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Abstract. In the article we study mappings that satisfy moduli in-
equalities on Carnot groups. We prove that homeomorphisms satisfy
the moduli inequalities (Q-homeomorphisms) with a locally integrable
function Q are Sobolev mappings. On this base in the frameworks of the
weak inverse mapping theorem we prove that on the Carnot groups G
mappings inverse to Sobolev homeomorphisms of finite distortion of the
class W 1

ν,loc(Ω;Ω
′) belong to the Sobolev class W 1

1,loc(Ω
′; Ω).
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1. Introduction

It is known that Sobolev mappings on Carnot groups G can not be
characterized only in the terms of its coordinate functions. The basic
approach to the Sobolev mappings theory on Carnot groups is based on
the notion of absolutely continuity on almost all horizontal lines which
allows to define a weak upper gradient of mappings. In the present article
we prove that homeomorphisms satisfy moduli inequalities on Carnot
groups are Sobolev mappings. On this base we prove the weak version of
the inverse mapping theorem on Carnot groups. Namely we prove that
mappings inverse to Sobolev homeomorphisms of finite distortion of the
class W 1

ν,loc(Ω;Ω
′) are Sobolev mappings of the class W 1

1,loc(Ω
′; Ω). The

problem of regularity of mappings inverse to Sobolev homeomorphisms
represents a significant part of the weak inverse mapping theorem and was
studied in [50] for a bi-measurable Sobolev homeomorphism φ : Ω → Ω′,
Ω,Ω′ ⊂ Rn of the class W 1

p (Ω;Ω
′), p > n − 1. In [38] it was proved

that the inverse of a homeomorphism φ ∈ L1
p(Ω;Ω

′), p > n− 1, satisfies
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φ−1 ∈ BVloc(Ω
′; Ω). In the last decades the regularity of mappings inverse

to Sobolev homeomorphisms was intensively studied in the frameworks
of the non-linear elasticity theory [1], see, for example, [8, 14, 17,18,29].

The suggested approach on Carnot groups is based on the moduli
inequalities, namely on the notion of Q-mappings introduced in [24] (see
also [25–26]). Recall that a homeomorphism φ : Ω → Ω′ of domains
Ω,Ω′ ⊂ G is called a Q-homeomorphism, with a non-negative measurable
function Q, if

M (φΓ) 6
∫
Ω

Q(x) · ρν(x)dx

for every family Γ of rectifiable paths in Ω and every admissible function
ρ for Γ.

In the Euclidean space Rn it was proved [25] that a homeomorphism
φ ∈W 1

n,loc(Ω) such that φ−1 ∈W 1
n,loc is aQ-mapping with Q = KI(x, φ),

where KI(x, φ) is the inner quasiconformal dilatation of φ. The system-
atic applications of the moduli theory to the geometric mapping theory
can be found in [27].

The main result of the article concerns to the weak differentiability
of mappings satisfy moduli inequalities on Carnot groups (Theorem 5.1).
The proof is based on the capacity estimates and the Fubini type decom-
position of measures associated with horizontal foliations defined by a
left-invariant vector fields and moduli (capacity) inequalities on Carnot
groups.

Using the property of the weak differentiability and connection be-
tween Sobolev mappings and moduli inequalities we prove the weak reg-
ularity of Sobolev homeomorphisms on Carnot groups: if φ : Ω → Ω′ is
a Sobolev homeomorphism of finite distortion of the class W 1

ν,loc(Ω;Ω
′),

then the inverse mapping φ−1 ∈W 1
1,loc(Ω

′; Ω).
The weak differentiability is a part of the analytic definition of quasi-

conformal mappings and mappings of bounded distortion (see, e.g., [31]
and [23]). The ACL-property of Q-mappings defined on planar domains
of the Euclidean space R2 was considered by Brakalova and Jenkins, who
proved this property for solutions of Beltrami equations in the plane
(see [3, Lemma 3]). Under the assumption that Q ∈ L1

loc, the ACL-
property was proved in Rn for Q-homeomorphisms (see [32]), and for
mappings with branching later (see e.g. [33,34]).

Q-homeomorphisms are closely connected with mappings that gen-
erate bounded composition operators on Sobolev spaces (p, q-quasicon-
formal mappings) [12, 36, 47, 48] which were studied on Carnot groups
in [39, 40, 47, 49]. In the recent decade the geometric theory of compo-
sition operators on Sobolev spaces was applied to spectral estimates of
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the Laplace operator in Euclidean non-convex domains (see, for exam-
ple, [5, 6, 11, 13, 15, 16]) and so results of this article have applications to
the Sobolev mappings theory, to the spectral theory of (sub)elliptic op-
erators and to the non-linear elasticity problems associated with vector
fields that satisfy Hörmander’s hypoellipticity condition.

2. Sobolev mappings on Carnot groups

2.1 Carnot groups

Recall that a stratified homogeneous group [10], or, in another ter-
minology, a Carnot group [30] is a connected simply connected nilpo-
tent Lie group G whose Lie algebra V is decomposed into the direct
sum V1⊕· · ·⊕Vm of vector spaces such that dimV1 > 2, [V1, Vi] = Vi+1

for 1 6 i 6 m−1 and [V1, Vm] = {0}. Let X11, . . . , X1n1 be left-invariant
basis vector fields of V1. Since they generate V , for each i, 1 < i 6 m,
one can choose a basis Xik in Vi, 1 6 k 6 ni = dimVi, consisting of
commutators of order i− 1 of fields X1k ∈ V1. We identify elements g of
G with vectors x ∈ RN , N =

∑m
i=1 ni, x = (xik), 1 6 i 6 m, 1 6 k 6 ni

by means of exponential map exp(
∑
xikXik) = g. Dilations δt defined

by the formula

δtx = (tixik)16i6m, 16k6nj

= (tx11, ..., tx1n1 , t
2x21, ..., t

2x2n2 , ..., t
mxm1, ..., t

mxmnm),

are automorphisms of G for each t > 0. Lebesgue measure dx on RN is
the bi-invariant Haar measure on G (which is generated by the Lebesgue
measure by means of the exponential map), and d(δtx) = tν dx, where
the number ν =

∑m
i=1 ini is called the homogeneous dimension of the

group G. The measure |E| of a measurable subset E of G is defined by

|E| =
∫
E

dx.

The system of basis vectors X1, X2, . . . , Xn of the space V1 (here and
throughout we set n1 = n and Xi1 = Xi, where i = 1, . . . , n) satisfies the
Hörmander’s hypoellipticity condition.

Euclidean space Rn with the standard structure is an example of
an abelian group: the vector fields ∂/∂xi, i = 1, . . . , n, have no non-
trivial commutation relations and form the basis of the corresponding Lie
algebra. One example of a non-abelian stratified group is the Heisenberg
group Hn. The non-commutative multiplication is defined as

hh′ = (x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ − 2xy′ + 2yx′),
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where x, x′, y, y′ ∈ Rn, z, z′ ∈ R. Left translation Lh(·) is defined as
Lh(h

′) = hh′. The left-invariant vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂z
, Yi =

∂

∂yi
− 2xi

∂

∂z
, i = 1, ..., n, Z =

∂

∂z
,

constitute the basis of the Lie algebra V of the Heisenberg group Hn. All
non-trivial relations are only of the form [Xi, Yi] = −4Z, i = 1, ..., n, and
all other commutators vanish.

The Lie algebra of the Heisenberg group Hn has dimension 2n + 1
and splits into the direct sum V = V1 ⊕ V2. The vector space V1 is
generated by the vector fields Xi, Yi, i = 1, ...n, and the space V2 is the
one-dimensional center which is spanned by the vector field Z.

Recall that a homogeneous norm on the group G is a continuous
function | · | : G → [0,∞) that is C∞-smooth on G \ {0} and has the
following properties:

(a) |x| = |x−1| and |δt(x)| = t|x|;
(b) |x| = 0 if and only if x = 0;
(c) there exists a constant τ0 > 0 such that |x1x2| 6 τ0(|x1| + |x2|)

for all x1, x2 ∈ G.
The homogeneous norm on the group G define a homogeneous (qua-

si)metric
ρ(x, y) = |y−1x|.

Note that a continuous map γ : [a, b] → G is called a continuous curve
on G. This continuous curve is rectifiable if

sup

{
m∑
k=1

| (γ(tk))−1 γ(tk+1)|

}
<∞,

where the supremum is taken over all partitions a = t1 < t2 < ... < tm = b
of the segment [a, b].

In [30] it was proved that any rectifiable curve is differentiable almost
everywhere and γ̇(t) ∈ V1: there exists measurable functions ai(t), t ∈
(a, b) such that

γ̇(t)=
n∑
i=1

ai(t)Xi(γ(t)) and
∣∣∣(γ(t+ τ))−1 γ(t)exp(γ̇(t)τ)

∣∣∣=o(τ) as τ → 0

for almost all t ∈ (a, b). The length l(γ) of a rectifiable curve γ : [a, b] → G
can be calculated by the formula

l(γ) =

b∫
a

⟨γ̇(t), γ̇(t)⟩
1
2
0 dt =

b∫
a

(
n∑
i=1

|ai(t)|2
) 1

2

dt
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where ⟨·, ·⟩0 is the inner product on V1. The result of [7] implies that
one can connect two arbitrary points x, y ∈ G by a rectifiable curve.
The Carnot–Carathéodory distance d(x, y) is the infimum of the lengths
over all rectifiable curves with endpoints x and y in G. The Hausdorff
dimension of the metric space (G, d) coincides with the homogeneous
dimension ν of the group G.

2.2 Sobolev spaces on Carnot groups

Let G be a Carnot group with one-parameter dilatation group δt,
t > 0, and a homogeneous norm ρ, and let E be a measurable subset of
G. The Lebesgue space Lp(E), p ∈ [1,∞], is the space of measurable
pth-power integrable functions f : E → R with the standard norm:

∥f | Lp(E)∥ =

(∫
E

|f(x)|p dx
) 1

p

, 1 ≤ p <∞,

and ∥f | L∞(E)∥ = ess supE |f(x)| for p = ∞. We denote by Lp,loc(E)
the space of functions f : E → R such that f ∈ Lp(F ) for each compact
subset F of E.

Let Ω be an open set in G. The (horizontal) Sobolev space W 1
p (Ω),

1 6 p 6 ∞, (L1
p(Ω), 1 6 p 6 ∞) consists of the functions f : Ω → R

locally integrable in Ω, having a weak derivativesXif along the horizontal
vector fields Xi, i = 1, . . . , n, and a finite (semi)norm

∥f |W 1
p (Ω)∥ = ∥f | Lp(Ω)∥+ ∥∇Hf | Lp(Ω)∥

(∥f | L1
p(Ω)∥ = ∥∇Hf | Lp(Ω)∥),

where ∇Hf = (X1f, . . . ,Xnf) is the horizontal subgradient of f . If
f ∈ W 1

p (U) for each bounded open set U such that U ⊂ Ω then we say
that f belongs to the class W 1

p,loc(Ω).
Let φ : Ω → G be a mapping defined on open set Ω ⊂ G. A Lie group

homomorphism ψ : G → G such that exp−1 ◦ψ ◦ exp(V1) ⊂ V1 is called
the P -differential of φ at the point a of the set Ω if the set

Aε = {z ∈ E : d(ψ(a−lx)−1φ(a)−1φ(x)) < εd(a−1x)}

is a neighborhood of a (relative to Ω) for every ε > 0. The notion
of P -differentiability was introduced in [30] where it was proved that
Lipschitz mappings defined on open subsets of Carnot groups are P -
differentiable almost everywhere. The Stepanov type theorem on Carnot
groups was obtained in [46] (see, also [42]) where it was proved that
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Lipschitz mappings defined on measurable subsets of Carnot groups are
(approximately) P -differentiable almost everywhere.

We say that a mapping φ : Ω → G is absolutely continuous on lines
(φ ∈ ACL(Ω;G)) if for each domain U such that U ⊂ Ω and each foliation
Γi defined by a left-invariant vector field Xi, i = 1, . . . , n, φ is absolutely
continuous on γ ∩ U with respect to one-dimensional Hausdorff measure
for dγ-almost every curve γ ∈ Γi. Recall that the measure dγ on the
foliation Γi equals the inner product i(Xi)dx of the vector field Xi and
the bi-invariant volume dx ( see, for example, [9, 46]).

Since Xiφ(x) ∈ V1 for almost all x ∈ Ω [30], i = 1, . . . , n, the linear
mapping DHφ(x) with matrix (Xiφj(x)), i, j = 1, . . . , n, takes the hor-
izontal subspace V1 to V1 and is called the formal horizontal differential
of the mapping φ at x. Let |DHφ(x)| be its norm:

|DHφ(x)| = sup
ξ∈V1, |ξ|=1

|DHφ(x)(ξ)|.

We say that a mapping φ : Ω → G belongs to ACLp(Ω;G))
(ACLp,loc(Ω;G))) if φ ∈ ACL(Ω;G) and |DHφ| ∈ Lp(Ω) (|DHφ| ∈
Lp,loc(Ω)).

Smooth mappings with differentials respecting the horizontal struc-
ture are said to be contact. For this reason one could say that mappings
in the class ACL(Ω;G) are (weakly) contact. It was proved in [42,46] that
a formal horizontal differential DH : V1 → V1 induces a homomorphism
Dφ : V → V of the Lie algebras which is called the formal differential.
The determinant of the matrix Dφ(x) is called the (formal) Jacobian of
the mapping φ, and it is denoted by J(x, φ).

The definition of Sobolev mappings in terms of Lipschitz functions
was introduced in [37,42]:

Let Ω be a domain in a stratified group G. The mapping φ : Ω → G
belongs to W 1

p,loc(Ω;G) if for each function f ∈ Lip(G) the composition
f ◦ φ belongs to W 1

p,loc(Ω) and |∇H(f ◦ φ)|(x) 6 Lip f · g(x), where
g ∈ Lp,loc(Ω) is independent of f . The function g is called the upper
gradient of the mapping φ.

3. Foliations and Set Functions

3.1 The Fubini type decomposition

We consider families Γk of orbits of horizontal vector fields X1k ∈ V1,
1 6 k 6 n1, generating smooth foliations of a domain Ω ⊂ G. Denote
the flow corresponding to the vector field X1k by the symbol ft, then
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each fiber has the form γ(t) = ft(s), where s belongs to the surface Sk
transversal to X1k and a parameter t ∈ R.

We suppose that the foliation Γk of Ω is furnished with a measure dγ
satisfying the inequality

c1|B(x, r)|
ν−1
ν 6

∫
γ∈Γ,γ∩B(x,r)̸=∅

dγ 6 c2|B(x, r)|
ν−1
ν (3.1)

for sufficiently small balls B(x, r) ⊂ Ω where constants c1 and c2 inde-
pendent on balls B(x, r).

The measure dγ can be obtained [46] as the interior multiplication
i(X1k) of the vector field X1k with the bi-invariant volume form dx. Let
Jft be a Jacobian of the flow ft. Then

f∗t i(X1k)dx = Jfti(X1k)dx or f∗t
(
Jf−ti(X1k)dx

)
= i(X1k)dx.

The tangent vector to a one-parameter family of curves γt passing
through points s exp tX1k can be identified with the tangent vector X1k

at the point s ∈ S. The flow ft takes the vector X1k to (ft)∗X1k. Con-
sequently, the form Jf−ti(X1k) dx determines the measure dγ on the
foliation Γk.

Note, that by the inequality (3.1) the measure dγ is the locally dou-
bling measure: ∫

γ∈Γk,γ∩B(x,2r)̸=∅

dγ 6 cd

∫
γ∈Γk,γ∩B(x,r)̸=∅

dγ (3.2)

for sufficiently small balls B = B(x, r) ⊂ Ω.
Because X1k is a left-invariant vector field the flow ft is the right

translation on exp tX1k. Since dx is a bi-invariant form, we have Jft = cm,
where the constant cm can be calculated exactly. Using the left invariance
and homogeneity under dilatations, we obtain that∫

γ∈Γk,γ∩B(x,r) ̸=∅

dγ = cm|B(x, r)|
ν−1
ν ∥X1k∥ (3.3)

where ∥X1k∥ is the length of the tangent vector X1k.

3.2 Additive set functions

Recall that a mapping Φ defined on open subsets from Ω ⊂ G and
taking nonnegative values is called a finitely quasiadditive set function [49]
if
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1) for any point x ∈ Ω, exists δ, 0 < δ < dist(x, ∂Ω), such that
0 6 Φ(B(x, δ)) < ∞ (here and in what follows B(x, δ) = {y ∈ G :
ρ(x, y) < δ});

2) for any finite collection Ui ⊂ U ⊂ Ω, i = 1, . . . , k, of mutually

disjoint open sets the following inequality
k∑
i=1

Φ(Ui) 6 Φ(U) takes place.

Obviously, the inequality in the second condition of this definition can
be extended to a countable collection of mutually disjoint open sets from
Ω, so a finitely quasiadditive set function is also countable quasiadditive.

If instead of the second condition we suppose that for any finite col-
lection Ui ⊂ Ω, i = 1, . . . , k, of mutually disjoint open sets the equality

k∑
i=1

Φ(Ui) = Φ(U)

takes place, then such a function is said to be finitely additive. If the
equality in this condition can be extended to a countable collection of
mutually disjoint open sets from Ω, then such a function is said to be
countably additive.

A mapping Φ defined on open subsets of Ω and taking nonnegative
values is called a monotone set function [49] if Φ(U1) 6 Φ(U2) under the
condition that U1 ⊂ U2 ⊂ Ω are open sets.

Let us formulate a result from [49] in a form convenient for us.

Theorem 3.1. [49] Let a finitely quasiadditive set function Φ be defined
on open subsets of the domain Ω ⊂ G. Then for almost all points x ∈ Ω
the finite derivative

Φ′(x) = lim
δ→0,Bδ∋x

Φ(Bδ)

|Bδ|
exists and for any open set U ⊂ Ω, the inequality∫

U

Φ′(x) dx 6 Φ(U)

holds.

We consider the cube P = Sk exp tX1k, where |t| 6 M and Sk is the
transversal hyperplane to X1k:

Sk = {(xij), 1 6 i 6 m, 1 6 j 6 ni : x1k = 0 and |xij | 6M} .

Given a point s ∈ Sk, denote by γs the element s exp tX1k of the hori-
zontal fibration which starts at the point s. Thus P is the union of all such
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intervals of integral lines. Consider the following tubular neighborhood
of the fiber γs with radius r:

E(s, r) = γsB(e, r) ∩ P =

( ∪
x∈γs

B(x, r)

)
∩ P.

The following lemma is valid (see [45]):

Lemma 3.1. Let Φ be a quasiadditive set function on G. Then

lim
r→0

Φ(E(s, r))

rν−1
<∞

for dγ-almost all s ∈ Sk.

4. Capacity and Modules

4.1 The basic definitions

A well-ordered triple (F0, F1; Ω) of nonempty sets, where Ω is an open
set in G, and F0, F1 are compact subsets of Ω, is called a condenser in
the group G.

The value
capp(F0, F1; Ω) = inf

∫
Ω

|∇Hv|p dx,

where the infimum is taken over all nonnegative functions v ∈ C(Ω) ∩
L1
p(Ω), such that v = 0 in a neighborhood of the set F0, and v > 1 in

a neighborhood of the set F1, is called the p-capacity of the condenser
(F0, F1; Ω). If G ⊂ G is an open set, and E is a compact subset in G,
then the condenser (∂G,E;G) will be denoted by (E,G). Properties of
p-capacity in the geometry of vector fields satisfying Hörmander hypoel-
lipticity condition, can be found in [43,44].

The linear integral is denoted by

∫
γ

ρ ds = sup

∫
γ′

ρ ds = sup

l(γ′)∫
0

ρ(γ′(s)) ds

where the supremum is taken over all closed parts γ′ of γ and l(γ′) is the
length of γ′. Let Γ be a family of curves in G. Denote by adm(Γ) the
set of Borel functions (admissible functions) ρ : G → [0,∞] such that the
inequality ∫

γ

ρ ds > 1
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holds for locally rectifiable curves γ ∈ Γ.
Let Γ be a family of curves in G, where G is a one point compactifi-

cation of a Carnot group G. The quantity

M(Γ) = inf

∫
G

ρν dx

is called the module of the family of curves Γ [20]. The infimum is taken
over all admissible functions ρ ∈ adm(Γ).

Let Ω be a bounded domain on G and F0, F1 be disjoint non-empty
compact sets in the closure of Ω. Let M(Γ(F0, F1; Ω)) stand for the
module of a family of curves which connect F0 and F1 in Ω. Then [21]

M(Γ(F0, F1; Ω)) = capν(F0, F1; Ω) . (4.1)

4.2 The lower estimate of the p-capacity

The following lower estimate of the p-capacity was proved in [47,
Lemma 5]. For readers convenience we reproduce here the detailed proof
of this lemma.

Lemma 4.1. Let ν−1 < p <∞. Suppose that E is a compact connected
set and G ⊂ {x ∈ G : ρ(x,E) 6 c0 diamE}, where c0 is a small number
depending on the constant in the generalized triangle inequality. Then

capν−1
p (E,G) > c(ν, p)

(diamE)p

|G|p−(ν−1)
, (4.2)

where a constant c(ν, p) depends only on ν and p.

Proof. Since the inequality (4.2) is invariant under left translations and
has the same degree of homogeneity under dilations, we can suppose,
without loss of generality, that 0 ∈ E and diamE = ρ(0, σ) = 1 for some
point σ ∈ E.

Consider a point σ−1 ∈ S(0, 1). Then there exists a constant c1 such
that

diamE = 1 6 c1(r2 − r1),

where r1 = |σ−1| = 1 and r2 = ρ(σ−1, σ) = |σ2|.
Since c0 was choosing such that G ⊂ {x ∈ G : ρ(x,E) 6 c0 diamE},

then by the generalized triangle inequality

S(σ−1, r) ∩ (G \G) ̸= ∅ for all r1 6 r 6 r2.
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Let r1 6 r 6 r2. We choose some point xr ∈ E such that ρ(σ−1, xr) =
r and denote

P (r) =
{
s ∈ S(σ−1, r) : ρ(xr, s) 6 ρ(xr, {(G \G) ∩ S(σ−1, r)}

}
.

Consider an arbitrary function u ∈ L̊1
p(G) ∩ C(G) such that u > 1

on E. Then the function u takes the value 0 on the sphere S(x, r),
r1 < r < r2. Therefore, the following inequality is valid for almost all
r1 < r < r2 [41, Theorem 1]∫

S(x,r)∩G

Mγr(|∇Hu|)p(ξ)dσr(ξ) > c2ωr(P (r))
ν−1−p
ν−1 ,

where ωr is the measure on S(x, r) associated with the “spherical” coor-
dinate system [41]. (Here γ > 1 is some constant and Mδg denotes the
maximal function defined for every locally summable function g as

Mδg(x) = sup

|B(x, r)|−1

∫
B(x,r)

|g|dx : r 6 δ

 ,

where B(x, r) = {y ∈ G : ρ(x, y) < r} is the ball of radius r centered at
x ∈ G.) Consequently,∫

G

Mγr(|∇Hu|)pdx > c2

r2∫
r1

ωr(P (r))
ν−1−p
ν−1 dr .

Now

(diamE)p 6

c1 r2∫
r1

dr

p

6 cp1

 r2∫
r1

ωr(P (r))dr

p−(ν−1) r2∫
r1

ω
ν−1−p
ν−1

r (P (r))dr

ν−1

6 cp1
c2
|G|p−(ν−1)

∫
G

Mγr(|∇Hu|)pdx

ν−1

.

By the maximal function theorem, we obtain∫
G

|∇Hu|pdx

ν−1

> c(ν, p)
(diamE)p

|G|p−(ν−1)
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for arbitrary function u ∈ L̊1
p(G) ∩ C(G) admissible for the condenser

(E,G). Hence

capν−1
p (E,G) > c(ν, p)

(diamE)p

|G|p−(ν−1)
.

5. Sobolev spaces and Q-Homeomorphisms

In this section we consider connection between Sobolev mappings and
Q-homeomorphisms on Carnot groups.

5.1 ACL-property of Q-homeomorphisms

We prove the ACL-property of Q-homeomorphisms with locally inte-
grable function Q.

Theorem 5.1. Let φ : Ω → Ω′ be a Q-homeomorphism of domains
Ω,Ω′ ⊂ G with Q ∈ L1,loc(Ω). Then φ ∈W 1

1,loc(Ω;Ω
′).

Proof. Fix some field X1k, 6 k 6 n1, and let Γk be the fibration gener-
ated by this field. Take the cube P = Sk exp tX1k, where |t| 6 M and
Sk is the transversal hyperplane to X1k:

Sk = {(xij), 1 6 i 6 m, 1 6 j 6 ni : x1k = 0 and |xij | 6M} .

Given a point s ∈ Sk, denote by γs the element s exp tX1,k of the
fibration which starts at s. Thus, P is the union of all such intervals of
integral lines. Consider the following tubular neighborhood of the fiber
γs with radius r:

E(s, r) = γsB(e, r) ∩ P =

( ∪
x∈γs

B(x, r)

)
∩ P.

Take a point s ∈ Sk so that the assertion of Lemma 3.1 holds for
γs. On γs take arbitrary pairwise disjoint closed segments γs1, . . . , γsk of
lengths δ1, . . . , δk. Denoting by Ri the open set of points at a distance
less than a given r > 0 from γsi, i = 1, ..., k, and consider the condensers
(γsi, Ri), i = 1, ..., k. Suppose that r > 0 is chosen so small that the
sets R1, . . . , Rk are pairwise disjoint and the condenser (φ(γsi), φ(Ri))
satisfies to the conditions of Lemma 4.1. Let Γ be a family of curves
connected φ(γsi) and ∂φ(Ri) in Ω. Now, by (4.1)

M(φ(Γ)) = capν(φ(γsi)), φ(Ri)) . (5.1)
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Observe that the function

ρ(x) =

{
1
r , x ∈ Ri,
0, x ∈ G \Ri

is admissible for Γ. Now by (5.1)

capν(φ(γsi)), φ(Ri)) 6
1

rν

∫
Ri

Q(x) dx . (5.2)

On the other hand, by Lemma 4.1

capν(φ(γsi)), φ(Ri)) > c

(
(diamφ(γsi))

ν

|φ(Ri)|

)1/(ν−1)

. (5.3)

Combining (5.2) and (5.3), we have the inequalities(
(diamφ(γsi))

ν

|φ(Ri)|

) 1
ν−1

6 cν
rν

∫
Ri

Q(x) dx , i = 1, ..., k (5.4)

where the constant cν depends only on ν.

By the discrete Hölder inequality, see e.g. (17.3) in [2], we obtain
that

k∑
i=1

diamφ(γsi) 6
(

k∑
i=1

(
(diamφ(γsi))

ν

|φ(Ri)|

) 1
ν−1

) ν−1
ν
(

k∑
i=1

|φ(Ri)|

) 1
ν

,

(5.5)
i.e.,(

k∑
i=1

diamφ(γsi)

)ν
6
(

k∑
i=1

(
(diamφ(γsi))

ν

|φ(Ri)|

) 1
ν−1

)ν−1

|φ(E(s, r))| ,

(5.6)
and in view of (5.4)

(
k∑
i=1

diamφ(γsi)

)ν
6 cν

|φ(E(s, r))|
rν−1

 k∑
i=1

∫
Ri

Q(x) dx

rν−1


ν−1

(5.7)

where a constant cν depends only on ν.
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By [47, Lemma 4])

lim
r→0

|φ(E(s, r))|
rν−1

:= ω(s) <∞.

Denote

ωi(s) =

∫
δi

Q(s, t) dt, s ∈ Sk,

and note that because Q is locally integrable function then by Fubini
theorem for any ε > 0 there exists a number δ > 0 such that ωi(s) < ε if
δi < δ, i = 1, ..., k.

By Fubini type decomposition (3.3) we have

lim
r→0

∫
Ri

Q(x) dx

rν−1
=

ωi(s)

cm∥X1k∥
<∞.

Passing in (5.7) while r → 0 we get(
k∑
i=1

diamφ(γsi)

)ν
6 cνω(s)

cm∥X1k∥

(
k∑
i=1

ωi(s)

)ν−1

. (5.8)

Hence, φ is absolutely continuous on γ ∩ P with respect to one-
dimensional Hausdorff measure for dγ-almost every curve γ ∈ Γk. Hence
φ ∈W 1

1,loc(Ω;Ω
′).

5.2 Mappings of integrable distortion

Let a homeomorphism φ : Ω → Ω′ belongs to the Sobolev space
W 1

1,loc(Ω;Ω
′). Recall that a weakly differentiable mapping φ : Ω → Ω′

is called a mapping of finite distortion if |DHφ(x)| = 0 for almost all
x ∈ Z = {x ∈ Ω : J(x, φ) = 0}. We say that a homeomorphism φ : Ω →
Ω′ has the Luzin N -property, if an image of a set of measure zero has
measure zero.

The outer dilatation of the mapping of finite distortion φ at x is
defined by

KO(x) = KO(x, φ) =

{ |DHφ(x)|ν
J(x,φ) , if J(x, φ) ̸= 0,

0, if DHφ(x) = 0.

Theorem 5.2. Let φ : Ω → Ω′ be a homeomorphism of finite distortion
of the Sobolev class W 1

ν,loc(Ω;Ω
′). Then, for every family Γ of rectifiable

paths in Ω and every ρ ∈ adm(Γ)

M
(
φ−1 (Γ)

)
6
∫
Ω

KO

(
φ−1(y), φ

)
ρν(y) dy,
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i. e., φ−1 is a Q-homeomorphism with Q(y)=KO

(
φ−1(y), φ

)
∈L1,loc(Ω

′).

Proof. Let F be a compact subdomain of Ω, F ′ = φ(F ). Denote

Z = {x ∈ Ω : J(x, φ) = 0}.

Because φ is a mapping of finite distortion then |DHφ| = 0 a. e. on Z and
KO(x, φ) is well defined for almost all x ∈ Ω. Since φ ∈W 1

ν,loc(Ω) then φ

possesses the Luzin N -property and the outer distortion KO(φ
−1(y), φ)

be well defined for almost all y ∈ Ω′. Then

∫
F ′

KO

(
φ−1(y), φ

)
dy =

∫
F ′\φ(Z)

|DHφ(φ
−1(y))|ν

|J(φ−1(y), φ)|
dy +

∫
F ′∩φ(Z)

dy

=

∫
F\Z

|DHφ(x)|ν

|J(x, φ)|
|J(x, φ)| dx+

∫
F∩Z

|J(x, φ)| dx

=

∫
F\Z

|DHφ(x)|ν dx+

∫
F∩Z

|J(x, φ)| dx <∞.

Since φ : Ω → Ω′ belongs to W 1
ν,loc(Ω;Ω

′) then φ be a (weakly)
contact mapping differentiable almost everywhere in Ω and absolutely
continuous on almost all horizontal curves. By generalized Fuglede’s
theorem (see, [22, 35]), we have that if Γ̃ is the family of all paths γ ∈
φ−1(Γ) such that φ is absolutely continuous on all closed subpaths of γ,
then M(φ−1(Γ)) =M(Γ̃).

Hence, for given a function ρ ∈ admΓ we define

{
ρ̃(x) = ρ(φ(x))|DHφ(x)| if x ∈ Ω,

0 otherwise.
(5.9)

Then, for almost all γ̃ ∈ Γ̃

∫
γ̃

ρ̃ ds >
∫
φ◦γ̃

ρ ds > 1

and consequently ρ̃ ∈ admΓ̃.
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Therefore, using the change of variable formula [46] we obtain:

M(φ−1(Γ)) =M(Γ̃) ≤
∫
Ω

ρ̃ν(x) dx =

∫
Ω

ρν(φ(x))|DHφ(x)|ν dx

=

∫
Ω\Z

ρν(φ(x))|DHφ(x)|ν dx =

∫
Ω\Z

ρν(φ(x))
|DHφ(x)|ν

|J(x, φ)|
|J(x, φ)| dx

=

∫
Ω′\φ(Z)

ρν(y)
|DHφ(φ

−1(y))|
|J(φ−1(y), φ)|

dy =

∫
Ω′

KO

(
φ−1(y), φ

)
ρν(y) dy.

(5.10)

Hence φ−1 is a Q-homeomorphism with Q(y) = KO

(
φ−1(y), φ

)
∈ L1,loc(Ω

′).

5.3 The weak inverse mapping theorem on Carnot groups

In this section we prove that mappings inverse to Sobolev homeomor-
phisms of finite distortion of the class W 1

ν,loc(Ω;Ω
′) are Sobolev mappings.

Theorem 5.3. Let φ : Ω → Ω′ be a Sobolev homeomorphism of finite
distortion of the class W 1

ν,loc(Ω;Ω
′). Then φ−1 ∈W 1

1,loc(Ω;Ω
′).

Proof. By Theorem 5.2 we obtain that the inverse mapping φ−1 : Ω′ → Ω
be a Q-homeomorphism with Q ∈ L1,loc(Ω

′). Hence using Theorem 5.1
we conclude that the inverse mapping φ−1 ∈W 1

1,loc(Ω
′; Ω).
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