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Abstract. The present paper is a continuation of our research that
was devoted to the theory of the boundary behavior of mappings in
the Sobolev classes (mappings with generalized derivatives) on Riemann
surfaces. Here we develop the theory of the boundary behavior of the
mappings in the class FLD (mappings with finite length distortion) first
introduced for the Euclidean spaces in the article of Martio–Ryazanov–
Srebro–Yakubov at 2004 and then included in the known monograph
of these authors at 2009 in the modern mapping theory. As it was
shown in the recent papers of Kovtonyuk–Petkov–Ryazanov at 2017,
such mappings, generally speaking, are not mappings in the Sobolev
classes because their first partial derivatives can be not locally integrable.
At the same time, this class is a natural generalization of the well-known
significant classes of isometries and quasi–isometries.

We prove here a series of criteria in terms of dilatations for the con-
tinuous and homeomorphic extension to the boundary of the mappings
with finite length distortion between domains on Riemann surfaces by
prime ends of Caratheodory. The criterion for the continuous extension
of the inverse mapping to the boundary is turned out to be the very
simple condition on the integrability of the dilatations in the first power.
The criteria for the continuous extension of the direct mappings to the
boundary have a much more refined nature. One of such criteria is the
existence of a majorant for the dilation in the class of functions with finite
mean oscillation, i.e., having a finite mean deviation from its mean value
over infinitisemal discs centered at boundary points. As consequences,
it is obtained the corresponding criteria for a homeomorphic extension
of mappings with finite length distortion to the closures of domains by
prime ends of Caratheodory.
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1. Introduction

The present paper is a natural continuation of our previous papers
[22–27], where the reader can find the corresponding historic comments
and a discussion of many definitions and relevant results. The given
papers were devoted to the theory of the boundary behavior of mappings
with finite distortion by Iwaniec on Riemann surfaces first introduced for
the plane case in the paper [6], and then extended to Rn, n > 2, in the
monograph [7].

At the present paper, it is developed the theory of the boundary
behavior of the so–called mappings with finite length distortion first in-
troduced in the paper [15] for Rn, n > 2, see also Chapter 8 in the mono-
graph [17]. As it was shown in the papers [8] and [9], such mappings,
generally speaking, are not mappings with finite distortion by Iwaniec
because of their first partial derivatives can be not locally integrable.

At the same time, this class is a generalization of the known class of
mappings with bounded length distortion by Martio–Väisälä from the pa-
per [18]. Moreover, this class contains as a subclass the so–called finitely
bi–Lipschitz mappings introduced for Rn, n > 2, in the paper [10], see
also Section 10.6 in the monograph [17], that in turn is a natural gener-
alization of the well–known classes of bi–Lipschitz mappings as well as
isometries and quasi–isometries.

In the research of local and boundary behavior of mappings with
finite length distortion in Rn, the key fact was that they satisfy some
modulus inequalities which was a motivation for the consideration more
wide classes of mappings, the so–called Q−homeomorphisms, see e.g. the
paper [16] and Chapters 4–6 in the monograph [17].

Hence it is natural that we start from establishing the corresponding
modulus inequalities that are the main tool for us under the research
of mappings with finite length distortion on Riemann surfaces. On this
basis, we prove here a series of criteria in terms of dilatations for the
continuous and homeomorphic extension to the boundary of the mappings
with finite length distortion between domains on Riemann surfaces.

2. Definitions and preliminary remarks

Later on, we assume that all mappings under the consideration are
continuous. Recall also that we refer the reader for the previous defini-
tions to our papers [22–27] and here we restrict ourselves in the main by
new conceptions.

Let us start from the main definitions of the paper [15] adopted to
the case of domains D in the complex plane C, see also Chapter 8 in
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the monograph [17]. It is said that a mapping f : D → C is of finite
metric distortion, written f ∈ FMD, if f has (N)–property by Luzin
with respect to the area in C and

0 < l(z, f) 6 L(z, f) < ∞ a.e. , (2.1)

where

l(z, f) := lim inf
ζ→z,ζ∈D

|f(ζ)− f(z)|
|ζ − z|

, L(z, f) := lim sup
ζ→z,ζ∈D

|f(ζ)− f(z)|
|ζ − z|

.

(2.2)
Now, we say that a mapping f : D → C has (L)–property, if, for

a.e. path γ in D the path γ̃ = f ◦ γ is locally rectifiable and f |γ has
(N)–property by Luzin with respect to the length measure. Recall that
a path γ in D is a mapping γ : ∆ → D, where ∆ is an interval in R.
Moreover, it is said that a property holds for almost every (a.e.) path of
a family, if the property fails only for its subfamily of paths of conformal
modulus zero, see the definition of the conformal modulus on Riemann
surfaces in our papers [22] and [23].

We say also that a homeomorphism f between domains D and D∗ in
C is of finite length distortion, written f ∈ FLD, if f ∈ FMD and,
moreover, f and f−1 have (L)–property. Finite bi–Lipschitz homeo-
morphisms satisfying condition (2.1) everywhere but not only a.e. give
examples of such homeomorphisms, see Theorem 5.7 in the paper [11]
or Theorem 10.11 in the monograph [17]. A special case of the latter’s
are bi–Lipschitz homeomorphisms for which the quantities in (2.1) are
uniformly in the domain D separated from zero as well as from infin-
ity. Thus, homeomorphisms of finite length distortion are a far reaching
generalization of isometries and quasiisometries.

Remark 1. By Theorem 6.10 in [15] or Theorem 8.6 in [17], a home-
omorphism f ∈ FLD between domains D and D∗ in C satisfies the in-
equality

M(fΓ) 6
∫
D

Q(z) · ρ2(z) dm(z) (2.3)

with Q = Kf for any family Γ of paths γ in D and ρ ∈ admΓ, see [22]
or [23] for definitions of the dilatation Kf , the conformal modulus M of
families of paths and admissible functions ρ : D → [0,∞].

Homeomorphisms f between domains D and D∗ in the complex plane
C satisfying conditions of the type (2.3) are called Q-homeomorphisms,
see the paper [16], and also Chapters 4–6 in the monograph [17]. Corres-
pondingly to Remark 1, such homeomorphisms form a more wide class of
mappings than homeomorphisms with finite length distortion.
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Let us pass to the corresponding definitions on Riemann surfaces.
So, let f be a homeomorphism between domains D and D∗ on Riemann
surfaces S and S∗. First of all, we say that f is a mapping with finite
length distortion, written f ∈ FLD, if f is so in charts of S and S∗.
In view of properties of conformal mappings, namely, (N)–properties of
Luzin with respect to area as well as to length and invariance of local
rectifiable paths, see e.g. Theorem 5.6 in the monograph [29], the defini-
tion is independent on the choice of charts. We also say that f is a local
Q–homeomorphism for a measurable function Q : S → (0,∞), if the
condition (2.3) holds for any family Γ of paths γ in D laying inside an
arbitrary prescribed chart U of the Riemann surface S.

Remark 2. As known, if a function ρ : V → [0,∞] is admissible for
a family A of paths α in an open set V of the complex plane C, then
the function ρ∗(ζ) = ρ(φ−1(ζ))/|φ′(φ−1(ζ))| is admissible for the family
B := φA of paths β := φ ◦α under every conformal mapping φ : V → C,
see again Theorem 5.6 in the monograph [29]. Thus, the right hand side
in the inequality (2.3) is a conformal invariant because the Jacobian of
φ(z) is equal to |φ′(z)|2.

Proposition 1. Every homeomorphism f with finite length distor-
tion between domains D and D∗ on Riemann surfaces S and S∗, corre-
spondingly, is a local Q–homeomorphism with Q = Kf .

Here and later on, we assume that Kf is extended by zero outside of
D.

Proof. Let g : U → C be a chart of the Riemann surface S. Since the
space S is separable, the open set D∩U consists of a countable collection
of its components Uk every of which is homeomorphic to the plane domain
Vk := g(Uk). Thus, every domain U∗

k := f(Uk) is also homeomorphic to
the plane domains Vk and, consequently, by the general Koebe principle,
see e.g. Section II.3 in [12], U∗

k is a chart of the Riemann surface S∗.
Note also that the path family Γ is split into a countable collection of

mutually disjoint path families Γk lying in the domains Uk. Hence also
the path family Γ∗ := fΓ is split into a countable collection of mutually
disjoint path families Γ∗

k := fΓk lying in the domains U∗
k , i.e., in the

corresponding charts of the Riemann surface S∗. Thus, by Remark 1 of
the paper [22] and by Remarks 1 and 2 of the present paper we obtain
the desired conclusion.

3. The main lemma

Recall that the factor D/G of the unit disk D with a discrete group G
of fractional mappings of D onto itself without fixed points is a Riemann



64 Mappings with finite length distortion...

surface with charts from the natural (locally homeomorphic) projection
π : D → D/G, see Theorem 6.2.1 in [1].

Lemma 1. Let G be a discrete group of fractional maps of D onto
itself with no fixed points, f : D → D∗ be a homeomorphism of finite
length distortion between domains D and D∗ on Riemann surfaces S :=
D/G and S∗, p0 ∈ D.

Then there is ε(p0) such that the natural projection π : D → D/G is
injective on a hyperbolic disk B0 := {z ∈ D : h(z, z0) < ε(p0)}, where
z0 ∈ π−1(p0), and

M(f(Γ)) 6
∫
D

Kf (p) ξ
2(p) dh(p) (3.1)

for families Γ of paths in D ∩ π(B0) and measurable functions ξ : D →
[0,∞], such that ∫

γ

ξ(p) dsh(p) > 1 ∀ γ ∈ Γ. (3.2)

Remark 3. By the Klein–Poincare theorem on the uniformization,
see e.g. II.3 in [12], and also 7.4 in [31], an arbitrary Riemann space S
is conformally equivalent to the unit disk D factored by a discrete group
G of fractional mappings of D onto itself without fixed points, excepting
the simplest cases of S that are conformally equivalent to C, C, C \ {0}
or a torus.

In the latter case, S is conformally equivalent to C/G with respect to a
group G of shifts in C with 2 generators z → z+ω1 and z → z+ω2, where
ω1 and ω2 ∈ C \ {0} and Im ω1/ω2 > 0. In this case, a fundamental
domain F is a parallelogram whose sides are parallel to ω1 and ω2 and
gluing its opposite sides just gives a torus. Metrics and areas on surfaces
C/G in the small coincide with Euclidean’s because Euclidean’s metric
and area are invariant under the shifts. In the cases of C, C and C \ {0},
we may also apply the spherical metric and area.

By the scheme of the proof below the relations (3.1) are also valid
for all these special cases with the given metrics and areas instead of
hyperbolic’s. Later on, for the universality, we keep the same notations
in these cases, too.

Proof. By Section 2 in either [22] or [24], here we may identify D/G
with a fundamental set F in D for G with the metric d defined by (2.10)
in [22] that contains a fundamental Poincare polygon Pz0 for G centered
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at z0 ∈ π−1(p0). Let us choose ε(p0) > 0 such that d(z0, z) = h(z0, z) for
d(z0, z) 6 ε(p0) and

ε(p0) < δ0 : = min

[
inf

ζ∈∂Pz0
d(z0, ζ), sup

z∈D
d(z0, z)

]
.

Since dsh(z) = 2|dz|/(1 − |z|2), we see that, for every ξ satisfying
(4.6),∫

γ

η(z) |dz| > 1 ∀ γ ∈ Γ , where η(z) :=
2ξ(z)

1− |z|2
,

i.e., the function η is admissible for the family Γ of paths γ in D∩π(B0).
Moreover, since dh(z) = 4dxdy/(1− |z|2)2, z = x+ iy, we obtain that∫

D

Kf (z) ξ
2(z) dh(z) =

∫
D

Kf (z) η
2(z) dm(z) , (3.3)

where dm(z) := dxdy corresponds to the Lebesgue area in the plane C.
Thus, the conclusion of Lemma 1 follows from Proposition 1.

4. On extending to the boundary of the inverse mappings

We refer the reader to the paper [26] for definitions, notations and
comments in the theory of prime ends. Now, let us start from the follow-
ing statement.

Lemma 2. Let S and S′ be Riemann surfaces, D and D′ be domains
in S and S′, ∂D ⊂ S and ∂D′ ⊂ S′ have finite collections of components,
and f : D → D∗ be a homeomorphism of finite length distortion with
Kf ∈ L1

loc. Then, for all prime ends P1 ̸= P2 of the domain D,

C(P1, f) ∩ C(P2, f) = ∅ . (4.1)

Here we use the notation of the cluster set of the mapping f at
P ∈ ED,

C(P, f) :=

{
P ′ ∈ ED′ : P ′ = lim

k→∞
f(pk), pk → P, pk ∈ D

}

Proof. First of all, by the Uryson theorem, see e.g. Theorem 22.II.1
in [13], S and S′ are metrizable spaces. Hence their compactness is equi-
valent to their sequential compactness, see e.g. Remark 41.I.3 in [14], and
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D, D′, ∂D and ∂D′ are compact subsets of S and S′, correspondingly,
see e.g. Proposition I.9.3 in [2]. Thus, by Lemma 2, Remarks 1 and
2 in [26], we may assume that P1 and P2 are associated with the same
nondegenerate component ∂ of ∂D, Kf ∈ L1(D), D′ is a ring R = {z ∈
C : 0 ≤ r < |z| < 1} and

Ak := C(Pk, f) , k = 1, 2

are sets of points in the circle Cr := {z ∈ C : |z| = r}, ∂D consists
of 2 components: ∂ and a closed Jordan curve γ, f is extended to a
homeomorphism of D ∪ γ onto D′ ∪C1, C(Cr, f−1) = ∂, see Proposition
2.5 in [19] or Proposition 13.5 in [17]. Note that the sets Ak are continua,
i.e. closed arcs of the circle Cr, because

Ak =
∞∩
m=1

f
(
d
(k)
m

)
, k = 1, 2 ,

where d(k)m are domains corresponding to chains of cross–cuts {σ(k)m } in
the prime ends Pk, k = 1, 2, see e.g. I(9.12) in [30] and also I.9.3 in [2].
In addition, by Remark 1 in [26] we may assume also that σ(k)m are open
arcs of the circles C(k)

m := {p ∈ S : h(p, pk) = r
(k)
m } on S with pk ∈ ∂D

and r(k)m → 0 as m→ ∞, k = 1, 2.
Set p0 = p1. By the definition of the topology of the prime ends in

the space DP , we have that d(1)m ∩d(2)m = ∅ for all large enough m because
P1 ̸= P2. For such m, set R1 = r

(1)
m+1 < R2 = r

(1)
m < ε(p0), where ε(p0) is

from Lemma 1, and

Uk = d(k)m , Σk = σ(k)m , Ck = {p ∈ S : h(p, p0) = Rk}, k = 1, 2 .

Let K1 and K2 be arbitrary continua in U1 and U2, correspondingly.
Applying Proposition 2 and Lemma 1 in [26] with T = D, E1 = d

(1)
m+1

and E2 = D \d(1)m , and taking into account the inclusion ∆(K1,K2, D) ⊂
∆(E1, E2, D), we obtain that

∆(K1,K2, D) > ∆(C1, C2, A) , A := {p ∈ S : R1 < h(p, p0) < R2} ,
(4.2)

which means that any path α : [a, b] → S joining K1 and K2 in D,
α(a) ∈ K1, α(b) ∈ K2 and α(t) ∈ D, t ∈ (a, b), has a subpath joining C1

and C2 in A. Thus, since f is a homeomorphism, we have also that

∆(fK1, fK2, fD) > ∆(fC1, fC2, fA) (4.3)

and by the minorization principle, see e.g. [3], p. 178, we obtain that

M(∆(fK1, fK2, fD)) ≤ M(∆(fC1, fC2, fA)) . (4.4)
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Consequently, by Proposition 2.4 in [19], see also Proposition 13.4 in [26],
and Lemma 1 we conclude that

M(∆(fK1, fK2, fD)) 6
∫
A

Kf (p) · ξ2(h(p, p0)) dh(p) (4.5)

for all measurable functions ξ : (R1, R2) → [0,∞] such that

R2∫
R1

ξ(R) dR > 1 . (4.6)

In particular, for ξ(R) ≡ 1/δ, δ = R2 −R1 > 0, we get from here that

M(∆(fK1, fK2, fD)) 6 M0 :=
1

δ

∫
D

Kf (p) dh(p) < ∞ . (4.7)

Since f is a homeomorphism, (4.7) means that

M(∆(K1,K2, D
′)) 6 M0 < ∞ (4.8)

for all continua K1 and K2 in the domains V1 = fU1 and V2 = fU2,
correspondingly.

Let us assume that A1 ∩ A2 ̸= ∅. Then by the construction there
is a point p∗ ∈ ∂R ∩ ∂V1 ∩ ∂V2. However, the latter contradicts (4.8)
because the ring D′ = R is a QED (quasiextremal distance) domains, see
e.g. Theorem 3.2 in [17], see also Theorem 10.12 in [29]. 2

By contrast with the direct mappings, see the next section, we have
the following simple criterion for the inverse mappings.

Theorem 1. Let S and S′ be Riemann surfaces, D and D′ be do-
mains in S and S′, correspondingly, ∂D ⊂ S and ∂D′ ⊂ S′ have finite
collections of components, and let f : D → D′ be a homeomorphism
of finite length distortion with Kf ∈ L1

loc. Then the inverse mapping
g = f−1 : D′ → D can be extended to a continuous mapping g̃ of D′

P

onto DP .

Proof. Recall that by Remark 2 in [26] the spaces DP and D′
P are

compact and metrizable with metrics ρ and ρ′. Let a sequence pn ∈ D′

converges as n → ∞ to a prime end P ′ ∈ ED′ . Then any subsequence
of p∗n := g(pn) has a convergent subsequence by compactness of DP . By
Lemma 2 any such convergent subsequence should have the same limit.
Thus, the sequence p∗n is convergent in DP , see e.g. Theorem 2 of Section
2.20.II in [13]. Similarly, by Lemma 2 the sequence p̃∗n := g(p̃n) has the
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same limit for any other sequence p̃n ∈ D′ as n→ ∞. Hence g generates
the natural mapping g̃ : D′

P → DP .
Note that p∗n cannot converge to an inner point of D because I(P ′) ⊆

∂D′ by Proposition 1 in [26] and, consequently, the cluster set of p∗n
belongs to ∂D, see e.g. Proposition 2.5 in [19] or Proposition 13.5 in [17].
Thus, ED′ is mapped into ED under this extension g̃ of g. In fact, g̃ maps
ED′ onto ED because pn = f(p∗n) has a convergent subsequence for every
sequence p∗n ∈ D that is convergent to a prime end P of the domain D
because D′

P is compact.
The map g̃ is continuous. Indeed, let a sequence P ′

n ∈ D′
P be con-

vergent to P ′ ∈ D′
P . Then by the first item there is a sequence pn ∈ D′

with ρ′(P ′
n, pn) < 2−n and ρ(p∗n, P

∗
n) < 2−n where p∗n := g(pn) and

P ∗
n := g̃(Pn). Then pn → P ′ and, again by the first item, p∗n → P ∗

as well as P ∗
n → P ∗ as n→ ∞, where P ∗ = g̃(P ′). 2

Corollary 1. Under the hypothesis of Lemma 2, if ∂ is a nondegen-
erate component of ∂D, then C(∂, f) is a nondegenerate component of
∂D′.

5. On extending to the boundary of the direct mappings

As it was already established in the plane, no degree of integrabil-
ity of Q leads to the extension to the boundary of direct mappings of
Q−homeomorphisms, see Proposition 6.3 in [17]. The corresponding cri-
terion for that given below is much more refined.

Lemma 3. Let S, S′ be Riemann surfaces, D, D′ be domains in
S, S′, correspondingly, ∂D ⊂ S, ∂D′ ⊂ S′ have finite collections of
components, and let f : D → D′ be a homeomorphism of finite length
distortion.

Suppose that, for all p0 ∈ ∂D,∫
ε<h(p,p0)<ε0

Kf (p)·ψ2
p0,ε,ε0(h(p, p0)) dh(p) = o

(
I2p0,ε0(ε)

)
as ε → 0

(5.1)
for some ε0 > 0 depending on p0, where ψp0,ε,ε0(t), ε ∈ (0, ε0), is a family
of nonnegative measurable functions such that, for all small enough ε ∈
(0, ε0),

0 < Ip0,ε0(ε) :=

ε0∫
ε

ψp0,ε,ε0(t) dt < ∞ . (5.2)

Then f can be extended to a continuous mapping f̃ of DP onto D′
P .
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Note that conditions (5.1)–(5.2) imply that Ip0,ε0(ε) → ∞ as ε → 0
and that ε0 can be chosen arbitrarily small with keeping (5.1)–(5.2).

Proof. By Lemma 2, Remarks 1 and 2 in [26], arguing as in the
beginning of the proof of Lemma 2 of the present paper, we may assume
with no loss of generality that D is a compact set in S, ∂D consists
of 2 components: a closed Jordan curve γ and one more nondegenerate
component ∂, D′ is a ring R = {z ∈ C : 0 < r < |z| < 1}, D′

P = R,

C(∂, f) = Cr := {z ∈ C : |z| = r}, C(γ, f) = C1 := {z ∈ C : |z| = 1}

and that f is extended to a homeomorphism of D ∪ γ onto D′ ∪ C1.
Let us first prove that the set L := C(P, f) consists of a single point

of Cr for a prime end P of the domain D associated with ∂. Note that
L ̸= ∅ by compactness of the set R and, moreover, L ⊆ Cr by Proposition
1 in [26].

Let us assume that there is at least two points ζ0 and ζ∗ ∈ L. Set
U = {ζ ∈ C : |ζ − ζ0| < ρ0} where 0 < ρ0 < |ζ∗ − ζ0|.

Let σk, k = 1, 2, . . . , be a chain in the prime end P from Remark 1
in [26] lying on the circles Sk := {p ∈ S : h(p, p0) = rk} where p0 ∈ ∂
and rk → 0 as k → ∞. Let dk be the domains associated with σk. Then
there exist points ζk and ζ∗k in the domains d′k = f(dk) ⊂ R such that
|ζ0 − ζk| < ρ0 and |ζ0 − ζ∗k | > ρ0 and, moreover, ζk → ζ0 and ζ∗k → ζ∗
as k → ∞. Let γk be paths joining ζk and ζ∗k in d′k. Note that by the
construction ∂U ∩ γk ̸= ∅, k = 1, 2, . . ..

By the condition of strong accessibility of the point ζ0 in the ring R,
there is a continuum E ⊂ R and a number δ > 0 such that

M(∆(E, γk;R)) > δ (5.3)

for all large enough k. Note that C = f−1(E) is a compact subset of
D because f is a homeomorphism and hence d0 := h(p0, C)) > 0. Let
ε0 ∈ (0, d0). Without loss of generality, we may assume that rk < ε0 and
that (5.3) holds for all k = 1, 2, . . ..

Let Γm be the family of paths joining the circle S0 := {p ∈ S :
h(p, p0) = ε0} and σm, m = 1, 2, . . ., in the intersection of D \ dm and
the ring Rm := {p ∈ S : rm < h(p, p0) < ε0}. Applying Proposition
2 and Lemma 2 in [26] with T = D, E1 = dm and E2 = B0 := {p ∈
S : h(p, p0) > ε0}, and taking into account the inclusion ∆(C,Ck, D) ⊂
∆(E1, E2, D) = ∆(B0, dm, D) where Ck = f−1(γk), we have that
∆(C,Ck, D) > Γm for all k > m because by the construction Ck ⊂ dk ⊂
dm. Thus, since f is a homeomorphism, we have also that ∆(E, γk, D) >
fΓm for all k > m, and by the principle of minorization, see e.g. [3], p.
178, we obtain that M(f(Γm)) > δ for all m = 1, 2, . . ..
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On the other hand, every function ξ(t)=ξm(t) :=ψp0,rm,ε0(t)/Ip0,ε0(rm),
m = 1, 2, . . ., satisfies the condition (4.6) with R2 = ε0 and R1 = rm and
we obtain by Lemma 1, see also Proposition 2.4 in [19] or Proposition
13.4 in [17], that

M(fΓm) 6
∫
Rm

Kf (p) · ξ2m(h(p, p0)) dh(p) ,

i.e., M(fΓm) → 0 as m→ ∞ in view of (5.1).
The obtained contradiction disproves the assumption that the cluster

set C(P, f) consists of more than one point.
Thus, we have the extension f̃ of f to DP such that f̃(ED) ⊆ ED′ . In

fact, f̃(ED) = ED′ . Indeed, if ζ0 ∈ D′, then there is a sequence ζn in D′

that is convergent to ζ0. We may assume with no loss of generality that
f−1(ζn) → P0 ∈ DP because DP is compact, see Remark 2 in [26]. Hence
ζ0 ∈ ED because ζ0 /∈ D, see e.g. Proposition 2.5 in [19] or Proposition
13.5 in [17].

Finally, let us show that the extended mapping f̃ : DP → D′
P is

continuous. Indeed, let Pn → P0 in DP . The statement is obvious for
P0 ∈ D. If P0 ∈ ED, then by the last item we are able to choose P ∗

n ∈ D
such that ρ(Pn, P ∗

n) < 2−n and ρ′(f̃(Pn), f̃(P
∗
n)) < 2−n where ρ and ρ′

are some metrics on DP and D′
P , correspondingly, see Remark 2 in [26].

Note that by the first part of the proof f(P ∗
n) → f(P0) because P ∗

n → P0.
Consequently, f̃(Pn) → f̃(P0). 2

Lemma 3 makes possible to derive a series of criteria on the continuous
extension to the boundary of mappings with finite length distortion, for
instance:

Theorem 2. Let S, S∗ be Riemann surfaces, D, D∗ be domains
on S, S∗, correspondingly, ∂D ⊂ S, ∂D∗ ⊂ S∗ have finite collections of
components, and let f : D → D′ be a homeomorphism of finite length
distortion. Suppose that

δ(p0)∫
0

dr

||Kf || (p0, r)
= ∞ ∀ p0 ∈ ∂D (5.4)

for some δ(p0) > 0, where

||Kf || (p0, r) : =

∫
h(p,p0)=r

Kf (p) dsh(p) .

Then f can be extended to a continuous mapping f̃ of DP onto D′
P .
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Proof. Indeed, setting ψp0(t) = 1/||Kf || (p0, t) for all t ∈ (0, ε0), ε0 :
= ε(p0), where ε(p0) is from Lemma 1, and ψp0(t) = 1 for all t ∈ (ε0,∞),
we obtain from condition (5.4) that∫
ε<h(p,p0)<ε0

Kf (p)·ψ2
p0(h(p, p0)) d h(p) = Ip0,ε0(ε) = o(I2p0,ε0(ε)) as ε→ 0

where, in view of the condition Kf (p) ∈ [1,∞) a.e. in D, for small enough
ε,

0 < Ip0,ε0(ε) : =

ε0∫
ε

ψp0(t) dt < ∞ .

Thus, the conclusion of Theorem 2 follow from Lemma 3. 2

Corollary 2. In particular, the conclusion of Theorem 2 holds if

Kf (p) = O

(
log

1

h(p, p0)

)
as p→ p0 ∀ p0 ∈ ∂D (5.5)

or, more generally,

kp0(ε) = O

(
log

1

ε

)
as ε→ 0 ∀ p0 ∈ ∂D (5.6)

where kp0(ε) is the mean value of the function Kf over the circle h(p, p0)=
ε.

By Theorem 3.1 in [20] we have the following consequence of Theorem
2, too.

Theorem 3. Let S, S∗ be Riemann surfaces, D, D∗ be domains
on S, S∗, correspondingly, ∂D ⊂ S, ∂D∗ ⊂ S∗ have finite collections of
components, and let f : D → D′ be a homeomorphism of finite length
distortion. Suppose that∫

U

Φ(Kf (p)) dh(p) < ∞ (5.7)

in a neighborhood U of ∂D where Φ : R+ → R+
is a nondecreasing

convex function with the condition

∞∫
δ

dτ

τΦ−1(τ)
= ∞ , δ > Φ(0) . (5.8)

Then f can be extended to a continuous mapping f̃ of DP onto D′
P .
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Remark 4. Note that by Theorem 5.1 and Remark 5.1 in [11] con-
dition (5.8) is not only sufficient but also necessary for the continuous
extension to the boundary of all mappings f of finite length distortion
with integral restrictions of the form (5.7). Note also that by Theorem
2.1 in [20] and Theorem 2.5 in [21] condition (5.8) is equivalent to each
of the following conditions where H(t) = log Φ(t):

∞∫
∆

H ′(t)
dt

t
= ∞ , (5.9)

∞∫
∆

dH(t)

t
= ∞ , (5.10)

∞∫
∆

H(t)
dt

t2
= ∞ (5.11)

for some ∆ > 0, and also to each of the equality:

δ∫
0

H

(
1

t

)
dt = ∞ (5.12)

for some δ > 0,
∞∫

∆∗

dη

H−1(η)
= ∞ (5.13)

for some ∆∗ > H(+0).

Here the integral in (5.10) is understood as the Lebesgue—Stiltjes
integral, and the integrals in (5.9), (5.11)–(5.13) as the usual Lebesgue
integrals.

It is necessary to give more explanations. In the right hand sides of
conditions (5.9)–(5.13), we have in mind +∞. If Φ(t) = 0 for t ∈ [0, t∗],
then H(t) = −∞ for t ∈ [0, t∗], and we complete the definition in (5.9)
setting H ′(t) = 0 for t ∈ [0, t∗]. Note that conditions (5.10) and (5.11)
exclude that t∗ belongs to the interval of integrability because in the
contrary case the left hand sides in (5.10) and (5.11) either are equal −∞
or not determined. Hence we may assume that in (5.9–(5.12) δ > t0,
correspondingly, ∆ < 1/t0 where t0 := supΦ(t)=0 t and t0 = 0 if Φ(0) > 0.
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Among the conditions counted above, the most interesting one is con-
dition (5.11) that can be written in the form:

∞∫
∆

log Φ(t)
dt

t2
= +∞ for some ∆ > 0 . (5.14)

Corollary 3. In particular, the conclusion of Theorem 3 holds if,
for α > 0, ∫

U

eαKf (p) dh(p) < ∞ . (5.15)

The next statement follows by Remarks 3–4 and Lemma 2 with ψ(t) =
1/t.

Theorem 4. Let S, S∗ be Riemann surfaces, D, D∗ be domains
on S, S∗, correspondingly, ∂D ⊂ S, ∂D∗ ⊂ S∗ have finite collections of
components, and let f : D → D′ be a homeomorphism of finite length
distortion. Suppose that∫
ε<h(p,p0)<ε0

Kf (p)
dh(p)

h(p, p0)2
= o

([
log

1

ε

]2)
as ε→ 0 ∀ p0 ∈ ∂D .

(5.16)
Then f can be extended to a continuous mapping f̃ of DP onto D′

P .

Remark 5. Choosing in Lemma 3 the function ψ(t) = 1/(t log 1/t)
instead of ψ(t) = 1/t, we obtain that condition (5.16) can be replaced by
the condition∫
ε<h(p,p0)<ε0

Kf (p) dh(p)(
h(p, p0) log 1

h(p,p0)

)2 = o

([
log log

1

ε

]2)
as ε→ 0 .

(5.17)
Similarly, condition (5.6) by Theorem 2 can be replaced by the weaker
condition

kz0(ε) = O

(
log

1

ε
log log

1

ε

)
as ε→ 0 . (5.18)

Of course, we could give here a series of the corresponding conditions of
the logarithmic type applying suitable functions ψ(t).

Following paper [19], cf. [5], see also Section 13.4 in [17], Section 2.3
in [4], we say that a function φ : S → R has finite mean oscillation at
a point p0 ∈ S, written φ ∈ FMO(p0), if

lim sup
ε→0

−
∫
B(p0, ε)

| φ(p)− φ̃ε| dh(p) < ∞ (5.19)
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where φ̃ε is the mean value of φ over the disk B(p0, ε) = {p ∈ S :
h(p, p0) < ε}.

By Remarks 3–4 and Lemma 3 with the choice ψp0, ε(t) ≡ 1/t log 1
t ,

in view of Lemma 4.1 and Remark 4.1 in [19], see also Lemma 13.2 and
Remark 13.3 in [17], we come to the following result.

Theorem 5. Let S, S∗ be Riemann surfaces, D, D∗ be domains
on S, S∗, correspondingly, ∂D ⊂ S, ∂D∗ ⊂ S∗ have finite collections of
components, and let f : D → D′ be a homeomorphism of finite length
distortion. Suppose that

Kf (p) 6 Q(p) ∈ FMO(p0) ∀ p0 ∈ ∂D, for some Q : S → R+.
(5.20)

Then f can be extended to a continuous mapping f̃ of DP onto D′
P .

By Corollary 4.1 in [19], see also Corollary 13.3 in [17], we have the
next:

Corollary 4. In particular, the conclusion of Theorem 5 holds if

lim sup
ε→0

−
∫
B(p0, ε)

Kf (p) dh(p) < ∞ ∀ p0 ∈ ∂D . (5.21)

Remark 6. Combining the above results with Theorem 1, we get
that, under the hypotheses of Theorems 3 and 5 and Corollaries 3 and
4, f can be extended to a homeomorphism f̃ of DP onto D′

P . To
obtain this conclusion in the cases of Lemma 3, Theorem 2, Corollary
2, Remark 4 and Theorem 4, we should add the hypothesis that Kf is
integrable at least in a neighborhood of ∂D. We do not formulate the
corresponding theorems on a homeomorphic extension to the boundary
of mappings with finite length distortion in the explicit form because of
the restrictions on the volume of the paper.
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