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Abstract. Approximative properties of linear summation methods of
Fourier series are considered in the Orlicz type spaces SM . In particular,
in terms of approximations by such methods, constructive characteristics
are obtained for classes of functions whose moduli of smoothness do not
exceed a certain majorant.

2010 MSC. 41A35, 41A10, 41A27.

Key words and phrases. Linear summation method, modulus of
smoothness, direct approximation theorem, inverse approximation theo-
rem, Orlicz type spaces.

1. Introduction

Linear methods (or processes) of summation of Fourier series are an
important object of research in approximation theory. In particular, this
is due to the fact that most of these methods naturally generate the
corresponding aggregate of approximation. These topics are well studied
in classical functional spaces such as Lebesgue and Hilbert spaces, the
spaces of continues functions, etc. However, there are relatively fewer
papers devoted to similar topics in the Banach spaces of Orlicz type. It
particularly concerns the direct and inverse theorems of approximation
by linear summation methods.

In the paper, approximative properties of linear summation methods
of Fourier series are studied in the Orlicz type spaces SM . The spaces
SM are defined in the following way. An Orlicz function M(t) is a non-
decreasing convex function defined for t ≥ 0 such that M(0) = 0 and
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M(t) → ∞ as t → ∞. Let SM be the space of all 2π-periodic Lebesgue
summable functions f (f ∈ L1) such that the following quantity (which
is also called the Luxemburg norm of f) is finite:

∥f∥
M

:=∥{f̂(k)}k∈Z∥lM (Z)=inf

{
a > 0 :

∑
k∈Z

M(|f̂(k)|/a) ≤ 1

}
, (1.1)

where f̂(k) := [f ]̂(k) = (2π)−1
∫ 2π
0 f(t)e−iktdt, k ∈ Z, are the Fourier

coefficients of f . Functions f ∈ L1 and g ∈ L1 are equivalent in the space
SM , when ∥f − g∥

M
=0.

The spaces SM defined in this way are Banach spaces. They were con-
sidered in [6]. In particular, direct and inverse approximation theorems
in terms of the best approximations of functions and moduli of fractional
smoothness are proved for the spaces SM in [6].

In case M(t) = tp, p ≥ 1, the spaces SM coincide with the well-known
spaces Sp [18] of functions f ∈ L1 with the finite norm

∥f∥Sp = ∥{f̂(k)}k∈Z∥lp(Z) =
(∑
k∈Z

|f̂(k)|p
)1/p

.

In Sp, approximative properties of linear summation methods of Fourier
series were studied in [16, 17]. The purpose of this paper is to continue
this study of approximative properties of linear summation methods in
the spaces SM . In this case, our attention is drawn to the connection of
the approximative properties of these methods with the differential prop-
erties of the functions, namely, direct and inverse theorems of approxi-
mation by the methods of Zygmund, Abel–Poisson, Taylor–Abel–Poisson
are proved, and in terms of approximations by such methods, construc-
tive characteristics are given for classes of functions of SM such that the
moduli of smoothness of their generalized derivatives do not exceed a
certain majorant.

2. Preliminaries

For any function f ∈ L1 with the Fourier series of the form

S[f ](x) :=
∑
k∈Z

f̂(k)eikx,

consider the following linear transformations Sn, Z
(s)
n , Pϱ,s and Aϱ,r:

Sn(f)(x) :=

n∑
k=−n

f̂(k)eikx, n = 0, 1, . . . ,
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Z(s)
n (f)(x) :=

n∑
k=−n

(
1−

( |k|
n+ 1

)s)
f̂(k)eikx, s > 0,

Pϱ,s(f)(x) :=
∑
k∈Z

ϱ|k|
s
f̂(k)eikx, s > 0, ϱ ∈ [0, 1),

and
Aϱ,r(f)(x) :=

∑
k∈Z

λ|k|,r(ϱ)f̂ke
ikx, (2.1)

where for k = 0, 1, . . . , r − 1, the numbers λk,r(ϱ) ≡ 1 and

λk,r(ϱ) :=

r−1∑
j=0

(
k

j

)
(1− ϱ)jϱk−j , k = r, r + 1, . . . , ϱ ∈ [0, 1]. (2.2)

The expressions Sn(f), Z
(s)
n (f) and Pϱ,s(f) are called the partial sum

of the Fourier series, the Zygmund sum and the generalised Abel–Poisson
sum of the function f , respectively. The expression Aϱ,r(f) is called the
Taylor–Abel–Poisson sum of the function f . If s = 1, then the sum
Z

(s)
n (f) coincides with the Fejér sum of the function f , i.e.,

Z(1)
n (f)(x) = σn(f)(x) :=

1

n+ 1

n∑
k=0

Sk(f)(x) =

n∑
k=−n

(
1− |k|

n+ 1

)
f̂(k)eikx.

Note that the transformation Aϱ,r can be considered as a linear ope-
rator on L1 into itself. Indeed, for k = 0, 1, . . . , r − 1, the numbers
λk,r(ϱ) ≡ 1 and

r−1∑
j=0

(
k

j

)
(1− ϱ)jϱk−j ≤ rqkkr−1, where q = max{1− ϱ, ϱ},

and hence, for any f ∈ L1 and 0 < ϱ < 1, the series on the right-hand
side of (2.1) is majorized by the convergent series 2r∥f∥

L1

∑∞
k=r q

kkr−1.

Denote by P (f) (ϱ, x), 0 ≤ ϱ < 1, the Poisson integral (the Poisson
operator) of f , i.e.,

P (f) (ϱ, x) :=
1

2π

∫ 2π

0
f(t)P (ϱ, x− t)dt, (2.3)

where P (ϱ, t) = 1−ϱ2
|1−ϱeit|2 is the Poisson kernel.

According to the decomposition of the Poisson kernel in powers of ϱ,
for any function f ∈ L1, its Poisson integral P (f)(ϱ, x), with ϱ ∈ [0, 1)
and x ∈ [0; 2π] can be written in the form

P (f) (ϱ, x) =
∑
k∈Z

ϱ|k|f̂ke
ikx. (2.4)
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The sum of the right-hand side of this equality coincides with the sum
of the Abel–Poisson of the series

∑
k∈Z f̂(k)e

ikx, or, what is the same,
with the sum of Pϱ,1(f)(x). For x = 0, we denote by F (ϱ) the sum of
this series and consider it as a function of the variable ϱ. It is clear that
the function F is analytic on [0, 1). Therefore, in the neighborhood of
ϱ ∈ [0, 1) for the functions F , the following Taylor’s formula is satisfied:

F (t) =

∞∑
k=0

F (k)(ϱ)

k!
(t− ϱ)k.

By direct computation we see that the partial sum of this series of order
r−1 for t = 1 coincides with the sum Aϱ,r(f)(0). In particular, for r = 1,
we obtain F (ϱ) = Aϱ,1(f)(0) = Pϱ,1(f)(0).

Consequently, on the one hand, the sum of Aϱ,r(f)(0) can be inter-
preted as the Taylor sum of order r − 1 of the function F , and on the
other hand, for r = 1, it can be interpreted as the Abel–Poisson sum.

The operators Aϱ,r were first studied in [15], where in the terms of
these operators, the author gives the structural characteristic of Hardy–
Lipschitz classes Hr

p Lipα of one variable functions, holomorphic in the
unit disc in the complex plane. Approximative properties of these op-
erators were also considered in [13, 16]. In general case, the operators
Pϱ,s were perhaps first considered as the aggregates of approximation of
functions of one variable in [3, 4]. In special cases when r = s = 1,
the operators Aϱ,1 and Pϱ,1 coincide with each other and generate the
Abel–Poisson summation method of Fourier series. The problem of ap-
proximation of 2π-periodic functions by Abel–Poisson sums has a long
history, full of many results. Here we mention only the books [1, 5, 20],
which contain fundamental results in this subject.

3. Derivatives and moduli of smoothness

Let ψ = {ψ(k)}k∈Z be a numerical sequence whose members are not
all zero and

Z(ψ) := {k ∈ Z : ψ(k) = 0} .

In what follows, assume that the number of elements of the set Z(ψ) is
finite.

If for the function f ∈ L1, there exists the function g ∈ L1 with the
Fourier series of the form

S[g](x) =
∑

k∈Z\Z(ψ)

f̂(k)eikx/ψ(k), (3.1)
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then we say that for the function f , there exists ψ-derivative g, for which
we use the notation g = fψ.

This definition of ψ-derivative is adapted to the needs of the research
described in this paper and it is not fundamentally different from the
established concept of ψ-derivative of A.I. Stepanets [19, Ch. XI].

In the paper, we consider ψ-derivatives defined by the sequences of
the following two forms: 1) ψ(k) = |k|−s, k ∈ Z, s > 0, and 2) ψ(k) = 0
for |k| ≤ r−1 and ψ(k) = (|k|−r)!/(|k|!) for |k| ≥ r, where r ∈ N. In the
first case, for ψ-derivative of f , we use the notation f (s) and in the second
case, we use the notation f [r]. If r = 0, then we set f (0) = f [0] = f. Also
note that f (1) = f [1].

In the terms of Poisson integrals, we give the following interpretation
of the derivative f [r]. Assume that ϱ ∈ [0, 1), then

P (f [r])(ϱ, x) = ϱr
∂r

∂ϱr
P (f)(ϱ, x) (3.2)

and by virtue of the well-known theorem on radial limit values of the
Poisson integral (see, eg, [14]), for almost all x ∈ [0; 2π]

f [r](x) = lim
ϱ→1−

∂r

∂ϱr
P (f)(ϱ, x).

The modulus of smoothness of f ∈ SM of the index α > 0 is defined
by

ωα(f, δ)M := sup
|h|≤δ

∥∆α
hf∥M = sup

|h|≤δ

∥∥∥ ∞∑
j=0

(−1)j
(
α

j

)
f(x− jh)

∥∥∥
M

,

where δ > 0,
(
α
0

)
:= 1,

(
α
j

)
= α(α− 1) · . . . · (α− j + 1)/j!, j ∈ N.

Let ω be a function defined on the interval [0, 1]. For α > 0, we set

SMHα
ω :=

{
f ∈ SM : ωα(f, δ)M = O(ω(δ)), δ → 0+

}
.

Further, we consider the functions ω(t), 0 ≤ t ≤ 1, satisfying the following
conditions 1)-4): 1) ω(t) is continuous on [0, 1]; 2) ω(t) is monotonically
increasing; 3) ω(t)̸= 0 for t ∈(0, 1]; 4) ω(t) → 0 as t → 0; and the well-
known Zygmund–Bari–Stechkin conditions (B) and (Bs), s ∈ N (see,
e.g., [2]):

(B) :

∞∑
v=n+1

v−1 ω(v−1) = O[ω(n−1)], n→ ∞;

(Bs) :
n∑
v=1

vs−1 ω(v−1) = O[nsω(n−1)], n→ ∞.
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Remark 3.1. From condition (Bs) it follows that lim inf
δ→0+

(δ−sω(δ)) > 0

or that for any r ≥ s, the quantity (1 − ϱ)r−sω(1 − ϱ) ≫ (1 − ϱ)r as
ϱ→ 1−.

4. The main results

Proposition 4.1. Assume that f ∈ L1, s > 0 and ω is the function
satisfying conditions 1)–4) and (B). The following statements are equiv-
alent:

1) ∥Sn(f (s))∥M = O(nsω(n−1)), n→ ∞;

2)
∥∥∥f − Z

(s)
n (f)

∥∥∥
M

= O(ω(n−1)), n→ ∞;

3) f ∈ SMHs
ω.

Let us note that in the case when s ∈ N and the function ω satisfies
conditions 1)–4), (B) and (Bs), the relation 1) of Proposition 4.1 is
equivalent to the corresponding relation for the derivative f [s]:

∥Sn(f [s])∥M = O(nsω(n−1)), n→ ∞. (4.1)

Indeed, by the definition for |k| < s we have 0 = |f̂ [s](k)| ≤ |f̂ (s)(k)| and
for |k| ≥ s,

|f̂ [s](k)| = |k|(|k| − 1) · . . . · (|k| − s+ 1)f̂(k) ≤ |k|s|f̂(k)| = |f̂ (s)(k)|.

Therefore, if the statement 1) of Proposition 4.1 holds, then

∥Sn(f [s])∥M ≤ ∥Sn(f (s))∥M = O(nsω(n−1)), n→ ∞.

On the other hand, for |k| ≥ s, we have

|f̂ [s](k)| = |k|s·
(
1− 1

|k|

)
·...·
(
1− s− 1

|k|

)
|f̂(k)| ≥ |k|s

ss
|f̂(k)| = s−s|f̂ (s)(k)|.

Therefore, taking into account Remark 3.1, we see that relation (4.1)
yields the statement 1):

∥Sn(f (s))∥M ≤ ∥Ss−1(f
(s))∥

M
+

∥∥∥∥ ∑
s≤|k|≤n

|k|sf̂(k)eikx
∥∥∥∥
M

≤ ∥Ss−1(f
(s))∥

M
+ ss∥Sn(f [s])∥M = O(nsω(n−1)), n→ ∞.

Hence, the following assertion is valid:
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Proposition 4.2. Assume that f ∈ L1, s ∈ N and ω is the function,
satisfying conditions 1)–4), (B) and (Bs). The following statements are
equivalent:

1) ∥Sn(f{s})∥M = O(nsω(n−1)), n → ∞, where f{s} is one of the

derivatives f [s] or f (s);

2)
∥∥∥f − Z

(s)
n (f)

∥∥∥
M

= O(ω(n−1)), n→ ∞;

3) f ∈ SMHs
ω.

In the case when s = 1, we have f (1) = f [1] and Z(1)
n (f) = σn(f).

Corollary 4.1. Assume that f ∈ L1 and ω is a function satisfying
conditions 1)–4) and (B). The following statements are equivalent:

1) ∥Sn(f [1])∥M = O(nω(n−1)), n→ ∞;

2) ∥f − σn(f)∥
M

= O(ω(n−1)), n→ ∞;

3) f ∈ SMH1
ω.

The proof of these and others assertions will be given in Section 6. Let
us give some comments. First, let us note that in the proposed assertions,
the equivalence 2) ⇔ 3) is the statement of the type direct and inverse
theorem for Zygmund and Fejér method [5].

In the papers [9–12], Móricz investigated properties of 2π-periodic
functions represented by Fourier series, which convergent absolutely. In
particular, in [9] and [12], the author found the conditions under which
such functions satisfy the Lipshitz and Zygmund condition respectively.

In the cases where M(t) = t and ω(t) = tβ , the implication 1) ⇒ 3) of
Corollary 4.1 (β ∈ (0, 1)) coincides with the statements (i) of Theorem 1
[9] and the implication 1) ⇒ 3) of Proposition 4.1 (β ∈ (0, 2)) coincides
with the statements (i) of Theorem 1 [10].

In the following theorem, we give the direct and inverse theorem of the
approximation of functions by the linear operator Aϱ,r in the space SM
and constructive characteristics for classes of functions of SM such that
the moduli of smoothness of their generalized derivatives do not exceed
majorants ω.

Theorem 4.1. Assume that f ∈ L1, s, r ∈ N, s ≤ r and ω is a function
satisfying conditions 1)–4), (B) and (Bs). The following statements are
equivalent:

1) ∥f −Aϱ,r(f)∥M = O((1− ϱ)r−sω(1− ϱ)), ϱ→ 1−;

2)
∥∥P (f [r])(ϱ, ·)∥∥

M
= O((1− ϱ)−sω(1− ϱ)), ϱ→ 1−;

3) ∥Sn(f [r])∥M = O(nsω(n−1)), n→ ∞;

4) f [r−s] ∈ SMHs
ω.
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Let us note that the implication 2) ⇒ 3) is the statement of the
Hardy–Littlewood type theorems [8].

Remark 4.1. In Remark 3.1 it is noted that from the condition (Bs)
it follows that (1 − ϱ)r−sω(1 − ϱ) ≫ (1 − ϱ)r as ϱ → 1−. There-
fore, if the condition (Bs) is satisfied, then the quantity on the right-
hand side of the relation in statement 1) decreases to zero as ϱ → 1−
not faster, than the function (1 − ϱ)r. Also note that the relation
∥f − Aϱ,r(f)∥M = o ((1− ϱ)r)) , ϱ → 1−, holds only in the trivial case

when f(x) =
∑

|k|≤r−1 f̂ke
ikx, and in such case, the theorems are eas-

ily true. This fact is related to the so-called saturation property of the
approximation method, generated by the operator Aϱ,r. In particular,
in [15], it was shown that the operator Aϱ,r generates the linear ap-
proximation method of holomorphic functions, which is saturated in the
Hardy space Hp with the saturation order (1 − ϱ)r and the saturation
class Hr−1

p Lip 1.

Consider approximative properties of the sums Pϱ,s(f) in the space
SM .

Let us prove that for any function f ∈ SM such that the derivative
f (s) ∈ SM , the following relation holds as ϱ→ 1−:

∥f − Pϱ,s(f)∥M ∼ ∥f (s−1) − Pϱ,1(f
(s−1))∥

M
∼ (1− ϱ)∥f (s)∥

M
. (4.2)

For this, let us show that

∥f − Pϱ,s(f)∥M ∼ (1− ϱ)∥f (s)∥
M
, ϱ→ 1− . (4.3)

The second relation in (4.2) is proved similarly.
For any n ∈ N, we have 1 − ϱn = (1 − ϱ)(1 + ϱ + . . . + ϱn−1). Then

setting b1 := (1− ϱ)∥f (s)∥
M

, we get for all ϱ ∈ (0, 1),∑
k∈Z

M
(
(1− ϱ|k|

s
)|f̂(k)|/b1

)
≤
∑
k∈Z

M
(
(1− ϱ)|k|s|f̂(k)|/b1

)
≤ 1.

Therefore, ∥f − Pϱ,s(f)∥M ≤ (1− ϱ)∥f (s)∥
M

.
On the other hand side, since f (s) ∈ SM , then for any ε > 0 there

exists a number N ∈ N such that for all n ≥ N

∥Sn(f (s))∥M ≥ ∥f (s)∥
M

− ε/4

and by the definition of the norm∑
|k|≤N

M

(
|k|s|f̂(k)|

∥f (s)∥
M

− ε/2

)
≥
∑
|k|≤N

M

(
|k|s|f̂(k)|

∥Sn(f (s))∥M − ε/4

)
> 1.
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Choosing ϱ0 such that for all ϱ ∈ (ϱ0, 1) and |k| ≤ N , the following
inequality holds:

(∥f (s)∥
M

− ε/2)(1 + ϱ+ . . .+ ϱ|k|
s−1) > |k|s(∥f (s)∥

M
− ε)

we see that for such ϱ and b2 := (1− ϱ)(∥f (s)∥
M

− ε)∑
k∈Z

M
(
(1−ϱ|k|s)|f̂(k)|/b2

)
≥
∑
|k|≤N

M
(
(1−ϱ)(1+ϱ+. . .+ϱ|k|s−1)|f̂(k)|/b2

)

=
∑
|k|≤N

M

(
(1 + . . .+ ϱ|k|

s−1)|f̂(k)|
∥f (s)∥

M
− ε

)
>
∑
|k|≤N

M

(
|k|s|f̂(k)|

∥f (s)∥
M

− ε/2

)
> 1.

Thus, for all ϱ ∈ (ϱ0, 1), we have ∥f − Pϱ,s(f)∥M ≥ (1− ϱ)(∥f (s)∥
M

− ε)
and hence relation (4.3) holds.

It is clear that
Pϱ,1(f)(x) = Aϱ,1(f)(x).

Therefore, applying Theorem 2.1 to the function f = g(s−1) with r = 1
and taking into account relation (4.2), we obtain the following result.

Theorem 4.2. Assume that f ∈ L1, s ∈ N, and ω is the function,
satisfying conditions 1)–4), (B) and (Bs). The following statements are
equivalent:

1) ∥f − Pϱ,s(f)∥M = O(ω(1− ϱ)), ϱ→ 1−;

2)
∥∥P (f (s))(ϱ, ·)∥∥

M
= O(ω(1−ϱ)1−ϱ ), ϱ→ 1−;

3) f (s−1) ∈ SMH1
ω.

Let us note that in the case where M(t) = tp, p ≥ 1, that is in the
spaces Sp, Proposition 4.1, Theorem 2.1 (for s = 1) and Theorem 4.2
were proved in [16].

5. The equivalence between moduli of smoothness and K-
functionals

It is known that approximative properties of functions are well ex-
pressed by their K-functionals. In [16] the authors showed the depen-
dence of the order of approximation of a given function by the Taylor–
Abel–Poisson means and the behavior of its modulus of smoothness in
the spaces Sp. In [13] the dependence was found for the order of approx-
imation of a given function by the Taylor–Abel–Poisson means and the
behavior of K-functionals of the function generated by its radial deriva-
tives in the spaces Lp. It is natural to study the relations the modulus
of smoothness and such K-functionals of functions in the spaces SM .
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In the space SM , the Petree K-functional of a function f (see, e.g. [7,
Ch. 6]), which generated by its radial derivative of order n ∈ N, is the
following quantity:

Kn(δ, f)M = inf
{
∥f − g∥

M
+ δn∥g[n]∥

M
: g[n] ∈ SM

}
, δ > 0. (5.1)

Theorem 5.1. For any n ∈ N, there exist constants C1(n), C2(n) > 0,
such that for each f ∈ SM and all δ > 0

C1(n)ωn(f, δ)M ≤ Kn(δ, f)M

+δn
∥∥∥ ∑
0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

≤ C2(n)ωn(f, δ)M . (5.2)

Remark 5.1. Let f ∈ SM . For any α > 0, h ∈ R and k ∈ Z, we have

[∆α
hf ]̂(k) = [ ∞∑

j=0

(−1)j
(
α

j

)
f(· − jh)

]̂(k)
= f̂(k)

∞∑
j=0

(−1)j
(
α

j

)
e−ikjh = (1− e−ikh)αf̂(k). (5.3)

For a fixed r = 0, 1, . . . we denote by fr the function from SM such
that f̂r(k) = 0 when |k| ≤ r, and f̂r(k) = f̂(k) when |k| > r. Then
according to (5.3), we have ∥∆α

hf∥M = ∥∆α
hf0∥M and therefore,

ωα(f, δ)M = ωα(f0, δ)M . (5.4)

On the other hand, by virtue of (5.1) and the definition of the radial
derivative, it is clear that infimum on the right-hand side of (5.1) is
attained at the set Gn,f of all functions g ∈ SM such that g[n] ∈ SM
and ĝ(k) = f̂(k) for |k| ≤ n− 1. Hence,

Kn(δ, f)M = Kn(δ, fn−1)M . (5.5)

Thus, in (5.2), we use the term δn
∥∥∥∑0<|k|≤n−1 f̂(k)e

ikx
∥∥∥
M

which takes

into account the peculiarities of relations (5.4) and (5.5).

6. Proof of the results

Proof of Proposition 4.1. Implication 1) ⇒ 2). For any n ∈ N, we
have∥∥∥f − Z(s)

n (f)
∥∥∥
M

≤(n+1)−s
∥∥∥∥∑
|k|≤n

|k|sf̂(k)eikx
∥∥∥∥
M

+

∥∥∥∥∑
|k|>n

f̂(k)eikx
∥∥∥∥
M

. (6.1)
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Therefore, if relation 1) holds, then

(n+ 1)−s
∥∥∥∥ ∑
|k|≤n

|k|sf̂(k)eikx
∥∥∥∥
M

= (n+ 1)−s
∥∥∥∥ ∑
|k|≤n

f̂ (s)(k)eikx
∥∥∥∥
M

= (n+ 1)−s∥Sn(f (s))∥M = O(ω(n−1)), n→ ∞. (6.2)

To estimate the second term in (6.1), fix an integer N > n and apply
the Abel transformation,∥∥∥∥ ∑

n<|k|≤N

f̂(k)eikx
∥∥∥∥
M

=

∥∥∥∥ ∑
n<|k|≤N

|k|−sf̂ (s)(k)eikx
∥∥∥∥
M

=

∥∥∥∥ N−1∑
j=n+1

( 1

js
− 1

(j + 1)s

) ∑
|k|≤j

f̂ (s)(k)eikx

+N−s
∑
|k|≤N

f̂ (s)(k)eikx − (n+ 1)−s
∑
|k|≤n

f̂ (s)(k)eikx
∥∥∥∥
M

.

Then ∥∥∥∥ ∑
n<|k|≤N

f̂(k)eikx
∥∥∥∥
M

≤ s

N−1∑
j=n+1

j−s−1∥Sj(f (s))∥M

+N−s∥SN (f (s))∥M + (n+ 1)−s∥Sn(f (s))∥M .

If relation 1) holds, then there exist a number C1 > 0 such that for all
integers N > n,∥∥∥∥ ∑

n<|k|≤N

f̂(k)eikx
∥∥∥∥
M

≤ C1

( N−1∑
j=n+1

ω(j−1)/j + ω(N−1) + ω(n−1)
)

≤ C1

( ∞∑
j=n+1

ω(j−1)/j + 2ω(n−1)
)
.

In view of the condition (B), this yields that∥∥∥∥ ∑
|k|>n

f̂(k)eikx
∥∥∥∥
M

= O(ω(n−1)), n→ ∞. (6.3)

Combining relations (6.1)–(6.3), we get the relation 2). Furthermore,
since ω(δ)→0 as δ → 0+, then from 2), it follows that f ∈ SM .
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2) ⇒ 3). Let us set n := [1/δ]− 1. By virtue of (5.3), for any |h| ≤ δ
and |k| ≤ n, we have

|[∆s
hf ]̂(k)| = |1− e−ikh|s|f̂(k)| =

∣∣∣2 sin hk
2

∣∣∣s|f̂(k)|
≤ δs|k|s|f̂(k)| ≤ (n+ 1)−s|k|s|f̂(k)|

and |[∆s
hf ]̂(k)| ≤ |f̂(k)| when |k| > n. Let a1 := ∥f −Z

(s)
n (f)∥

M
. Then∑

k∈Z
M(|[∆s

hf ]̂(k)|/a1) ≤ ∑
|k|≤n

M((n+ 1)−s|k|s|f̂(k)|/a1)

+
∑
|k|>n

M(|f̂(k)|/a1) ≤ 1.

Therefore, for any |h| ≤ δ,

∥∆s
hf∥M ≤ ∥f − Z(s)

n (f)∥
M

= O(ω(n−1)) = O(ω(δ)), δ → 0+,

and hence f ∈ SMHs
ω.

3) ⇒ 1). Setting hn := π/n, n ∈ N, and a2 := (n/2)s∥∆s
hn
f∥

M
, by

virtue of the inequality thn ≤ π sin(thn/2), which is valid for all t ∈ [0, n],
we see that∑

|k|≤n

M
(
|f̂ (s)(k)|/a2

)
=
∑
|k|≤n

M
(
hsn|k|s|f̂(k)|/(a2hsn)

)

≤
∑
|k|≤n

M
(
πs
∣∣∣ sin khn

2

∣∣∣s|f̂(k)|/(a2hsn))

≤
∑
k∈Z

M
(∣∣∣2 sin khn

2

∣∣∣s |f̂(k)|
∥∆s

hn
f∥

M

)
≤ 1.

Thus,
∥Sn(f (s))∥M ≤ (n/2)s∥∆s

hnf∥M
≤ (n/2)sωs(f, π/n)M = O(nsω(n−1)), n→ ∞.

It should be noted that in the case where M(t) = t, ω(t) = tβ, β > 0,
the equivalence of the relations 1) and (6.3) was also proved in [9, Lemma
1].

Proof of Theorem 2.1. It is shown above that the Theorem 4.2 follows
from Theorem 2.1. Therefore, it remains to prove the truth of Theorem
2.1.
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1) ⇒ 2). Since

ν∑
j=0

(
ν

j

)
(1− ϱ)jϱν−j =

(
(1− ϱ) + ϱ

)ν
= 1, ν = 0, 1, . . . , (6.4)

then for a3 := ∥f −Aϱ,r(f)∥M , we have

1 ≥
∑
|k|≥r

M
(
|1− λ|k|,r(ϱ)||f̂(k)|/a3

)

=
∑
|k|≥r

M

(∣∣∣1− r−1∑
j=0

(
|k|
j

)
(1− ϱ)jϱ|k|−j

∣∣∣|f̂(k)|/a3)

=
∑
|k|≥r

M

( |k|∑
j=r

(
|k|
j

)
(1− ϱ)jϱ|k|−j |f̂(k)|/a3

)

≥
∑
|k|≥r

M

((
|k|
r

)
(1− ϱ)rϱ|k|−r|f̂(k)|/a3

)
. (6.5)

On the other hand, by virtue of (3.2),

∥P (f [r])(ϱ, ·)∥
M

=
∥∥∥ϱr ∂r

∂ϱr
P (f)(ϱ, ·)

∥∥∥
M

= inf

{
a > 0 :

∑
|k|≥r

M

(
r!

(
|k|
r

)
ϱ|k||f̂(k)|/a

)
≤ 1

}
.

Combining these relations and equality (3.2), we see that for ϱ→ 1−,

∥P (f [r])(ϱ, ·)∥
M

≤ r!ϱr(1−ϱ)−r∥f −Aϱ,r(f)∥M = O((1− ϱ)−sω(1− ϱ)).

2) ⇒ 3). For a4 := ∥P (f [r])(ϱ, ·)∥
M

and for any numbers n > r and
ϱ ∈ [0, 1), we have

1 ≥
∑
|k|≥r

M

((
|k|
r

)
r!ϱ|k||f̂(k)|

a4

)

≥
∑

r≤|k|≤n

M

(
ϱn
(
|k|
r

)
r!|f̂(k)|
a4

)
=

∑
r≤|k|≤n

M

(
ϱn|f̂ [r](k)|

a4

)
.

This yields ∥Sn(f [r])∥M ≤ ϱ−n∥P (f [r])(ϱ, ·)∥
M

and putting ϱ = 1 − 1/n
and taking into account statement 2), we see that

∥Sn(f [r])∥M ≤ (1− 1/n)−nO(nsω(n−1)) = O(nsω(n−1)), as n→ ∞.



S. Chaichenko, V. Savchuk, A. Shidlich 165

3) ⇒ 4). Let us set g := f [r−s]. By the definition, for |k| ≥ r, we have

|f̂ [r](k)| = |k|!|f̂(k)|
(|k| − r)!

= |g[s](k)|(|k| − r + 1)(|k| − r + 2) · . . . · (|k| − r + s)

|k|(|k| − 1) · . . . · (|k| − s+ 1)

≥ |g[s](k)|
(
1− r − 1

|k|

)s
≥ r−s|g[s](k)|.

Therefore, taking into account Remark 3.1, we get

∥Sn(g[s])∥M ≤ ∥Sr−1(g
[s])∥

M
+
∥∥∥ ∑
r≤|k|≤n

g[s](k)eikx
∥∥∥
M

≤ ∥Sr−1(g
[s])∥

M
+ rs∥Sn(f [r])∥M = O(nsω(n−1)), n→ ∞.

Then by virtue of Proposition 4.2, we see that ∥g−Z(s)
n (g)∥

M
=O(ω(n−1)),

n→ ∞, hence, g = f [r−s] ∈ SM , f ∈ SM and f [r−s] ∈ SMHs
ω.

4) ⇒ 3). If g := f [r−s], then according to Proposition 4.2, we get

∥Sn(g[s])∥M = O(nsω(n−1)), n→ ∞.

For |k| < r we have f̂ [r](k) = 0 and for |k| ≥ r,

f̂ [r](k)| = |k|!
(|k| − r)!

|f̂(k)| ≤ |k|!
(|k| − s)!

|k|!
(|k| − r + s)!

|f̂(k)| = |g[s](k)|.

Thus

∥Sn(f [r])∥M ≤ ∥Sn(g[s])∥M = O(nsω(n−1)), n→ ∞.

3) ⇒ 1). From identity (6.4), it follows that for any ϱ ∈ [0, 1],

ν∑
j=r

(
ν

j

)
(1− ϱ)jϱν−j ≤ 1, ν ≥ r.

This implies the relation

∑
|k|≥r

M
(
|1− λ|k|,r(ϱ)|

|f̂(k)|
a5

)

=
∑
|k|≥r

M

( |k|∑
j=r

(
|k|
j

)
(1− ϱ)jϱ|k|−j

|f̂(k)|
a5

)
≤
∑
|k|≥r

M

(
|f̂(k)|
a5

)
≤ 1,
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where a5 := ∥f∥
M

, and therefore, we have ∥f−Aϱ,r(f)∥M ≤ ∥f∥
M
<∞.

From this relation, we conclude that for any ε > 0 there exists the number
n0 such that for all n > n0 and all ϱ ∈ [0, 1),

∥f −Aϱ,r(f)∥M ≤
∥∥∥∥ ∑
r≤|k|≤n

|k|∑
j=r

(
|k|
j

)
(1−ϱ)jϱ|k|−j f̂(k)eikx

∥∥∥∥
M

+ε. (6.6)

Let us use the following inequality
ν∑
j=r

(
ν

j

)
(1− ϱ)jϱν−j ≤

(
ν

r

)
(1− ϱ)r (6.7)

which is valid for all ν ≥ r and ϱ ∈ [0, 1] (see, for example [16]). Putting
a6 := (1− ϱ)r∥Sn(f [r])∥M /r!, we get

∑
r≤|k|≤n

M

( |k|∑
j=r

(
|k|
j

)
(1− ϱ)jϱ|k|−j

|f̂(k)|
a6

)

≤
∑

r≤|k|≤n

M

(
(1− ϱ)r

(
|k|
r

)
|f̂(k)|
a6

)
≤ 1.

Thus,∥∥∥∥ ∑
r≤|k|≤n

|k|∑
j=r

(
|k|
j

)
(1−ϱ)jϱ|k|−j f̂(k)eikx

∥∥∥∥
M

≤ (1− ϱ)r

r!
∥Sn(f [r])∥M . (6.8)

Combining relations (6.6) and (6.8) and putting n := nϱ = [(1 − ϱ)−1],
where [·] means the integer part of the number, we get

∥f −Aϱ,r(f)∥M ≤ (1− ϱ)r

r!
∥Sn(f [r])∥M + ε

= (1− ϱ)rO(nsϱω(n
−1
ϱ )) + ε = O((1− ϱ)r−sω(1− ϱ)) + ε,

as ϱ→ 1−. By virtue of arbitrary ε, from this relation it follows that the
implication 3) ⇒ 1) is true.

Proof of Theorem 5.1. Before proving Theorem 5.1, let us formulate
some known auxiliary statements.

Lemma 6.1. [6] Assume that f, g ∈ SM , α, δ > 0, h ∈ R. Then
(i) ∥∆α

hf∥M ≤ K(α)∥f∥
M
, where K(α) :=

∑∞
j=0 |

(
α
j

)
| ≤ 2{α},

{α} = inf{k ∈ N : k ≥ α}.
(ii) ωα(f + g, δ)

M
≤ ωα(f, δ)M + ωα(g, δ)M .

(iii) ωα(f, δ)M ≤ 2{α}∥f∥
M
.
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Lemma 6.2. [6] Assume that α > 0, n ∈ N and 0 ≤ h ≤ 2π/n. Then
for any polynomial τn(x)=

∑
|k|≤n cke

ikh

(sin(nh/2)
n/2

)α
∥τ (α)n ∥

M
≤ ∥∆α

hτn∥M ≤ hα∥τ (α)n ∥
M
. (6.9)

Lemma 6.3. [6] If f ∈ SM , then for any numbers α > 0 and m ∈ N
the following inequality holds:

∥f − Sm(f)∥M = Em+1(f)M ≤ C(α)ωα(f,m
−1)M . (6.10)

where C = C(α) is a constant that does not depend on f and n.

Consider an arbitrary function g from the set Gn,f defined in Remark
5.1. By virtue (5.3), if |h| < δ, then [∆n

hg]̂(0) = 0, for all 0 < |k| ≤ n−1,∣∣∣[∆n
hg]̂(k)∣∣∣ = ∣∣∣2 sin kh2 ∣∣∣n|ĝ(k)| ≤ δn|k|n|ĝ(k)|

≤ δn(n− 1)n|ĝ(k)| ≤ δn(n− 1)n|f̂(k)|,

and for |k| ≥ n,∣∣∣[∆n
hg]̂(k)∣∣∣ ≤ |k|nδn|ĝ(k)| ≤ δnnn|k| . . . (|k| − n+ 1)|ĝ(k)|

= δnnn|ĝ[n](k)|.

Therefore, for any |h| < δ, we have

∥∆n
hg∥M ≤ δn(n− 1)n

∥∥∥ ∑
0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

+ δnnn∥g[n]∥
M

and hence,

ωn(g, δ) ≤ δn(n− 1)n
∥∥∥ ∑
0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

+ δnnn∥g[n]∥
M
. (6.11)

By virtue of Lemma 6.1 (ii) and (iii) and relation (6.11), for any
g ∈ Gn,f , we have

ωn(f, δ)M ≤ ωn(f − g, δ)
M

+ ωn(g, δ)M

≤ 2n∥f − g∥
M

+ δn(n− 1)n
∥∥∥ ∑
0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

.
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Taking the infimum of the right hand side of the last relation over
all h ∈ Gn,f , we get the left-hand side of (5.2) with the constant C1 =
min{2−n, n−n}.

Now we shall prove the right-hand side of (5.2). Let Sm := Sm(f0),
m ≥ n, be the Fourier sum of f0 defined in Remark 5.1. Then for
n ≤ |k| ≤ m the Fourier coefficients of the derivative S[n]

m

|[S[n]
m ] (̂k)| = |k|(|k| − 1) . . . (|k| − n+ 1)|f̂(k)| ≤ |k|n|f̂(k)| = |[S(n)

m ] (̂k)|

and [S
[n]
m ] (̂k) = 0 for |k| ∈ N \ [n,m]. Therefore, ∥S[n]

n ∥
M

≤ ∥S(n)
m ∥

M
.

Now let δ ∈ (0, 2π) and m ∈ N such that π/m < δ < 2π/m. Using
Lemma 6.2 with h = π/m and property (i) of Lemma 6.1, we obtain

∥S[n]
n ∥

M
≤ ∥S(n)

m ∥
M

≤ (m/2)n∥∆n
π/mSm∥M

≤ (m/2)n∥∆n
π/mf∥M ≤ (π/δ)nωn(f, δ)M (6.12)

and ∥∥∥ ∑
0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

≤
∥∥∥ ∑
0<|k|≤m

|k|nf̂(k)eikx
∥∥∥
M

≤ (m/2)n∥∆n
π/mf∥M ≤ (π/δ)nωn(f, δ)M . (6.13)

By virtue of Lemma 6.3, we have

∥f0−Sm∥M = Em+1(f0)M ≤ C(n)ωn(f0, δ)M = C(n)ωn(f, δ)M . (6.14)

Setting C2(n) := C(n) + 2πn and combining (6.12)–(6.14) we obtain
the right-hand side of (5.2):

Kn(δ, f)M +δn
∥∥∥ ∑
0<|k|≤n−1̂

f(k)eikx
∥∥∥
M

=Kn(δ, f0)M +δn
∥∥∥ ∑
0<|k|≤n−1̂

f(k)eikx
∥∥∥
M

≤ ∥f0−Sm∥M+δn∥S[n]
m ∥

M
+δn

∥∥∥ ∑
0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

≤ C2(α)ωn(f, δ)M .

2
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[11] Móricz, F. (2008). Absolutely convergent Fourier series and function classes. II.
J. Math. Anal. Appl., 342 (2), 1246–1249.
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