase trajectories in the standard Lotka–Volterra
model neither converge nor diverge, but just oscillate. Mathematically,
it means that the linearized set of equations for deviations,

dδX

dt
= a · ((1− Y st)δX −Xst · δY ) = 0 · δX + (−a) · δY

dY

dt
=

1

a
(Y stδX + (Xst − 1) · δY ) =

1

a
· δX + 0 · δY (1.3)

provides the purely imaginary (with zero real part) roots of the character-

istic equation: det

∥∥∥∥−λ −a
1/a −λ

∥∥∥∥ = 0 ⇒ λ2 = −1 ⇒ λ = ±i, which means

oscillations without divergence or convergence.
Everywhere below we will limit ourselves to the particular, most sym-

metric case a = 1.
There exist a lot of modifications and generalizations of predator-

prey model [5–9], including non-homogeneity of the system and account
of diffusion, several types of preys or/and predators, noise (fluctuations)
of preys or/and predators numbers. In this paper, we suggest two more
ways of modifications, which seem natural:

1. We will introduce sponsors/hunters of predators or/and preys with
“license” for constant rate of sponsoring/hunting (regular external
fluxes).

2. We will introduce noise of kinetic coefficients.

We will see that incorporation of adding or deleting predators or/and
preys substantially broadens the spectrum of possible regimes: (I) system
may remain eternally oscillating without convergence neither divergence,
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as in the classic LV-model, (II) system can be stable and converge to the
steady-state limit, (III) system can be metastable, converging to steady-
state from the initial positions in some critical vicinity of stationary so-
lution and diverging from the positions outside this critical region, (IV)
totally unstable, always diverging system.

We will also see that the noise of kinetic coefficients, in average, leads
to divergence, but the time law for the growth of mean squared distance
from the stationary solution is peculiar and resembles Brownian motion.

2. Influence of regular adding/hunting

The basic equations for LV-system (Lotka–Volterra system) with ex-
ternal fluxes are:

dX

dt
= X −X · Y + bx

dY

dt
= X · Y − Y + by. (2.1)

We will start from some simple examples. Regular adding preys without
predators being touched (bx > 0, by = 0) stabilizes the system (Fig.1a),
regular hunting preys without predators being touched (bx < 0, by = 0)
destabilizes the system (Fig. 1b):

(a) bx = 0.1, by = 0 (b) bx = −0.1, by = 0

Figure 1: Phase trajectories for cases of adding and hunting of preys.

In cases of adding/hunting only predators without preys being touch-
ed, we have analogic situation (Fig. 2), but adding of predators stabilizes
the system only for 0 < by < 1.
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(a) bx = 0, by = 0.1

(b) bx = 0, by = −0.1

Figure 2: Phase trajectories for cases of adding and hunting of predators.
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Now we will consider the general case. Equations for stationary points
give the formal solution

Xst =
1− bx − by

2
+

√
(1− bx − by)2

4
+ bx, Y

st =
1 + bx + by

2

+

√
(1− bx − by)2

4
+ bx. (2.2)

Of course, only positive solutions (Xst > 0, Y st > 0) should be further
considered. Moreover, these solutions should be at least locally stable.
To find the criteria of local stability, we linearize eq. (2.1) in the vicinity
of stationary solution determined by eq. (2.4):

dδX

dt
= (1− Y st)δX −Xst · δY

dY

dt
= Y stδX + (Xst − 1) · δY. (2.3)

Then the local stability is determined by the real parts of the roots
of characteristic equation

det

∥∥∥∥1− Y st − λ −Xst

Y st Xst − 1− λ

∥∥∥∥ = 0 ⇒ λ2 − (Xst − Y st)λ+Xst

+Y st − 1 = 0,

λ1 =
1

2
((Xst − Y st) +

√
(Xst − Y st)2 + 4(1−Xst − Y st))

λ2 =
1

2
((Xst − Y st)−

√
(Xst − Y st)2 + 4(1−Xst − Y st)). (2.4)

The result of steady-state analysis is summarized at Fig. 3.
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Figure 3: Diagram (bx, by) of regimes in the open Lotka–Volterra system.

Red – negative discriminant,
(1−bx−by)2

4 + bx < 0 – no stationary
solutions at all.
Black – negative or zero values of Xst or Y st – non-physical stationary
solutions.
Yellow – physical stationary solutions, but unstable (at least one of the
real parts of λ is positive or zero).
Brown – oscillatory behavior without convergence neither divergence
(zero stability).
Green – locally stable stationary solutions.

In general, we should distinguish globally stable and locally stable
(metastable) stationary solutions. It will be done elsewhere.

Two examples are demonstrated at Fig. 4(a, b). Namely, we demon-
strate the convergence region (green) at X-Y plane around the metastable
stationary points corresponding to following cases: (a)bx = 1.1, by =
−1.09, Xst = 1.65, Y st = 1.66, (b)bx = −0.1, by = 0.3, Xst = 0.64, Y st =
0.84
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(a) bx = 1.1, by = −1.09, Xst = 1.65, Y st = 1.66

(b) bx = −0.1, by = 0.3, Xst = 0.64, Y st = 0.84

Figure 4: Stability/collapse diagram (stationary point is marked with
black spot, convergence region is green)

3. Noise of kinetic coefficients

Influence of noise on the behavior of the LV system is not a new prob-
lem. Yet, as far as we know, only noise of X and Y had been explored –
random adding or deleting of small number of preys or predators [5, 8].
Additionally of this, in our paper we explore the random fluctuations of
kinetic coefficients k1, k2, k3, k4 (for example, fluctuation of birthrate due
to rainy days).

We will start from the Langevine noise of reduced birthrate without
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memory and with fixed amplitude A:

k1 = 1 + ξ(t)

< ξ(t)ξ(t′) >= A2δ(t− t′). (3.1)

In case of numeric modeling, one should introduce this noise in such a
way that the change of the time step should not change the impact of
noise. Our suggestion was a step-wise probability distribution:

k1 = 1 +
A√
dt

√
3(2 · random− 1), (3.2a)

(Mean square of random function
√
3(2 · random− 1) is equal to 1).

Alternatively, one may use the Gaussian distribution

k1 = 1 +
A√
dt

sin(2π random)
√

2 ln(1/random). (3.2b)

.

In more details, the introduction of the noise of kinetic coefficients
is discussed in [9, 10] for the case of atomic migration. We started from
stationary point (X = 1, Y = 1) as an initial condition. Typical phase
trajectory as a numeric solution of the set

dX

dt
= (1 + ξ(t))X −X · Y

dY

dt
= X · Y − Y. (3.3)

is shown at Fig. 5.

Then, we took ensemble of M = 100 LV-systems, originating at the
same stationary point (1,1), and found the mean squared displacement
from this point as a function of time. The results for different time-steps
and the same amplitude are shown at Fig. 6.
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Figure 5: Typical phase trajectory of LV-system under fluctuating
birthrate, starting from stationary point.

Figure 6: Noise of the birthrate k1. Mean squared displacement from
stationary point versus time for the same amplitude A=0.07 and various
time-step dt. In all cases trajectory starts from the stationary points

One can see that dependencies for different time-steps are close to
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each other and can be approximated as

< (∆X)2 + (∆Y )2 >≈ αA2t, α ≈ 1. (3.4)

If the initial point differs from the stationary point, then the initial
mean squared displacement at first decreases and then follows the same
time law – see Fig. 7.

Figure 7: Noise of the birthrate k1.Mean squared displacement from
stationary point versus time, with initial deviation from stationary point.
(A = 0.07, dt = 0.05, X0 = 2, Y0 = 2)

Analogic dependencies were obtained by numeric simulations for the
noise of k2, k3, k4.

Most probably parabolic dependence is related to “zero stability” of
LV system, so that we observe something like random walk in XY space.

We can prove eq. (3.4) analytically and find exact value of α at least
for small deviations from steady-state using linearized kinetic equations.

Theorem 1. Linearization (first-order approximation) of the Lotka–Vol-
terra model in the vicinity of steady-state with the Langevin noise of the
birthrate of preys and without external fluxes,

dX

dt
= (1 + ξ(t))X −X · Y, dY

dt
= X · Y − Y,

< ξ(t)ξ(t′) >= A2δ(t− t′), (3.5)

provides the following parabolic law for the sum of dispersions for the
ensemble of LV-systems:

< (δX)2 > + < (δY )2 >= 1 ·A2t (3.6)
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under condition t << 1/A2.

Proof. Consider the first order approximation for the deviations from
steady-state: X = 1 + δX, Y = 1 + δY, |δX| << 1, |δY | << 1, so that
|δXδY | << |δX| , |δXδY | << |δY |.

dδX

dt
= ξ(t)− δY (3.7a)

dδY

dt
= δX. (3.7b)

We consider an ensemble of LV-systems with identical initial condition

δX(t = 0) = 0, δY (t = 0) = 0

Let us multiply eq. (3.7a) by 2δX and average over ensemble:

d < (δX)2 >

dt
= −2 < δXδY > +2 < δX(t)ξ(t) > . (3.8a)

Let us multiply eq. (3.7b) by 2δY and average over ensemble:

d < (δY )2 >

dt
= 2 < δXδY > . (3.8b)

Now we add eqs. (3.8a)+(3.8b). It gives

d

dt
(< (δX)2 > + < (δY )2 >) = 2 < δX(t)ξ(t) > . (3.9)

To make the set (3.8a, 3.8b) self-consistent, one should find the value
of < δX(t)ξ(t) > .

For this, first of all, we find the formal solution of set (3.7a, 3.7b)
which we reformulate in the matrix form:

d

dt

(
δX
δY

)
=

(
0 −1
1 0

)(
δX
δY

)
+

(
ξ
0

)
≡ M̂

(
δX
δY

)
+ f̂ ,

δX(t = 0) = 0, δY (t = 0) = 0. (3.10)

Solution of eq. (3.10) is:

(
δX(t)
δY (t)

)
=

∫ t

0
exp((t− t′)M̂)

(
ξ(t′)
0

)
dt′. (3.11)

Then we can find two mean values < δX(t)ξ(t) > and < δY (t)ξ(t) >.
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<

(
δX(t)
δY (t)

)
ξ(t) >=

(
< δX(t)ξ(t) >
< δY (t)ξ(t) >

)
=

∫ t

0
exp((t− t′)M̂)·

· <
(
ξ(t′)
0

)
ξ(t) > dt′ =

∫ t

0
exp((t− t′)M̂)

(
A2δ(t− t′)

0

)
dt′ =

=

(
A2/2
0

)
. (3.12)

(Note that the factor 1/2 appeared because the argument of delta
function δ(t − t′) is equal zero not within the integration interval but
instead at it’s boundary.) Thus,

< ξ(t)δX(t) >= A2/2,

d

dt
(< (δX)2 > + < (δY )2 >) = A2 ⇒< (δX)2 > + < (δY )2 >= A2t.

(3.13)

We remember that all this derivation is valid only for linearized
predator-prey equations. Linearization is valid only under conditions
|δX| << 1, |δY | << 1 ⇔ (δX)2 + (δY )2 << 1.

For this, time should be short enough: t << 1/A2.
Theorem 1 is proved.

Now we proceed to the noise of birthrate of predators.

Theorem 2. Linearization of the Lotka–Volterra model with the Lange-
vin noise of the birthrate of predators and without external fluxes,

dX

dt
= X −X · Y, dY

dt
= X · Y − (1 + ξ(t))Y,

< ξ(t)ξ(t′) >== A2δ(t− t′), (3.14)

provides the parabolic law (3.6) for the sum of dispersions.

Proof. Again, consider the first order approximation for the deviations
from steady-state: X = 1 + δX, Y = 1 + δY, |δX| << 1, |δY | << 1,

dδX

dt
= −δY (3.15a)

dδY

dt
= δX − ξ(t). (3.15b)

We again consider an ensemble of LV-systems with identical initial con-
dition

δX(t = 0) = 0, δY (t = 0) = 0
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Let us multiply eq. (3.15a) by 2δX and average over ensemble:

d < (δX)2 >

dt
= −2 < δXδY > . (3.16a)

Let us multiply eq. (3.15b) by 2δY and average over ensemble:

d < (δY )2 >

dt
= 2 < δXδY > −2 < δY · ξ > . (3.16b)

Now we add eqs. (3.16a)+(3.16b). It gives

d

dt
(< (δX)2 > + < (δY )2 >) = −2 < δY (t)ξ(t) > . (3.17)

Now, one should find the value of < δY (t)ξ(t) >.
For this, first of all, we find the formal solution of set (3.15a, 3.15b)

which we reformulate in the matrix form:

d

dt

(
δX
δY

)
=

(
0 −1
1 0

)(
δX
δY

)
+

(
0
−ξ

)
≡ M̂

(
δX
δY

)
+ f̂ ,

δX(t = 0) = 0, δY (t = 0) = 0. (3.18)

Solution of eq. (3.18) is:(
δX(t)
δY (t)

)
=

∫ t

0
exp((t− t′)M̂)

(
0

−ξ(t′)

)
dt′. (3.19)

Then we can find two mean values< δX(t)ξ(t) > and < δY (t)ξ(t) > .

<

(
δX (t)
δY (t)

)
ξ (t) >=

(
< δX (t) ξ (t) >
< δY (t) ξ (t) >

)
=

=
t∫
0

exp
(
(t− t′) M̂

)
<

(
0

−ξ (t′)

)
ξ (t) > dt′ =

=
t∫
0

exp
(
(t− t′) M̂

)( 0
−A2δ (t− t′)

)
dt′ =

(
0

−A2/2

)
.

(3.20)

Thus,

< δY (t) ξ (t) >= −A2/2 (3.21)

d

dt

(
< (δX)2 > +< (δY )2 >

)
= A2 ⇒< (δX)2 > +< (δY )2 >= A2t.

Theorem is proved.
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Now we proceed to the noise of extinction rate of preys (caught by
predators).

Theorem 3. Linearization of the Lotka–Volterra model with the Lange-
vin noise of extinction rate of preys and without external fluxes,

dX

dt
= X − (1 + ξ (t))X · Y, dY

dt
= X · Y − Y,

< ξ (t) ξ
(
t′
)
>= A2δ

(
t− t′

)
. (3.22)

provides the parabolic law (3.6) for the sum of dispersions.

Proof. Again, consider the first order approximation for the deviations
from steady-state: X = 1 + δX, Y = 1 + δY, |δX| << 1, |δY | << 1,

dδX

dt
= −ξ (t)− δY, (3.23a)

dδY

dt
= δX. (3.23b)

Eqs. (3.23a, 3.23b) are identical with eqs. (3.7a, 3.7b) except sign be-
fore noise term. All characteristics (probabilities and mean values) of
Langevin noise are symmetrical in respect to sign. Therefore Theorem 3
directly follows from Theorem 1.1.

Now we proceed to the noise of reproduction rate of predators due to
eating of preys.

Theorem 4. Linearization of the Lotka–Volterra model with the Lan-
gevin noise of reproduction rate of predators due to eating of preys and
without external fluxes,

dX

dt
= X −X · Y, dY

dt
= (1 + ξ (t))X · Y − Y,

< ξ (t) ξ
(
t′
)
>= A2δ

(
t− t′

)
(3.24)

provides the parabolic law (3.6) for the sum of dispersions.

Proof. Again, consider the first order approximation for the deviations
from steady-state: X = 1 + δX, Y = 1 + δY, |δX| << 1, |δY | << 1 ,

dδX

dt
= −δY, (3.25a)

dδY

dt
= δX + ξ (t) . (3.25b)

Eqs. (3.25a, 3.25b) are identical with eqs. (3.15a, 3.15b) except sign
before noise term. All characteristics (probabilities and mean values) of
Langevin noise are symmetrical in respect to sign. Therefore, Theorem
4 directly follows from Theorem 2.
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Now we proceed to the noise in the LV-model with external fluxes –
adding noise to various terms in eqs. (2.1). We will start with the simplest
cases – when the external flux is present but it’s mean value is zero.

Theorem 5. Linearization of the Lotka–Volterra model with the Lange-
vin noise of external flux of preys,

dX

dt
= X −X · Y + ξ (t) ,

dY

dt
= X · Y − Y,

< ξ (t) ξ
(
t′
)
>= A2δ

(
t− t′

)
(3.26)

provides the parabolic law (3.6) for the sum of dispersions.

Proof. Again, consider the first order approximation for the deviations
from steady-state: X = 1 + δX, Y = 1 + δY, |δX| << 1, |δY | << 1 ,

dδX

dt
= −δY + ξ (t) , (3.27a)

dδY

dt
= δX. (3.27b)

Eqs. (3.27a, 3.27b) are identical with (3.7a, 3.7b). Therefore, Theorem
5 directly follows from Theorem 1.1.

Theorem 6. Linearization of the Lotka–Volterra model with the Lange-
vin noise of external flux of predators,

dX

dt
= X −X · Y, dY

dt
= X · Y − Y + ξ (t) ,

< ξ (t) ξ
(
t′
)
>= A2δ

(
t− t′

)
(3.28)

provides the parabolic law (3.6) for the sum of dispersions.

Proof. Again, consider the first order approximation for the deviations
from steady-state: X = 1 + δX, Y = 1 + δY, |δX| << 1, |δY | << 1

dδX

dt
= −δY, (3.29a)

dδY

dt
= δX + ξ (t) . (3.29b)

Eqs.(3.29a, 3.29b) are identical with (3.25a, 3.25b). Therefore, Theorem
6 directly follows from Theorem 4.

Now we proceed to the noise in LV-systems with non-zero mean ex-
ternal fluxes. Of course, in this case the steady-state reduced values are
not equal to 1 anymore, but instead determined by eq. (2.4). In this
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paper we consider only one case – the Lottka–Volterra model with the
Langevin noise of the birthrate

dX

dt
= (1 + ξ (t))X −X · Y + bx,

dY

dt
= X · Y − Y + by,

< ξ (t) ξ
(
t′
)
>= A2δ

(
t− t′

)
. (3.30)

Linearization for first-order deviations from steady-state (X = Xst +
δX, Y = Y st + δY, |δX| << Xst, |δY | << Y st ), gives

dδX

dt
= ξ (t)Xst +

(
1− Y st

)
δX −XstδY, (3.31a)

dδY

dt
= Y stδX +

(
Xst − 1

)
δY. (3.31b)

We again consider an ensemble with identical initial condition
δX (t=0) = 0, δY (t = 0) = 0. Let us multiply eq. (3.31a) by 2δX and
average over ensemble:

d < (δX)2 >

dt
= +2

(
1− Y st

)
< (δX)2 > −2Xst < δXδY >

+2Xst < δX (t) ξ (t) > . (3.32a)

Let us multiply eq. (3.31b) by 2δY and average over ensemble:

d < (δY )2 >

dt
= 2

(
Xst − 1

)
< (δY )2 > +2Y st < δXδY > . (3.32b)

Let us add the product of eq. (3.31a) with 2δY and the product of
eq. (3.31b) with 2δX and average over ensemble:

d < δXδY >

dt
= Y st < (δX)2 > −Xst < (δY )2 > +

+
(
Xst + Y st − 2

)
< δXδY > + < δY (t) ξ (t) > . (3.32c)

To make the set (3.32a, 3.32b, 3.32c) self-consistent, one should find the
values of < δX (t) ξ (t) >, < δY (t) ξ (t) >.

For this, first of all, we find the formal solution of set (3.7a, 3.7b)
which we reformulate in the matrix form:

d

dt

(
δX
δY

)
=

( (
1− Y st

)
−Xst

Y st
(
Xst − 1

) )( δX
δY

)
+

(
ξ
0

)
≡

≡ M̂

(
δX
δY

)
+ f̂ ,

δX (t = 0) = 0, δY (t = 0) = 0.
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Solution is: (
δX (t)
δY (t)

)
=

t∫
0

exp
((
t− t′

)
M̂
)( ξ (t′)

0

)
dt′.

Then we can find two mean values < δX (t) ξ (t) > and < δY (t) ξ (t) >.

<

(
δX (t)
δY (t)

)
ξ (t) >=

(
< δX (t) ξ (t) >
< δY (t) ξ (t) >

)
=

=

t∫
0

exp
((
t− t′

)
M̂
)
<

(
ξ (t′)
0

)
ξ (t) > dt′ =

=

t∫
0

exp
((
t− t′

)
M̂
)( A2δ (t− t′)

0

)
dt′ =

(
A2/2
0

)
. (3.33)

Thus, the set of equations (3.32a, 3.32b, 3.32c) becomes self-consistent:

d

dt

 < (δX)2 >

< (δY )2 >
< (δXδY ) >

 =

=

 2
(
1− Y st

)
0 −2Xst

0 2
(
Xst − 1

)
2Y st

Y st −Xst Xst + Y st − 2

 < (δX)2 >

< (δY )2 >
< (δXδY ) >

+

+

 2XstA2/2
0
0

 . (3.34)

The formal solution (in matrix form) of eq. (3.34) is:

ψ̂ (t) =

t∫
0

exp
((
t− t′

)
L̂
)
φ̂
(
t′
)
dt′, ψ̂ (t = 0) = 0 (3.35)

where
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ψ̂ (t) =

 < (δX)2 >

< (δY )2 >
< (δXδY ) >

 ,

L̂ =

 2
(
1− Y st

)
0 −2Xst

0 2
(
Xst − 1

)
2Y st

Y st −Xst Xst + Y st − 2

 ,

φ̂ =

 XstA2

0
0

 . (3.36)

If the steady-state solution satisfies the local stability criterion
(Reλ1 < 0, Reλ2 < 0 in eqs. (2.4)), then the set (3.34) should de-
scribe the competition between dynamical tendency of attraction to the
metastable steady-state and stochastic tendency of migration from this
steady state. It is physically evident that sooner or later the stochastic
(noise) will bring the system beyond the limits of metastability (beyond
the convergence region). It is also evident that the “Mean Time To Fail-
ure” (MTTF) of the LV-system should depend on the noise amplitude.

Here we demonstrate two numeric examples. At Fig. 8 one can see
three time dependencies of the mean squared displacement from the stable
stationary point for three different amplitudes for the noise of birthrate
of preys (Fig. 8)

Figure 8: Time dependence of the mean squared displacement from the
stationary point corresponding to bx = by = 1. Asymptotic levels are
proportional to the squared noise amplitude of the preys’ birthrate.

At Fig. 9 we see the noise-initiated displacement from the unstable
stationary point.
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Figure 9: Time dependence of the mean squared displacement from the
stationary point corresponding to bx = by = −1. Plots are calculated for
three amplitudes of birthrate noise.

We also observe steady plateau with abrupt growth after some time.
This problem will be considered elsewhere. (See also [11].)

Conclusion

1. Regular hunting of preys without troubling predators destabilizes
the LV-system.

2. Regular hunting of predators without troubling preys destabilizes
the LV-system.

3. Regular adding of preys always stabilizes the LV-system.

4. Regular adding of predators stabilizes the LV-system only if adding
rate is less than some threshold.

5. Diagram of regimes for LV-system with regular external fluxes is
described by Fig. 3.

6. Simultaneous adding of preys and limited hunting of predators may
leave the system metastable but only within some critical region of
initial parameters.

7. In numeric modeling, to make the impact of the noise of kinetic pa-
rameters independent on the choice of time step, the random pertur-
bation kinetic coefficients should be proportional to noise amplitude
and inversely proportional to the square root of the time step.
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8. Mean square distance from stationary point (at least in case of small
deviations from steady-state without external fluxes) increases pro-
portionally to time with proportionality coefficient proportional to
the noise amplitude:< (∆X)2 + (∆Y )2 >= A2t

9. Competition between noise and metastability under non-zero exter-
nal fluxes (including MTTF) will be analyzed elsewhere.
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