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Hadamard compositions of Gelfond–Leont’ev
derivatives of analytic functions
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Abstract. For analytic functions f and g, the growth of the Hadamard
composition of their Gelfond–Leont’ev derivatives is investigated in terms
of generalized orders. A relation between the behaviors of the maximal
terms of the Hadamard composition of Gelfond–Leont’ev derivatives and
those of the Gelfond–Leont’ev derivative of a Hadamard composition is
established.
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1. Introduction

For the power series

f(z) =
∞∑
k=0

fkz
k (1.1)

and g(z) =
∞∑
k=0

gkz
k with convergence radii R[f ] and R[g], the series

(f ∗ g)(z) =
∞∑
k=0

fkgkz
k is called the Hadamard composition. It is well

known [1–2] that R[f ∗ g] ≥ R[f ]R[g]. The properties of this composition
found the applications [2–3] in the theory of the analytic continuation
of functions represented by power series. It is worth to note that the
singular points of a Hadamard composition were investigated in work [4].

For 0 ≤ r < R[f ], let M(r, f) = max{|f(z)| : |z| = r}, µ(r, f) =
max{|fk|rk : k ≥ 0} be the maximal term, and let ν(r, f) = max{k :
|fk|rk = µ(r, f)} be the central index of the power expansion of f . Study-
ing [5–6] a connection between the growth of the maximal terms of a
derivative of the Hadamard composition of two entire functions f and g
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and the Hadamard composition of their derivatives M. Sen [6] proved in
particular that if the function (f ∗ g) has the order ϱ and the lower order
λ, then, for every ε > 0 and all r ≥ r0(ε),

r(n+2)λ−1−ε ≤ µ(r, f (n+1) ∗ g(n+1))

µ(r, (f ∗ g)(n))
≤ r(n+2)ϱ−1+ε.

For the power series (1.1) with the convergence radius R[f ] ∈ [0, +∞]

and the power series l(z) =
∞∑
k=0

lkz
k with the convergence radius R[l] ∈

[0, +∞] and coefficients lk > 0, k ≥ 0, the power series

D
(n)
l f(z) =

∞∑
k=0

lk
lk+n

fk+nz
k (1.2)

is called [7] the Gelfond–Leont’ev derivative of the n-th order of f with
respect to l. If l(z) = ez, then D(n)

l f(z) = f (n)(z) is the usual derivative
of the n-th order. Naturally, the radius of convergence of the Gelfond–
Leont’ev derivative of series (1.1) coincides not always with the radius
of convergence of the latter. However, using the Cauchy–Hadamard for-
mula, it is not difficult to verify the validity of such statement. The
following lemmas were proved in [8].

Lemma 1. In order that, for an arbitrary series (1.1), the equalities
R[f ] = +∞ and R[D(n)

l f ] = +∞ be equivalent, it is necessary and suffi-
cient that

0 < q = lim
k→∞

k
√
lk/lk+1 ≤ lim

k→∞
k
√
lk/lk+1 = Q < +∞. (1.3)

Lemma 2. In order that, for an arbitrary series (1.1), the equalities
R[f ] = 1 and R[D

(n)
l f ] = 1 be equivalent, it is necessary and sufficient

that
lim
k→∞

k
√
lk/lk+1 = 1. (1.4)

For the functions of finite order, the following analogs of the result by
M. Sen were proved in [8].

Proposition 1. If R[f ] = R[g] = +∞ and (1.3) with q > 1 holds, then

lim
r→+∞

1

ln r
ln
µ(r,D

(n+1)
l f ∗D(n+1)

l g)

µ(r,D
(n)
l (f ∗ g))

= (n+ 2)ϱ[f ∗ g]− 1
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and

lim
r→+∞

1

ln r
ln
µ(r,D

(n+1)
l f ∗D(n+1)

l g)

µ(r,D
(n)
l (f ∗ g))

= (n+ 2)λ[f ∗ g]− 1,

where ϱ[f ] is the order, and λ[f ] is the lower order of the entire function
f .

Proposition 2. If R[f ] = R[g] = 1, and if (1.4) holds, then

(n+ 2)ϱ(1)[f ∗ g] ≤ lim
r↑1

1

− ln (1− r)
ln+

µ(r,D
(n+1)
l f ∗D(n+1)

l g)

µ(r,D
(n)
l (f ∗ g))

≤ (n+ 2)(ϱ(1)[f ∗ g] + 1)

and

(n+ 2)λ(1)[f ∗ g] ≤ lim
r↑1

1

− ln (1− r)
ln+

µ(r,D
(n+1)
l f ∗D(n+1)

l g)

µ(r,D
(n)
l (f ∗ g))

≤ (n+ 2)(λ(1)[f ∗ g] + 1),

where ϱ(1)[f ] is the order and λ(1)[f ] is the lower order of the analytic
function f in a unit disk.

In [8], the behavior of µ(r,D(n)
l f ∗ D(n)

l g) was studied as well. The
following statements were proved.

Proposition 3. Let n ∈ Z+, m ∈ N, m > n, and R[f ] = R[g] = +∞. If
(1.3) holds with q > 1, then

lim
r→+∞

1

ln r
ln ln

µ(r,D
(m)
l f ∗D(m)

l g)

µ(r,D
(n)
l f ∗D(n)

l g)
= ϱ[f ∗ g]

and

lim
r→+∞

1

ln r
ln ln

µ(r,D
(m)
l f ∗D(m)

l g)

µ(r,D
(n)
l f ∗D(n)

l g)
= λ[f ∗ g].

If

0 < lim
k→∞

lk
(k + 1)lk+1

≤ lim
k→∞

lk
(k + 1)lk+1

< +∞, (1.5)

then

lim
r→+∞

1

ln r
ln
rm−nµ(r,D

(m)
l f ∗D(m)

l g)

µ(r,D
(n)
l f ∗D(n)

l g)
= ϱ[f ∗ g]
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and

lim
r→+∞

1

ln r
ln
rm−nµ(r,D

(m)
l f ∗D(m)

l g)

µ(r,D
(n)
l f ∗D(n)

l g)
= λ[f ∗ g].

Proposition 4. Let n ∈ Z+, m ∈ N, m > n, and R[f ] = R[g] =
R[f ∗ g] = 1. If (1.5) holds, then

2(m− n)ϱ(1)[f ∗ g] ≤ lim
r↑1

1

− ln (1− r)
ln+

µ(r,D
(m)
l f ∗D(m)

l g)

µ(r,D
(n)
l f ∗D(n)

l g)

≤ 2(m− n)(ϱ(1)[f ∗ g] + 1)

and

2(m− n)λ(1)[f ∗ g] ≤ lim
r↑1

1

− ln (1− r)
ln+

µ(r,D
(m)
l f ∗D(m)

l g)

µ(r,D
(n)
l f ∗D(n)

l g)

≤ 2(m− n)(λ(1)[f ∗ g] + 1).

Here, in terms of generalized orders, we investigate the behavior of

µ(r,D
(n)
l f ∗ D(m)

λ g), where m ̸= n, λ(z) =
∞∑
k=0

λkz
k, and λk > 0 for all

k ≥ 0.

2. Entire transcendental functions

Suppose that the functions f and g are transcendental, and the se-
quences (lk) and (λk) satisfy condition (1.3). Since R[f ] = R[g] = +∞,

R[D
(n)
l f ] = R[D

(m)
l g] = +∞ by Lemma 1, and, thus, R[D(n)

l f ∗D(m)
l g] =

+∞.
As in [9], let L be a class of continuous functions α nonnegative on

(−∞, +∞) and such that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞
as x0 ≤ x → +∞. We say that α ∈ L0, if α ∈ L and α((1 + o(1))x) =
(1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L and α(cx) =
(1+ o(1))α(x) as x→ +∞ for every fixed c ∈ (0, +∞), i.e., α is a slowly
increasing function. Clearly, Lsi ⊂ L0.

For α ∈ L, β ∈ L, and the entire transcendental function (1.1), the
quantities

ϱα,β [f ] := ϱα,β [ln M,f ] = lim
r→+∞

α(ln M(r, f))

β(ln r)



238 Hadamard compositions of Gelfond–Leont’ev...

and
λα,β [f ] := λα,β [ln M,f ] = lim

r→+∞

α(ln M(r, f))

β(ln r)

are called the generalized order and the lower generalized order, respec-
tively. If we substitute ln µ(r, f) or ν(r, f) instead of ln M(r, f), then
we obtain the definitions of the quantities ϱα,β [ln µ, f ], λα,β [ln µ, f ] and
ϱα,β [ν, f ], λα,β [ν, f ], respectively.

Lemma 3. Let α ∈ Lsi, β ∈ L0 and
dβ−1(cα(x))

d ln x
= O(1) as x → +∞

for every c ∈ (0, +∞). Then

ϱα,β [f ] = lim
k→∞

α(k)

β

(
1

k
ln

1

|fk|

) . (2.6)

If, moreover, |fk/fk+1| ↗ +∞ as k0 ≤ k → ∞, then

λα,β [f ] = lim
k→∞

α(k)

β

(
1

k
ln

1

|fk|

) . (2.7)

Formula (2.6) was proved in [9], and formula (2.7) follows from the
corresponding formula for entire Dirichlet series proved in [10].

Lemma 4. If α ∈ Lsi and β ∈ L0, then ϱα,β [f ] = ϱα,β [ln µ, f ] and
λα,β [f ] = λα,β [ln µ, f ]. If, moreover, α(ex) ∈ Lsi and α(x) = o(β(x)) as
x→ +∞, then ϱα,β [ln µ, f ] = ϱα,β [ν, f ] and λα,β [ln µ, f ] = λα,β [ν, f ].

Proof. In view of the conditions α ∈ Lsi and β ∈ L0, the equali-
ties ϱα,β [f ] = ϱα,β [ln µ, f ] and λα,β [f ] = λα,β [ln µ, f ] follow from the
estimates

µ(r, f) ≤M(r, f) ≤
∞∑
k=0

|fk|rk =
∞∑
k=0

|fk|(2r)k2−k ≤ 2µ(2r, f).

It is well known [11, p. 13] that

ln µ(r, f)− ln µ(r0, f) =

r∫
r0

ν(t, f)

t
dt (0 ≤ r0 ≤ r).

From whence for r0 = 1, we get

ν(r/2, f) ln 2 ≤
r∫

r/2

ν(t, f)

t
dt ≤ ln µ(r, f)− ln µ(1.f) ≤ ν(r, f) ln r.

(2.8)
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Therefore, in view of the conditions α(ex) ∈ Lsi, β ∈ L0 and α(x) =
o(β(x)) as x→ +∞, we have

(1 + o(1))
α(ν(r, f))

β(ln r)
≤ (1 + o(1))

α(ln µ(r, f))

β(ln r)

≤ α(exp{ln ν(r, f) + ln ln r})
β(ln r)

≤ α(exp{2max{ln ν(r, f), ln ln r}})
β(ln r)

= (1 + o(1))
α(exp{max{ln ν(r, f), ln ln r}})

β(ln r)

= (1 + o(1))
max{α(ν(r, f)), α(ln r)}

β(ln r)
≤ (1 + o(1))

α(ν(r, f)) + α(ln r)

β(ln r)

= (1 + o(1))
α(ν(r, f))

β(ln r)
+ o(1), r → +∞.

Thus, ϱα,β [ln µ, f ] = ϱα,β [ν, f ] and λα,β [ln µ, f ] = λα,β [ν, f ]. The proof
of Lemma 4 is completed. 2

Using Lemmas 3 and 4, we prove the following statements.

Proposition 5. If α ∈ Lsi and β ∈ L0, then ϱα,β [f ∗ g] ≤
min{ϱα,β [f ], ϱα,β [g]} and λα,β [f ∗ g] ≤ min{λα,β [f ], λα,β [g]}.

Proof. Since |gk| ≤ 1 for k ≥ k0 and rk0 = o(µ(r, f) as r → +∞, we
have

µ(r, f ∗ g) = max{max{|fkgk|rk : 0 ≤ k ≤ k0}, max{|fkgk|rk : k ≥ k0}}

≤ max{O(rk0), max{|fk|rk : k ≥ n0}} ≤ (1 + o(1))µ(r, f), r → +∞.

From whence, we get ϱα,β [ln µ, f ∗ g] ≤ ϱα,β [ln µ, f ], λα,β [ln µ, f ∗ g] ≤
λα,β [ln µ, f ], and, by Lemma 4, ϱα,β [f ∗ g] ≤ ϱα,β [f ] and λα,β [f ∗ g] ≤
λα,β [f ]. Similarly, ϱα,β [f ∗ g] ≤ ϱα,β [g] and λα,β [f ∗ g] ≤ λα,β [g]. 2

Proposition 6. Let α ∈ Lsi, β ∈ Lsi, and
dβ−1(cα(x))

d ln x
= O(1) as

x → +∞ for every c ∈ (0, +∞). Suppose that |fk/fk+1| ↗ +∞ and
|gk/gk+1| ↗ +∞ as k0 ≤ k → ∞. Then

ϱα,β [f ∗ g] ≥ max{min{ϱα,β [f ], λα,β [g]}, min{ϱα,β [g], λα,β [f ]}}, (2.9)

and if, moreover, lklk+2/l
2
k+1 ↗ 1 as k0 ≤ k → ∞, then

λα,β [f ∗ g] ≥ min{λα,β [f ], λα,β [g]}. (2.10)
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Proof. We can consider that ϱα,β [f ] > 0 and λα,β [g] > 0. Then
1

kj
ln

1

|fkj |
≤ β−1

(
α(kj)

ϱ

)
for every ϱ ∈ (0, ϱα,β [f ]) and some sequence

(kj) ↑ ∞, and
1

k
ln

1

|gk|
≤ β−1

(
α(k)

λ

)
for every λ ∈ (0, λα,β [g]) and all

k ≥ k0(λ). Therefore, by Lemma 3 in view of the condition β ∈ Lsi, we
have

ϱα,β [f ∗ g] = lim
k→∞

α(k)

β

(
1

k
ln

1

|fkgk|

) ≥ lim
j→∞

α(kj)

β

(
1

kj
ln

1

|fkj |
+

1

kj
ln

1

|gkj |

)

≥ lim
j→∞

α(kj)

β(β−1(α(kj)/ϱ) + β−1(α(kj)/λ))

≥ lim
j→∞

α(kj)

β(2β−1(α(kj)/min{ϱ, λ}))
= min{ϱ, λ}. (2.11)

In view of the arbitrariness of ϱ and λ, inequality (2.11) implies the
inequality ϱα,β [f ∗ g] ≥ min{ϱα,β [f ], λα,β [g]} follows. Similarly, ϱα,β [f ∗
g] ≥ min{ϱα,β [g], λα,β [f ]}. Thus, estimate (2.9) is proved.

Now, we suppose that λα,β [f ] > 0. Then
1

k
ln

1

|gk|
≤ β−1

(
α(k)

λ∗

)
for every λ ∈ (0, λα,β [g]) and all k ≥ k0(λ). Therefore, by Lemma 3 as
above, we obtain

λα,β [f ∗ g] ≥ lim
k→∞

α(k)

β(β−1(α(k)/λ∗) + β−1(α(k)/λ)
.

From whence, λα,β [f ∗ g] ≥ min{λ∗, λ}. In view of the arbitrariness of λ∗

and λ, we get (2.10). The proof of Proposition 6 is completed. 2

A next statement establishes a connection between the growth of an
entire function and its Gelfond–Leont’ev derivative.

Proposition 7. Let α ∈ L0 and β ∈ L0. If condition (1.4) holds, and
if f is an entire function, then λα,β [D

(n)
l f ] = λα,β [f ] and ϱα,β [D

(n)
l f ] =

ϱα,β [f ].

Proof. It is sufficient to consider the case where n = 1. Condition
(1.4) yields the existence of numbers 0 < q1 ≤ Q1 < +∞ such that
qk1 ≤ lk/lk+1 ≤ Qk1 for all k ≥ 0. Therefore,
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rµ(r,D1
l f) = max

{
lk
lk+1

|fk+1|rk+1 : k ≥ 0

}
≤ 1

Q1
max{|fk+1|(Q1r)

k+1 : k ≥ 0} ≤ µ(Q1r, f)

Q1

and, by analogy,

rµ(r,D1
l f) ≥

µ(q1r, f)

q1

for all r sufficiently large. Since ln r = o(ln µ(r, f)) as r → +∞ for every
entire transcendental function, we get the asymptotic inequalities

(1+o(1)) ln µ(q1r, f) ≤ ln µ(r,D1
l f) ≤ (1+o(1)) ln µ(Q1r, f), r → +∞.

From whence, we have λα,β [ln µ,D
(n)
l f ] = λα,β [ln µ, f ] and

ϱα,β [ln µ,D
(n)
l f ] = ϱα,β [ln µ, f ]. Therefore, in view of Lemma 4, Propo-

sition 7 is proved. 2

Let us go to the main result.

Theorem 1. Let α(ex) ∈ Lsi, β ∈ Lsi, and
dβ−1(cα(x))

d ln x
= O(1) as

x → +∞ for every c ∈ (0, +∞). Suppose that |fk/fk+1| ↗ +∞ and
|gk/gk+1| ↗ +∞ as k0 ≤ k → ∞. Then:

1) if the sequences (lk) and (λk) satisfy (1.3) with q > 1, then

max{min{ϱα,β [f ], λα,β [g]}, min{λα,β [f ], ϱα,β [g]}}

≤ lim
r→+∞

1

β(ln r)
α

(
ln
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)
≤ min{ϱα,β [f ], ϱα,β [g]} (2.12)

and if, moreover, lklk+2/l
2
k+1 ↗ 1 and λkλk+2/λ

2
k+1 ↗ 1 as

k0 ≤ k → ∞, then

lim
r→+∞

1

β(ln r)
α

(
ln
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)

= min{λα,β [f ], λα,β [g]}; (2.13)

2) if
lk/lk+1 ≍ k, λk/λk+1 ≍ k (2.14)

as k → ∞, then

max{min{ϱα,β [f ], λα,β [g]}, min{λα,β [f ], ϱα,β [g]}} ≤
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≤ lim
r→+∞

1

β(ln r)
α

(
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)
≤ min{ϱα,β [f ], ϱα,β [g]} (2.15)

and if, moreover, lklk+2/l
2
k+1 ↗ 1 and λkλk+2/λ

2
k+1 ↗ 1 as

k0 ≤ k → ∞, then

lim
r→+∞

1

β(ln r)
α

(
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)
= min{λα,β [f ], λα,β [g]}.

(2.16)

Proof. It is clear that

(D
(n)
l f ∗D(m)

λ g)(z) =

∞∑
k=0

lk
lk+n

λk
λk+m

gk+mfk+nz
k

and

(D
(n+j)
l f ∗D(m+j)

λ g)(z) =
∞∑
k=0

lk
lk+n+j

λk
λk+m+j

gk+m+jfk+n+jz
k.

At first, we prove that

l
ν(r,D

(n)
l f∗D(m)

λ g)−j

l
ν(r,D

(n)
l f∗D(m)

λ g)

λ
ν(r,D

(n)
l f∗D(m)

λ g)−j

λ
ν(r,D

(n)
l f∗D(m)

λ g)

≤
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

≤
l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)

l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

. (2.17)

Indeed,
µ(r,D

(n+j)
l f ∗D(m+j)

λ g)

=
l
ν(r,D

(n+j)
l f∗D(m+j)

λ f)

l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+n+j

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+m+j

×|f
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+m+j
||f

ν(r,D
(n+j)
l f∗D(m+j)

λ g)+n+j
|rν(r,D

(n+j)
l f∗D(m+j)

λ g)

=
l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)

l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

r−j

×
l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j+n

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j+m
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×|f
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j+n
||f

ν(r,D
(n+j)
l f∗D(m+j)

λ g)+j+m
|rν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

≤
l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)

l
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)

λ
ν(r,D

(n+j)
l f∗D(m+j)

λ g)+j

r−jµ(r,D
(n)
l f ∗D(m)

λ g).

(2.18)

On the other hand,

µ(r,D
(n)
l f ∗D(m)

λ g)

=
l
ν(r,D

(n)
l f∗D(m)

λ g)

l
ν(r,D

(n)
l f∗D(m)

λ g)+n

λ
ν(r,D

(n)
l f∗D(m)

λ g)

λ
ν(r,D

(n)
l f∗D(m)

λ g)+m

×|f
ν(r,D

(n)
l f∗D(m)

λ g)+m
||f

ν(r,D
(n)
l f∗D(m)

λ g)+n
|rν(r,D

(n)
l f∗D(m)

λ g)

=
l
ν(r,D

(n)
l f∗D(m)

λ g)

l
ν(r,D

(n)
l f∗D(m)

λ g)−j

λ
ν(r,D

(n)
l f∗D(m)

λ g)

λ
ν(r,D

(n)
l f∗D(m)

λ g)−−jj

×
l
ν(r,D

(n)
l f∗D(m)

λ g)−j

l
ν(r,D

(n)
l f∗D(m)

λ g)−j+n+j

λ
ν(r,D

(n)
l f∗D(m)

λ g)−j

λ
ν(r,D

(n)
l f∗D(m)

λ g)−j+m+j

×|f
ν(r,D

(n)
l f∗D(m)

λ g)−j+m+j
||f

ν(r,D
(n)
l f∗D(m)

λ g)−j+n+j |r
ν(r,D

(n)
l f∗D(m)

λ g)−jrj

≤
l
ν(r,D

(n)
l f∗D(m)

λ g)−j

l
ν(r,D

(n)
l f∗D(m)

λ g)

λ
ν(r,D

(n)
l f∗D(m)

λ g)−j

λ
ν(r,D

(n)
l f∗D(m)

λ g)

rjµ(r,D
(n+j)
l f ∗D(m+j)

λ g).

(2.19)
Inequalities (2.18) and (2.19) yield (2.17).

Condition (1.3) with q > 1 implies that there exist numbers 1 < q1 ≤
q2 < +∞ such that qkn1 ≤ lk/lk+n ≤ qkn2 and qkm1 ≤ λk/λk+m ≤ qkm2 for
all k ≥ k0. Therefore, from (2.17), we get

q
2(ν(r,D

(n)
l f∗D(m)

λ g)−j)j
1 ≤

rjµ(r,D
(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

≤ q
2(ν(r,D

(n)
l f∗D(m)

λ g)−j)j
2 .

From whence, we get

ln
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)
≍ ν(r,D

(n)
l f ∗D(m)

λ g), r → +∞. (2.20)
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Condition (2.14) yields the existence of numbers 0 < h1 ≤ h2 < +∞
such that h1kj ≤ lk/lk+j ≤ h2k

j and h1kj ≤ λk/λk+j ≤ h2k
j . Therefore,

from (2.17), we get

h21(ν(r,D
(n)
l f ∗D(m)

λ g)− j)2j ≤
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

≤ h21ν(r,D
(n)
l f ∗D(m)

λ g)2j ,

i.e.,

rjµ(r,D
(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)
≍ ν(r,D

(n)
l f ∗D(m)

λ g)2j . r → +∞. (2.21)

We note that if
dβ−1(cα(x))

d ln x
= O(1) as x → +∞ for every c ∈

(0, +∞), then α(x) = o(β(x) x→ +∞. Since α(ex) ∈ Lsi, we have

α(ν(r,D
(n)
l f ∗D(m)

λ g)2j) = α(exp{2j ln ν(r,D(n)
l f ∗D(m)

λ g)})

= (1 + o(1))α(exp{ln ν(r,D(n)
l f ∗D(m)

λ g)})

= (1 + o(1))α(ν(r,D
(n)
l f ∗D(m)

λ g))

as r → +∞ and, by Lemma 4,

lim
r→+∞

α(ν(r,D
(n)
l f ∗D(m)

λ g)2j)

β(ln r)
= ϱα,β [ν,D

(n)
l f ∗D(m)

λ g)]

= ϱα,β [D
(n)
l f ∗D(m)

λ ]

and

lim
r→+∞

α(ν(r,D
(n)
l f ∗D(m)

λ g)2j)

β(ln r)
= λα,β [ν,D

(n)
l f ∗D(m)

λ g)]

= λα,β [D
(n)
l f ∗D(m)

λ ].

Therefore, from (2.20), we get

lim
r→+∞

1

β(ln r)
α

(
ln
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)
= ϱα,β [D

(n)
l f ∗D(m)

λ ],

(2.22)
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lim
r→+∞

1

β(ln r)
α

(
ln
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)
= λα,β [D

(n)
l f ∗D(m)

λ ],

(2.23)
and (2.21) yields

lim
r→+∞

1

β(ln r)
α

(
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)
= ϱα,β [D

(n)
l f ∗D(m)

λ ],

(2.24)

lim
r→+∞

1

β(ln r)
α

(
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)
= λα,β [D

(n)
l f ∗D(m)

λ ].

(2.25)
We note that the conditions |fk/fk+1| ↗ +∞, |gk/gk+1| ↗ +∞,

lklk+2/l
2
k+1 ↗ 1, and λkλk+2/λ

2
k+1 ↗ 1 as k0 ≤ k → ∞ were not used in

the proof of equalities (2.22)–(2.25).
Let now |fk/fk+1| ↗ +∞ and |gk/gk+1| ↗ +∞ as k0 ≤ k → ∞.

Then, in view of Propositions 5, 6, and 7, we have

ϱα,β [D
(n)
l f ∗D(m)

λ g] ≤ min{ϱα,β [D
(n)
l f ], ϱα,β [D

(m)
λ g]}

= min{ϱα,β [f ], ϱα,β [g]}

and
ϱα,β [D

(n)
l f ∗D(m)

λ g]

≥ max{min{ϱα,β [D
(n)
l f ], λα,β [D

(m)
λ g]},min{λα,β [D

(n)
l f ], ϱα,β [D

(m)
λ g]}}

= max{min{ϱα,β [f ], λα,β [g]}, min{λα,β [f ], ϱα,β [g]}}.

Therefore, relations (2.22) and (2.24) yield (2.12) and (2.15).
If, moreover, lklk+2/l

2
k+1 ↗ 1 and λkλk+2/λ

2
k+1 ↗ 1 as k0 ≤ k → ∞,

then
lklk+n+1

lk+1lk+n
=

n−1∏
j=0

lk+jlk+j+2

l2k+j+1

↗ 1,

λkλk+n+1

λk+1λk+n
=

n−1∏
j=0

λk+jλk+j+2

λ2k+j+1

↗ 1, k0 ≤ k → ∞,

as k0 ≤ k → ∞ and, thus„(
lk|fk+n|
lk+n

)
/

(
lk+1|fk+n+1|
lk+n+1

)
↗ +∞,

(
λk|gk+n|
λk+n

)
/

(
λk+1|gk+n+1|
λk+n+1

)
↗ +∞



246 Hadamard compositions of Gelfond–Leont’ev...

as k0 ≤ k → ∞. Therefore, by Propositions 5, 6, and 7, we get

λα,β [D
(n)
l f ∗D(m)

λ g] = min{λα,β [D
(n)
l f ],

λα,β [D
(m)
λ g]} = min{λα,β [f ], λα,β [g]}.

Moreover, from (2.23) and (2.25), we obtain (2.13) and (2.16). The proof
of Theorem 1 is completed. 2

Remark 1. Choosing α(x) = ln+ x and β(x) = x+ from the defi-
nitions of ϱα,β [f ] and λα,β [f ], we get the definitions of the order ϱ[f ] =

lim
r→+∞

ln ln M(r, f))

ln r
and the lower order λ[f ] = lim

r→+∞

ln ln M(r, f))

ln r
for

entire function (1.1). The condition α(ex) ∈ Lsi is used only in Lemma 4
for the proof of the equalities ϱα,β [ln µ, f ] = ϱα,β [ν, f ] and λα,β [ln µ, f ] =
λα,β [ν, f ]. The function α(x) = ln+ x does not satisfy this condition,
but it is easy to obtain the equalities ϱ[ln µ, f ] = ϱ[ν, f ] and λ[ln µ, f ] =
λ[ν, f ] from estimations (2.8). The condition β ∈ Lsi is used only in
Proposition 6 for the proof of the inequalities (2.9) and (2.10). The func-
tion β(x) = x+ does not satisfy this condition, and, in this case, we obtain
slightly different estimates than (2.9) and (2.10). It is known (see, e.g.,

[12–13]) that, for the entire function (1.1), ϱ[f ] = lim
k→∞

k ln k

− ln |fk|
. More-

over, if |fk|/|fk+1| ↗ R[f ] as k0 ≤ k → ∞, then λ[f ] = lim
k→∞

k ln k

− ln |fk|
.

Therefore, if λ[f ] > 0 and λ[g] > 0, then − ln |fk| ≤ (k ln k)/λ1 and
− ln |gk| ≤ (k ln k)/λ2 for every λ1 ∈ (0, λ[f ]), λ2 ∈ (0, λ[g]) and all
k ≥ k0. From whence,

λ[f ∗ g] = lim
k→∞

k ln k

− ln |fk| − ln |gk|

≥ lim
k→∞

k ln k

(k ln k)/λ1 + (k ln k)/λ2
=

λ1λ2
λ1 + λ2

.

Thus, in view of Proposition 5 and the arbitrariness of λ1 and λ2, we have
λ[f ]λ[g]/(λ[f ]+λ[g]) ≤ λ[f ∗ g] ≤ min{λ[f ], λ[g]}. If ϱ[f ] > 0 and λ[g] >
0, then − ln |fkj | ≤ (kj ln kj)/ϱ for every ϱ ∈ (0, ϱ[f ]) and some sequence
(kj) ↑ +∞. Moreover, − ln |gk| ≤ (k ln k)/λ for every λ ∈ (0, λ[g]) and
all k ≥ k0. From whence, we have

ϱ[f ∗ g] ≥ lim
j→∞

kj ln kj
− ln |fkj | − ln |gkj |

≥ lim
j→∞

kj ln kj
(kj ln kj)/ϱ+ (kj ln kj)/λ

=
ϱλ

ϱ+ λ
.
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With regard for the arbitrariness of ϱ and λ2, we get ϱ[f ∗ g] ≥
ϱ[f ]λ[g]/(ϱ[f ] + λ[g]). Similarly, we have ϱ[f ∗ g] ≥ ϱ[g]λ[f ]/(ϱ[g] +
λ[f ]). Thus, in view of Proposition 5, we get max{ϱ[g]λ[f ]/(ϱ[g] +
λ[f ]), ϱ[g]λ[f ]/(ϱ[g] + λ[f ])} ≤ ϱ[f ∗ g] ≤ min{ϱ[f ], ϱ[g]}, and the fol-
lowing statement is proved. 2

Proposition 8. Let |fk/fk+1| ↗ +∞ and |gk/gk+1| ↗ +∞ as k0 ≤
k → ∞. Then:

1) if the sequences (lk) and (λk) satisfy (1.3) with q > 1, then

max

{
ϱ[f ]λ[g]

ϱ[f ] + λ[g]
,

ϱ[f ]λ[g]

ϱ[f ] + λ[g]

}

≤ lim
r→+∞

1

ln r
ln ln

rjµ(r,D
(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)
≤ min{ϱ[f ], ϱ[g]},

and if, moreover, lklk+2/l
2
k+1 ↗ 1 and λkλk+2/λ

2
k+1 ↗ 1 as k0 ≤ k → ∞,

then

λ[f ]λ[g]

λ[f ] + λ[g]
≤ lim

r→+∞

1

ln r
ln ln

rjµ(r,D
(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

≤ min{λ[f ], λ[g]};

2) if (2.14) holds, then

max

{
ϱ[f ]λ[g]

ϱ[f ] + λ[g]
,

ϱ[f ]λ[g]

ϱ[f ] + λ[g]

}

≤ lim
r→+∞

1

ln r
ln
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)
≤ min{ϱ[f ], ϱ[g]},

and if, moreover, lklk+2/l
2
k+1 ↗ 1 and λkλk+2/λ

2
k+1 ↗ 1 as k0 ≤ k → ∞,

then
λ[f ]λ[g]

λ[f ] + λ[g]
≤ lim

r→+∞

1

ln r
ln
rjµ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

≤ min{λ[f ], λ[g]}.
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3. Analytic functions in a unit disk

For α ∈ L, β ∈ L, and the analytic transcendental function (1.1) with
R[f ] = 1, the quantities

ϱ
(1)
α,β [f ] := ϱ

(1)
α,β [ln M,f ] = lim

r↑1

α(ln M(r, f))

β(1/(1− r))

and
λ
(1)
α,β [f ] := λ

(1)
α,β [ln M,f ] = lim

r↑1

α(ln M(r, f))

β(1/(1− r))

are called the generalized order and the lower generalized order, respec-
tively.

Lemma 5. Let α ∈ Lsi, β ∈ Lsi, and let, for every c ∈ (0, +∞),

lim
x→+∞

d ln β−1(cα(x))

d ln x
< 1, lim

x→+∞

α(x/β−1(cα(x)))

α(x)
= 1. (3.26)

Then
ϱ
(1)
α,β [f ] = lim

k→∞

α(k)

β(k/ ln |fk|)
. (3.27)

If, moreover, |fk/fk+1| ↗ 1 as k0 ≤ k → ∞, then

λ
(1)
α,β [f ] = lim

k→∞

α(k)

β(k/ ln |fk|)
. (3.28)

Formula (3.27) was proved in [14], and formula (3.28) follows from
the corresponding formula for the Dirichlet series proved in [15–16].

The condition |fk/fk+1| ↗ 1 as k0 ≤ k → ∞ implies that

|fk+1| =
k∏

j=k0

qj for k ≥ k0, where qj ↘ 1. Therefore, |fk+1| ≥ 1 for

all k ≥ k0. We assume that |fk| ≥ 1 and |gk| ≥ 1 for all k ≥ k0. Then
R[f ∗ g] ≤ 1 and, thus, R[f ∗ g] = 1.

Unlike the entire functions, the maximal term for functions (1.1) with
R[f ] = 1 can be a bounded function. In order that µ(r, f) ↑ +∞ as
r ↑ 1, it is necessary and sufficient that lim

k→∞
|fk| = +∞. Indeed, if

|fk| ≤ K < +∞ for all k, then µ(r, f) ≤ max{Krk : k ≥ 0} = K.
On the other hand, if µ(r, f) ≤ K, then |fk|rk ≤ K for all k ≥ 0 and
r ∈ [0, 1). Directing r → 1, we get |fk| ≤ K for all k ≥ 0.

Lemma 6. If α ∈ Lsi, β ∈ Lsi, and α(ln x) = o(β(x)) as x→ +∞, then
ϱ
(1)
α,β [f ] = ϱ

(1)
α,β [ln µ, f ] and λ(1)α,β [f ] = λ

(1)
α,β [ln µ, f ]. If, moreover, α(ex) ∈
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Lsi and α(x) = o(β(x)) as x → +∞, then ϱ
(1)
α,β [ln µ, f ] = ϱ

(1)
α,β [ν, f ] and

λ
(1)
α,β [ln µ, f ] = λ

(1)
α,β [ν, f ].

Proof. In view of the conditions α ∈ Lsi and β ∈ Lsi, the equal-
ities ϱ(1)α,β [f ] = ϱ

(1)
α,β [ln µ, f ] and λ

(1)
α,β [f ] = λ

(1)
α,β [ln µ, f ] follow from the

estimates

µ(r, f) ≤M(r, f) ≤
∞∑
k=0

|fk|
(
1 + r

2

)k ( 2r

1 + r

)k
≤ 1 + r

1− r
µ

(
1 + r

2
, f

)
.

Indeed, in view of the condition α ∈ Lsi, we have

α(ln µ(r, f)) ≤ α(ln M(r, f)) ≤ α

(
ln µ

(
1 + r

2
, f

)
+ ln

2

1− r

)

≤ α

(
2max

{
ln µ

(
1 + r

2
, f

)
, ln

2

1− r

})
= (1 + o(1))max

{
α(ln µ

(
1 + r

2
, f

)
, α

(
ln

2

1− r

)}
= (1 + o(1))

{
α(ln µ

(
1 + r

2
, f

)
+ α

(
ln

2

1− r

)}
, r ↑ 1,

and, thus,
α(ln µ(r, f))

β(1/(1− r))
≤ α(ln M(r, f))

β(1/(1− r)

≤ (1 + o(1))

(
α(ln µ(1 + r)/2, f)

β(1/(1− (1 + r)/2))

β(2/(1− r))

β(1/(1− r))
+
α(ln(2/(1− r)))

β(1/(1− r))

)
as r ↑ 1. Since β ∈ Lsi and α(ln x) = o(β(x) as x → +∞, we have
ϱ
(1)
α,β [f ] = ϱ

(1)
α,β [ln µ, f ] and λ(1)α,β [f ] = λ

(1)
α,β [ln µ, f ].

Using the equality ln µ(r, f) − ln µ(r0, f) =
r∫
r0

ν(t, f)

t
dt, r0 ≤ r < 1,

we get

ln µ(r, f)− ln µ(r0, f) ≤ ν(r, f) ln (r/r0) ≤ ν(r, f) ln (1/r0). (3.29)

On the other hand, for r ≥ r0,

ln µ

(
r +

1− r

2
, f

)
− ln µ(r0, f) ≥

r+(1−r)/2∫
r

ν(t, f)

t
dt

≥ ν(r, f) ln (1 + (1− r)/2r) = (1 + o(1))ν(r, f)(1− r)/2, r ↑ 1,
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i.e.,

ν(r, f) ≤ 4

1− r
ln µ

(
r +

1− r

2
, f

)
, r ≥ r∗0. (3.30)

Since α(ex) ∈ Lsi and α(x) = o(β(x) as x → +∞, relations (3.29) and
(3.30) yield

(1 + o(1))
α(ln µ(r, f))

β(1/(1− r)
≤ (1 + o(1))

α(ν(r, f))

β(1/(1− r)

≤ (1 + o(1))
max{α(ln µ(r + (1− r)/2, f)),+α(4/(1− r))}

β(1/(1− r)

= (1 + o(1))
α(ln µ(r + (1− r)/2, f))

β(1/(1− r − (1− r)/2)

β(2/(1− r)

β(1/(R− r)

= (1 + o(1))
α(ln µ(r + (1− r)/2, f))

β(1/(1− r − (1− r)/2)
, r ↑ 1.

This implies that ϱ(1)α,β [ln µ, f ] = ϱ
(1)
α,β [ν, f ] and λ

(1)
α,β [ln µ, f ] = λ

(1)
α,β [ν, f ].

Lemma 6 is proved. 2

Using Lemmas 5 and 6, we prove the following statements.

Proposition 9. If α ∈ Lsi, β ∈ Lsi and α(ln x) = o(β(x)) as x→ +∞,
then

ϱ
(1)
α,β [f ∗ g] ≥ max{ϱ(1)α,β [f ], ϱ

(1)
α,β [g]}

and
λ
(1)
α,β [f ∗ g] ≥ max{λ(1)α,β [f ], λ

(1)
α,β [g]}.

Proof. Since |gk| > 1 for k ≥ k0, we have µ(r, f ∗ g) ≥ max{|fkgk|rk :
k ≥ k0}} ≥ max{|fk|rk : k ≥ k0}} = µ(r, f) + O(1) as r ↑ 1. From
whence, we get ϱ(1)α,β [ln µ, f ∗ g] ≥ ϱ

(1)
α,β [ln µ, f ] and λ

(1)
α,β [ln µ, f ∗ g] ≥

λ
(1)
α,β [ln µ, f ] and, by Lemma 6, ϱ(1)α,β [f ∗ g] ≥ ϱα,β [f ] and λ

(1)
α,β [f ∗ g] ≥

λ
(1)
α,β [f ]. Similarly, ϱ(1)α,β [f ∗ g] ≥ ϱ

(1)
α,β [g] and λ(1)α,β [f ∗ g] ≥ λ

(1)
α,β [g]. 2

Proposition 10. If the functions α and β satisfy the conditions of
Lemma 5, then

ϱ
(1)
α,β [f ∗ g] ≤ max{ϱ(1)α,β [f ], ϱ

(1)
α,β [g]}. (3.31)

If, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1, lklk+2/l
2
k+1 ↗ 1 and

λkλk+2/λ
2
k+1 ↗ 1 as k0 ≤ k → ∞, then

λ
(1)
α,β [f ∗ g] ≤ min{max{λ(1)α,β [f ], ϱ

(1)
α,β [g]}, max{λ(1)α,β [g], ϱ

(1)
α,β [f ]}}. (3.32)
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Proof. We can consider that ϱ(1)α,β [f ] < +∞ and ϱ(1)α,β [g] < +∞. Then,

by Lemma 5, ln |fk| ≤
k

β−1(α(k)/ϱ1)
and ln |gk| ≤

k

β−1(α(k)/ϱ2)
for

every ϱ1 > ϱ
(1)
α,β [f ], ϱ2 > ϱ

(1)
α,β [g] and all k ≥ k0. Therefore,

ln |fkgk| ≤
k

β−1(α(k)/ϱ1)
+

k

β−1(α(k)/ϱ2)
≤ 2

k

β−1(α(k)/max{ϱ1, ϱ2})
.

This implies that ϱ(1)α,β [f ∗ g] ≤ max{ϱ1, ϱ2}, i.e., in view of the arbitrari-
ness of ϱ1 and ϱ2, we get (3.31).

We have ln |fkj | ≤
kj

β−1(α(kj)/λ)
for every λ ∈ (λ

(1)
α,β [f ], +∞) and

some sequence (kj) ↑ +∞. Therefore, as above,

λ
(1)
α,β [f ∗ g] ≤ lim

j→∞

α(kj)

β(kj/ ln |fkjgkj |
≤ max{λ, ϱ2}.

In view of the arbitrariness of λ and ϱ2, we get λ
(1)
α,β [f ∗ g] ≤

max{λ(1)α,β [f ], ϱ
(1)
α,β [g]}. Similarly, λ(1)α,β [f ∗ g] ≤ max{λ(1)α,β [g], ϱ

(1)
α,β [f ]}.

Thus, (3.32) is true. 2

We prove also the following statement.

Proposition 11. Let α ∈ Lsi, β ∈ Lsi, and α(ln x) = o(β(x)) as
x → +∞. If condition (2.14) holds, then λ

(1)
α,β [D

n
l f ] = λ

(1)
α,β [f ] and

ϱ
(1)
α,β [D

n
l f ] = ϱ

(1)
α,β [f ].

Proof. It is sufficient to consider the case where n = 1. Con-
dition (2.14) yields the existence of numbers 0 < h1 ≤ h2 < +∞
such that h1.(k + 1) ≤ lk/lk+1 ≤ h2(k + 1) for all k ≥ 0. There-
fore, µ(r,D1

l f) ≥ max
{
h1(k + 1)|fk+1|rk+1 : k ≥ 0

}
= h1µ(r, f

′), and
µ(r,D1

l f) ≤ h2µ(r, f
′). Therefore, in view of Lemma 6, λ(1)α,β [D

1
l f ] =

λ
(1)
α,β [ln µ,D

1
l f ] = λ

(1)
α,β [ln µ, f

′] = λ
(1)
α,β [f

′] and ϱ
(1)
α,β [D

1
l f ] =

= ϱ
(1)
α,β [ln µ,D

1
l f ] = ϱ

(1)
α,β [ln µ, f

′] = ϱ
(1)
α,β [f

′]. On the other hand (see [8],

Lemma 6), M(r, f ′) ≤ 2

1− r
M

(
1− r

2
, f

)
and M(r, f) ≤ M(r, f ′) +

|f(0)|. From whence as in the proof of Lemma 6, we get λ(1)α,β [f
′] = λ

(1)
α,β [f ]

and ϱ(1)α,β [f
′] = ϱ

(1)
α,β [f ]. Proposition 11 is proved. 2

The following analog of Theorem 1 is true.
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Theorem 2. Let α(ex) ∈ Lsi, β ∈ Lsi, and let (3.26) hold. If (2.14)
holds, then

lim
r↑1

1

β(1/(1− r))
α

(
µ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)
= max{ϱ(1)α,β [f ], ϱ

(1)
α,β [g]}.

(3.33)
If, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1, lklk+2/l

2
k+1 ↗ 1, and

λkλk+2/λ
2
k+1 ↗ 1 as k0 ≤ k → ∞, then

max{λ(1)α,β [f ], λ
(1)
α,β [g]} ≤ lim

r↑1

1

β(1/(1− r))
α

(
µ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

)

≤ min{max{λ(1)α,β [f ], ϱ
(1)
α,β [g]}, max{λ(1)α,β [g], ϱ

(1)
α,β [f ]}}. (3.34)

Proof. As above, we have (2.21), and condition (3.26) implies that
α(ln x) ≤ α(x) = o(β(x) as x → +∞. In view of Lemma 6 and the
relation α(ex) ∈ Lsi, we have

lim
r↑1

α(ν(r,D
(n)
l f ∗D(m)

λ g)2j)

β(1/(1− r))
= lim

r↑1

α(ν(r,D
(n)
l f ∗D(m)

λ g))

β(1/(1− r))

= ϱ
(1)
α,β [ν,D

(n)
l f ∗D(m)

λ g)] = ϱ
(1)
α,β [D

(n)
l f ∗D(m)

λ ]

and

lim
r↑1

α(ν(r,D
(n)
l f ∗D(m)

λ g)2j)

β(1/(1− r))
= λ

(1)
α,β [ν,D

(n)
l f ∗D(m)

λ g)]

= λ
(1)
α,β [D

(n)
l f ∗D(m)

λ ].

Therefore, using Propositions 10 and 11 from (2.21), we obtain (3.33)
and (3.34). 2

Remark 2. Choosing α(x) = β(x) = ln+ x from the definitions of
ϱ
(1)
α,β [f ] and λ

(1)
α,β [f ], we get the definitions of the order ϱ(1)[f ] =

lim
r↑1

ln+ ln M(r, f))

ln (1/(1− r))
and the lower order λ(1)[f ] = lim

r↑1

ln+ ln M(r, f))

ln (1/(1− r))
for

function (1.1) with R[f ] = 1. The functions α(x) = β(x) = ln+ x do not
satisfy the conditions α(ex) ∈ Lsi and (3.26). The condition α(ex) ∈ Lsi

is used only in Lemma 6 for the proof of the equalities ϱ(1)α,β [ν, f ] = ϱ
(1)
α,β [f ]

and λ
(1)
α,β [ν, f ] = λ

(1)
α,β [f ]. Now, we have ( see [18]) λ(1)[f ] ≤ λ(1)[ν, f ] ≤

λ(1)[f ] + 1 and ϱ(1)[f ] ≤ ϱ(1)[ν, f ] ≤ ϱ(1)[f ] + 1. We note (see [18–19])
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that ϱ(1)[f ] =
α∗[f ]

1− α∗[f ]
, α∗[f ] := lim

k→∞

ln+ ln |fk|
ln k

. If |fk|/|fk+1| ↗ 1 as

k0 ≤ k → ∞, then λ(1)[f ] =
α∗[f ]

1− α∗[f ]
, α∗[f ] := lim

k→∞

ln+ ln |fk|
ln k

.

Since |fk| > 1 and |gk| > 1, we have α∗[f∗g] ≥ max{α∗[f ], α∗[g]} and
α∗[f ∗ g] ≥ max{α∗[f ], α∗[g]}. From whence, we get

ϱ(1)[f ∗ g] ≥ max{α∗[f ], α∗[g]}
1−max{α∗[f ], α∗[g]}

=
max{ϱ(1)[f ]/(1− ϱ(1)[f ]), ϱ(1)[g]/(1− ϱ(1)[g])}

1−max{ϱ(1)[f ]/(1− ϱ(1)[f ]), ϱ(1)[g]/(1− ϱ(1)[g])}

= max{ϱ(1)[f ], ϱ(1)[g])}.

On the other hand, ln |fk| ≤ kα1 and ln |gk| ≤ kα2 for every α1 ∈
(α∗[f ], 1), α2 ∈ (α∗[g], 1) and all k ≥ k0. Therefore, α∗[f ∗ g] ≤

lim
k→∞

ln+ (kα1 + kα2)

ln k
≤ max{α1, α2}. In view of the arbitrariness of α1

and α2, we get α∗[f ∗ g] ≤ max{α∗[f ], α∗[g]} and, as above, ϱ(1)[f ∗ g] ≤
max{ϱ(1)[f ], ϱ(1)[g]}.

If |fk/fk+1| ↗ +∞, |gk/gk+1| ↗ +∞ as k0 ≤ k → ∞, then we obtain
λ(1)[f∗g]≥max{λ(1)[f ], λ(1)[g])} and λ(1)[f∗g]≤min{max{λ(1)[f ], ϱ(1)[g]},
max{λ(1)[g], ϱ(1)[f ]}}. Finally, (2.21) implies that

ln
µ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)
= 2j ln ν(r,D

(n)
l f ∗D(m)

λ g), r → +∞.

Therefore, the following statement is true.

Proposition 12. If (2.14) holds, then

2jmax{ϱ(1)[f ], ϱ(1)[g]} ≤ lim
r↑1

1

ln (1/(1− r))
ln
µ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

≤ 2jmax{ϱ(1)[f ] + 1, ϱ(1)[g] + 1}.

If, moreover, |fk/fk+1| ↗ 1, |gk/gk+1| ↗ 1, lklk+2/l
2
k+1 ↗ 1 and

λkλk+2/λ
2
k+1 ↗ 1 as k0 ≤ k → ∞, then

2jmax{λ(1)[f ], λ(1)[g]} ≤ lim
r↑1

1

ln (1/(1− r))
ln
µ(r,D

(n+j)
l f ∗D(m+j)

λ g)

µ(r,D
(n)
l f ∗D(m)

λ g)

≤ 2jmin{max{λ(1)[f ], ϱ(1)[g]}+ 1, max{λ(1)[g], ϱ(1)[f ]}+ 1}.
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