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A nonlocal boundary value problem
for a fourth order mixed type equation
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(Presented by I. I. Skrypnik)

Abstract. The criterion of uniqueness of the solution of the prob-
lem with periodicity, nonlocal and boundary conditions is established
by spectral analysis for the fourth-order mixed-type equation in a rect-
angular region. When constructing a solution in the form of the sum
of a series, we use completeness in the space L2 orthogonally conjugate
to the system of eigenfunctions of the corresponding problem. When
proving the convergence of a series, the problem of small denominators
arises. Under conditions on the parameters of the data of the problem
and given functions, the stability of the solution is proved.
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1. Introduction

The work is devoted to the study of a nonlocal boundary value prob-
lem for a fourth-order partial differential equation of mixed type.

Let u(x, t) on the region Ω = {(x, t)| (−1, 1)× (0, T ), x ̸= 0} satisfies
the equation

sgn x
∂4u

∂t4
− Lu = 0. (1.1)

where Lu ≡ − ∂
∂x (p(x)ux(x, t)) + q(x)u(x, t) and p(x), p′(x), q(x) con-

tinuous functions on the segment [−1, 1], q(x) > 0, p(x) > p0, p0 some
positive constant.

Problem. Find function u(x, t), satisfying equation (1.1) on the
region Ω and the following conditions:
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nonlocal

∂iu

∂ti

∣∣∣∣
t=0

+
∂iu

∂ti

∣∣∣∣
t=T

= φi(x), i = 0, 1, 2, 3, x ∈ [−1, 1], (1.2)

boundary
u(−1, t) = u(1, t) = 0, t ∈ [0, T ] (1.3)

and terms of bonding

∂iu

∂xi

∣∣∣∣
x=−0

=
∂iu

∂xi

∣∣∣∣
x=+0

, i = 0, 1, t ∈ [0, T ]. (1.4)

Nonlocal problems for mixed type differential equations with par-
tial derivatives currently being studied very actively, and mainly equa-
tions of the first and second orders were considered. It should be noted
the works of such authors as A. A. Dezin, G. Infante, T. Jankowski,
V. A. Ilyin, M. A. Naimark, E. I. Moiseev, K. B. Sabitov, S. G. Krein
and G. I. Laptev, O. A. Repin, I. E. Egorov, A. I. Kozhanov and others.

Fourth-order partial differential equations were studied in the works
of the authors M. Smirnov [12], T. D. Djuraev and A. K. Sopuev [3],
A. I. Kozhanov [9], V. B. Dmitriev [4], K. S. Fayazov and I. O. Khajiev [7],
T. K. Yuldashev [14] and others.

Note that nonlocal problems can be ill-posed in the sense of J. Ha-
damard. In the work of P. N. Vabischevich [13] parabolic equation with
nonlocal temporary variable conditions was investigated. For a stable
approximate solution of such problems, an approach is used when a non-
local condition is used instead of the initial condition. The regularizing
properties of such a method are established in the usual class of bounded
solutions. By S. P. Shishatsky in [11] was considered a boundary-value
problem for a second-order differential equation in a Hilbert space H
with a negative self-adjoint operator. K. S. Fayazov in [6] investigated
boundary value problems for a second-order differential equation with
self-adjoint operator coefficients in a Hilbert space.

The initial-boundary value problem for equation (1.1) was investi-
gated in [7]. Using the methods of spectral decompositions and energy
integrals, theorems on the uniqueness and conditional stability of a so-
lution on a set of correctness are proved. An approximate solution is
constructed by the regularization method and an error estimate of the
norm of the difference between the exact and approximate solutions is
obtained.

As a matter of fact, the problem (1.1)–(1.4) is incorrect as in the since
of J. Hadamard, namely, there is no continuous dependence of the solution
on the data of the problem. In addition, arises the problem of “small
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denominators” (see B. I. Ptashnik [10]), to be more exact, the problem
has not a unique solution for all T . The Dirichlet problem for the wave
equation, which is also incorrect studied in the works of D. G. Bourgin
and R. Duffin [2] and Sh. A. Alimov [1].

This paper presents the conditions on the data of the problem in
which the solution of the problem is unique and conditionally stable set
of correctness. We give some facts from [5] necessary for the further
presentation of our results.

We will seek a solution to problem (1.1)–(1.4) u(x, t) in the form of
a Fourier series in the eigenfunctions of the following spectral problem:
Find the values of λ for which the problem

sgn (x) ddx (p(x)X
′(x))− sgn (x)q(x)X(x) + λX(x) = 0,

X(−1) = X(1) = 0,
X(−0) = X(+0), X ′(−0) = X ′(+0).

(1.5)

has a non-trivial solution.
By
{
X+
k (x)

}∞
k=1

,
{
X−
k (x)

}∞
k=1

we denote the eigenfunctions, through
the corresponding positive

{
λ+k
}∞
k=1

and negative
{
λ−k
}∞
k=1

eigenvalues,
and the numbers λ+k , −λ−k form non-decreasing sequences.

According to [5], the eigenfunctions of problem (1.5) have the property(
sgn xX±

k , X
±
j

)
= ±δkj , ,

(
sgnxX+

k , X
−
j

)
= 0 ∀k, j ∈ N,

where δkj is the Kronecker symbol.

Let (u, v) =
1∫

−1

uvdx be the scalar product in L2(−1, 1), and ∥u∥ =(
1∫

−1

u2(x, t)dx

)1/2

, and

∥u(x, t)∥20 =
∞∑
k=1

{∣∣(sgnx u(x, t), X+
k

)∣∣2 + ∣∣(sgnx u(x, t), X−
k

)∣∣2}.
(1.6)

The eigenfunctions of problem (1.5) form a Riesz basis in H0 and the
norm in the space L2(−1, 1) defined by equality (1.6) is equivalent to the
original one [5].

2. Form of solution

By a generalized solution of the boundary value problem (1.1)–(1.4)
we understand a function u(x, t) ∈W 1,3

2 (Ω ) satisfying

∂ju

∂tj

∣∣∣∣
t=0

+
∂ju

∂tj

∣∣∣∣
t=T

= φj(x), j = 0, 1, 2,
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u(−1, t) = u(1, t) conditions and the following identity

T∫
0

1∫
−1

(sgnxutttVt + uxpVx + uqV ) dxdt

=

1∫
−1

sgnxφ3(x)V (x, T )dx (2.1)

for any function V (x, t) ∈ W 2,4
x,t (Ω),

∂jV (x,t)
∂tj

∣∣∣
t=0

+ ∂jV (x,t)
∂tj

∣∣∣
t=T

= 0,
V (−1, t) = V (1, t) = 0, j = 0, 1, 2, 3.

Let the solution of the problem (1.1)–(1.4) exists and has the form

u(x, t) =

∞∑
k=1

u+k (t)X
+
k +

∞∑
k=1

u−k (t)X
−
k

where u±k (t) for each k = 1, 2, 3, ... are solutions of the following problems:{ {
u+k (t)

}
tttt

− µ4ku
+
k (t) = 0,

dj

dtj
u+k (t)

∣∣∣
t=0

+ dj

dtj
u+k (t)

∣∣∣
t=T

= φ+
jk
, j = 0, 1, 2, 3.,

(2.2)

{ {
u−k (t)

}
tttt

+ 4γ4ku
−
k (t) = 0,

dj

dtj
u−k (t)

∣∣∣
t=0

+ dj

dtj
u−k (t)

∣∣∣
t=T

= φ−
jk
, j = 0, 1, 2, 3.,

(2.3)

where φ±
jk

= ±
(
sgnxX±

k (x), φj(x)
)
, j = 0, 1, 2, 3., herewith γ4k = µ4k/4,

µ4k = ±λ±k .

We turn to the solution of the problem (2.2). Let 1
µ2k

d2u+k
dt2

= ϑ+k ,

w+
k = u+k − ϑ+k , v+k = u+k + ϑ+k then after some transformations we have{

v+k
}
tt
− µ2kv

+
k = 0,

v+k (0) + v+k (T ) = φ+
0k

+ µ−2
k φ+

2k
,{

v+k (t)
}
t

∣∣
t=0

+
{
v+k (t)

}
t

∣∣
t=T

= φ+
1k

+ µ−2
k φ+

3k
.

and {
w+
k

}
tt
+ µ2kw

+
k = 0,

w+
k (0) + w+

k (T ) = φ+
0k

− µ−2
k φ+

2k
,{

w+
k (t)

}
t

∣∣
t=0

+
{
w+
k (t)

}
t

∣∣
t=T

= φ+
1k

− µ−2
k φ+

3k
.

The solution of the latest problems can be represented as

v+k (t) =
1

2

(
F (µk, t)

(
φ+
0k

+ µ−2
k φ+

2k

)
+G(µk, t)

(
φ+
1k

+ µ−2
k φ+

3k

))
,
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w+
k (t) =

1

2

(
F (µk, t)

(
φ+
0k

− µ−2
k φ+

2k

)
+G(µk, t)

(
φ+
1k

− µ−2
k φ+

3k

))
,

where

F (µk, t) =
chµkt+ ch (µk(T − t))

1 + chµkT
, F (µk, t) =

cosµkt+ cos (µk(T − t))

1 + cosµkT
,

G(µk, t) =
shµkt+ sh (µk(t− T ))

1 + chµkT
,G(µk, t) =

sinµkt+ sin (µk(t− T ))

1 + cosµkT
.

Then

u+k (t) =
1

2

(
v+k (t) + w+

k (t)
)

=
1

4

((
F (µk, t) + F (µk, t)

)
φ+
0k

+ µ−1
k

(
G(µk, t) +G(µk, t)

)
φ+
1k

+ µ−2
k

(
F (µk, t)− F (µk, t)

)
φ+
2k

+ µ−3
k

(
G(µk, t)−G(µk, t)

)
φ+
3k

)
. (2.4)

Similarly, for problem (2.3) we have 1
2iγ2k

d2u−k
dt2

= ϑ−k , w−
k = u−k − ϑ−k ,

v−k = u−k + ϑ−k{
v−k
}
tt
− 2iγ2kv

−
k = 0,

v−k (0) + v−k (T ) = φ−
0k

− 0, 5iγ−2
k φ−

2k
,{

v−k (t)
}
t

∣∣
t=0

+
{
v−k (t)

}
t

∣∣
t=T

= φ−
1k

− 0, 5iγ−2
k φ−

3k
,

and {
w−
k

}
tt
+ 2iγ2kw

−
k = 0,

w−
k (0) + w−

k (T ) = φ−
0k

+ 0, 5iγ−2
k φ−

2k
,{

w−
k (t)

}
t

∣∣
t=0

+
{
w−
k (t)

}
t

∣∣
t=T

= φ−
1k

+ 0, 5iγ−2
k φ−

3k
.

Then u−k (t) =
1
2

(
v−k + w−

k

)
, where

v−k (t) =
1

2

(
f−0k − 0, 5iγ−2

k f−2k
)
F (z, t) +

1

2z

(
f−1k − 0, 5iγ−2

k f−3k
)
G(z, t),

w−
k (t) =

1

2

(
f−0k + 0, 5iγ−2

k f−2k
)
F (z̄, t) +

1

2z̄

(
f−1k + 0, 5iγ−2

k f−3k
)
G(z̄, t),

here z = γk + iγk.
After simplification, we have

u−k (t) =
P1(γk, t)

4∆2
k

φ−
0k
+
P2(γk, t)

8γk∆
2
k

φ−
1k
+
P3(γk, t)

8γ2k∆
2
k

φ−
2k
+
P4(γk, t)

16γ3k∆
2
k

φ−
3k

(2.5)

where ∆k = chγkT + cos γkT ,

P1(γk, t) = 2chγkt cos γkt+ 2ch(γk(t− T )) cos(γk(t− T ))

+ ch(γk(t+ T )) cos(γk(t− T )) + ch(γk(t− T )) cos(γk(t+ T ))

+ chγkt cos(γk(t− 2T )) + ch(γk(t− 2T )) cos γkt,
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P2(γk, t) = 2shγkt cos γkt+ 2sh(γk(t− T )) cos(γk(t− T ))

+ sh(γk(t+ T )) cos(γk(t− T )) + sh(γk(t− T )) cos(γk(t+ T ))

+ shγkt cos(γk(t− 2T )) + sh(γk(t− 2T )) cos γkt

+ 2chγkt sin γkt+ 2ch(γk(t− T ))sin(γk(t− T ))

+ ch(γk(t+ T ))sin(γk(t− T )) + ch(γk(t− T ))sin(γk(t+ T ))

+ chγkt sin(γk(t− 2T )) + ch(γk(t− 2T ))sinγkt,

P3(γk, t) = 2shγkt sin γkt+ 2sh(γk(t− T ))sin(γk(t− T ))

+ sh(γk(t+ T ))sin(γk(t− T )) + sh(γk(t− T ))sin(γk(t+ T ))

+ shγkt sin(γk(t− 2T )) + sh(γk(t− 2T ))sinγkt,

P4(γk, t) = 2chγkt sin γkt+ 2ch(γk(t− T ))sin(γk(t− T ))

+ ch(γk(t+ T ))sin(γk(t− T )) + ch(γk(t− T ))sin(γk(t+ T ))

+ chγkt sin(γk(t− 2T )) + ch(γk(t− 2T ))sinγkt

− 2shγkt cos γkt− 2sh(γk(t− T ))cos(γk(t− T ))

− sh(γk(t+ T ))cos(γk(t− T ))− sh(γk(t− T ))cos(γk(t+ T ))

− shγkt cos(γk(t− 2T ))− sh(γk(t− 2T ))cosγkt.

3. Theorems

Theorem 3.1. For the uniqueness of a solution to problem (1.1)–(1.4)
in the class W 1,3

2 (Ω ), it is necessary and sufficient that the equation

µkT = π + 2πn

had no solutions in integers k, n (k, n ∈ N).

Proof. Necessity. If for some positive integer k, n the expression 1 +
cosµkT vanishes, then the homogeneous problem (1.1)–(1.4), that is
φj(x) = 0, j = 0, 1, 2, 3., has nontrivial solutions of the form

u(x, t) = (shµkt+ chµkt+ sinµkt+ cosµkt)X
+
k (x).

Then the solution to the inhomogeneous problem (1)–(4), if it exists, will
not be unique.

Sufficiency. Let there exist two solutions u1(x, t), u2(x, t) of prob-
lem (1.1)–(1.4) from the space (L2 (−1, 1) ; C[0, T ]). Then the func-
tion u(x, t) = u1(x, t) − u2(x, t) is a solution to the homogeneous prob-
lem (1.1)–(1.4), where φj(x) ≡ 0, j = 0, 1, 2, 3. Hence we get that
u+k (t) ≡ 0, u−k (t) ≡ 0. Therefore, u(x, t) ≡ 0 ∀(x, t) ∈ Ω. It is required
to prove.
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Theorem 3.2. Let φj(x) ∈ W 4−j+ε
2 (−1; 1) , j = 0, 1, 2, 3 and the con-

ditions of Theorem 4 be satisfied. Then for T ̸= (2n+1)π
µk

(n, k natural
numbers) there exists a unique solution to problem (1)–(4), which belongs
to the space W 1,3

2 (Ω ) and continuously depends on the functions φj(x),
j = 0, 1, 2, 3 in the sense that the estimate

∥u(x, t)∥20 6 C0 ∥φ0(x)∥2W 4+ε
2

+ C1 ∥φ1(x)∥2W 3+ε
2

+ C2 ∥φ2(x)∥2W 2+ε
2

+ C3 ∥φ3(x)∥2W 1+ε
2

is valid, where Cj –constants, j = 0, 1, 2, 3, 0 < ε < 1.

Proof. The existence of a solution to problem (1.1)–(1.4) under the con-

dition T ̸= (2n+1)π
µk

is associated with the problem of small denominators,
since the expression 1 + cosµkT in the denominators in formula (2.4),
being nonzero, can become arbitrarily small for infinite set k ∈ N . Note
that for an arbitrary integer k > 0∣∣∣cos µkT2 ∣∣∣ = ∣∣∣sin(µkT−π2 − nπ

)∣∣∣ = ∣∣∣sin((µkT−π2π − n
)
π
)∣∣∣

> 2
∣∣∣(µkT−π2π − n

)∣∣∣ = 2k
∣∣∣(µkT−π2πk − n

k

)∣∣∣ ,
where n is a non-negative integer satisfying the inequality∣∣∣∣(µkT − π

2π
− n

)∣∣∣∣ < 1

2
,

moreover, in deriving the upper inequality, we take into account that
for all x ∈ (0, π/2) the inequality sinx > 2x/π is satisfied. According
to [10, Ch. 1] for almost all (in the sense of Lebesgue measure) numbers
T > 0, the inequality∣∣∣∣µkT − π

2πk
− n

k

∣∣∣∣ < 1

k2+ε/2
, 0 < ε < 1,

with respect to k > 0, n > 0, it has at most finitely many integer solu-
tions.

It is also known from number theory that for each µkT−π
2πk there are

constants δ1 > 0 and ε > 0 for which the inequality∣∣∣∣µkT − π

2πk
− n

k

∣∣∣∣ > δ1

k2+ε/2
, 0 < ε < 1

for all (except a finite number) pairs of integers n and k, k ̸= 0. Hence
we have

1 + cosµkT = 2cos2
µkT

2
>

δ2

k2+ε
, (3.1)
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where δ2 = 8δ21. From equality (2.4), using the inequality (a+b+c+d)2 6
4(a2+ b2+ c2+ d2) and the monotonically increasing function chµkT , as
well as using (3.1), we obtain

{
u+k
}2 6 (2 + 2

δ2

)2(
φ+
0k
µ4+εk

)2
+
(

2
µk

+ 2
δ2

)2(
φ+
1k
µ3+εk

)2
+
(

2
µ2k

+ 2
δ2

)2(
φ+
2k
µ2+εk

)2
+
(

2
µ3k

+ 2
δ2

)2(
φ+
3k
µ1+εk

)2
We proceed to estimate the function u−k (t). It follows from the rep-
resentation (2.5) that the expression ∆k = chγkT + cos γkT is in the
denominator. This expression increases monotonically and ∆k > 2 for
all γk, T . Therefore, in (2.5) there is no problem of small denominators.

We consider one of the terms in (2.5)

ch (µk(t+ T )) cos (µk(t− T ))

(ch (µkT ) + cos (µkT ))
2 6 ch (2µkT )

(ch (µkT ) + cos (µkT ))
2 < m,

where m –bounded constant. This estimate is true for any γk, T . The
remaining terms are also bounded for all γk, T . Considering these facts,
we estimate the function u−k (t)

{
u−k (t)

}2 6 4m2
{
φ−
0k

}2
+ 32

m2

γk

{
φ−
1k

}2
+ 8

m2

γ2k

{
φ−
2k

}2
+ 16

m2

γ3k

{
φ−
3k

}2
Combining u+k (t) and u

−
k (t), we have

{
u+k (t)

}2
+
{
u−k (t)

}2 6 C0

(
µ4+εk

)2 ({
φ+
0k

}2
+
{
φ−
0k

}2)
+ C1

(
µ3+εk

)2 ({
φ+
1k

}2
+
{
φ−
1k

}2)
+ C2

(
µ2+εk

)2 ({
φ+
2k

}2
+
{
φ−
2k

}2)
+ C3

(
µ1+εk

)2 ({
φ+
3k

}2
+
{
φ−
3k

}2)
,

where C0=max
{
2(1 + δ−2), 4m2

}
, C1=max

{
2(µ−1

1 + δ−2), 32m2γ−1
1

}
,

C2=max
{
2(µ−2

1 + δ−2), 8m2γ−2
1

}
, C3=max

{
2(µ−3

1 + δ−2), 16m2γ−3
1

}
.

Adding the last inequalities in k, we obtain

∞∑
k=1

{
u+k (t)

}2
+
{
u−k (t)

}2 6 C0 ∥φ0(x)∥2W 4+ε
2

+ C1 ∥φ1(x)∥2W 3+ε
2

+ C2 ∥φ2(x)∥2W 2+ε
2

+ C3 ∥φ3(x)∥2W 1+ε
2

and this implies the proved inequality.
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4. Numerical calculations

For the numerical solution of problem (1.1)–(1.4), we take the initial
data as follows

p(x) = 1, q(x) = 0, φ0(x) = x2 − 1, φj(x) = 0, j = 1, 2, 3.

Then ±λ±k are solutions of the equation tg
√

±λ±k + th
√

±λ±k = 0.

If we denote α =
√

±λ±k , solutions of the equation tg α + thα = 0

can easily be found using the Newton method. When ε = 10−15 error
we calculate α1 ≈ 2.36502037243135, α2 ≈ 5, 49780391900084, α3 ≈
8, 63937982869974 α4 ≈ 11, 7809724510202, αk ≈ −π

4+πk, k > 4, k ∈ N .
Then µk =

√
αk, γk =

√
αk/2, k = 1, 2... .

Let the solution of the problem (1.1)–(1.4) exists and has the form

u(x, t) =

∞∑
k=1

u+k (t)X
+
k +

∞∑
k=1

u−k (t)X
−
k (4.1)

where

u+k (t) =
1

4

(
chµkt+ ch (µk(T − t))

1 + chµkT
+

cosµkt+ cos (µk(T − t))

1 + cosµkT

)
φ+
0k
,

u−k (t) =
1

4∆2
k

(2chγkt cos γkt+ 2ch(γk(t− T )) cos(γk(t− T ))+

ch(γk(t+ T )) cos(γk(t− T )) + ch(γk(t− T )) cos(γk(t+ T ))

+ chγkt cos(γk(t− 2T )) + ch(γk(t− 2T )) cos γkt)φ
−
0k
,

X+
k (x) =

{
sinαk(x−1)

cosαk
, 0 < x 6 1,

shαk(x+1)
chαk

, −1 6 x < 0,

X−
k (x) =

{
shαk(x−1)

chαk
, 0 < x 6 1,

sinαk(x+1)
cosαk

, −1 6 x < 0.

Let µkT = π + 2πn equation has not solution when k, n ∈ N . Then
the numerical table of the solution one can present in the form (case
T = 2, 5, Table 4.1).

Let µkT = π + 2πn equation has solution when k, n ∈ N . Then the
numerical table of solution can be presented in the following form (Ta-
ble 4.2) by approximate values closes to solution of the indicated equa-
tion because problem has not unique solution. As parameters we take
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n = 1, k = 5 and we have T = 2, 43977280574315. For calculation as
approximate T we take T = 2, 4397728.

Remark. The solution by the presented formula (4.1) is calculated
with error ε = 10−4.

t=0,25 t=0,75 t=1,25 t=2,25 t=T
x=-1 0 0 0 0 0

x=-0,8 -0,059 -0,0123 0,0046 -0,059 -0,0891
x=-0,4 -0,1316 -0,0102 0,0352 -0,1316 -0,2079
x=0,2 -0,1053 0,1156 0,2047 -0,1053 -0,2377
x=0,6 -0,0579 0,1096 0,1756 -0,0579 -0,1585

Table 4.1. The numerical solution at T = 2, 5

t=0,25 t=0,75 t=1,25 t=2,25 t=T
x=-1 0 0 0 0 0

x=-0,8 -0,1946 -0,0511 0,1694 -0,1764 -0,0891
x=-0,4 -53,5711 -15,724 64,5786 -43,6283 -0,2079
x=0,2 17375,4 5111,31 -20982,9 14136,65 -0,2377
x=0,6 9134,79 2687,234 -11031,3 7432,073 -0,1585

Table 4.2. The numerical solution at T = 2, 4397728

5. Conclusion

The study shows that the problem under consideration belongs to the
class of ill-posed problems of mathematical physics. Based on the idea
of the theory of ill-posed problems, the initial problem is investigated
for conditional correctness. Since the problem belongs to the class of
weakly incorrect problems, pairs of spaces for which the problem becomes
correct are obtained. The proved theorems provide an opportunity for
constructing an approximate solution algorithm and a numerical solution
on a computer.
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