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Abstract. The article deals with the Fermi–Pasta–Ulam type systems
that describes an infinite systems of particles on 2D–lattice. The main
result concerns the existence of traveling waves solutions with periodic
and vanishing profiles. By means of critical point theory, we obtain
sufficient conditions for the existence of such solutions.
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1. Introduction

In the present paper we study the Fermi–Pasta–Ulam type systems
that describes the dynamics of an infinite systems of nonlinearly coupled
particles on a two dimensional lattice. Let qn,m = qn,m(t) be a coordi-
nate of the (n,m)-th particle at time t. It is assumed that each particle
interacts nonlinearly with its four nearest neighbors. The equations of
motion of the system considered is of the form

q̈n,m =W ′
1(qn+1,m − qn,m)−W ′

1(qn,m − qn−1,m)

+W ′
2(qn,m+1 − qn,m)−W ′

2(qn,m − qn,m−1), (n,m) ∈ Z2, (1.1)

where W1 and W2 are the potentials of interaction. Equations (1.1) form
an infinite system of ordinary differential equations.

Systems of such type are of interest in view of numerous applica-
tions in physics [1, 16, 17]. Among the solutions of such systems, trav-
eling waves deserve special attention. A comprehensive presentation of
existing results on traveling waves for 1D Fermi–Pasta–Ulam lattices is
given in [20]. The existence of periodic and solitary traveling waves in

Received 27.04.2020

ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України



302 Existence of traveling waves in Fermi–Pasta–Ulam...

Fermi–Pasta–Ulam system on 2D–lattice is studied in [5] and [13]. In
papers [4, 15, 18, 19] traveling waves for infinite systems of linearly cou-
pled oscillators on 2D–lattice are studied, while [9] and [22] deal with
periodic in time solutions for such systems. In [7] it is obtained a result
on the existence of subsonic periodic traveling waves for the system of
nonlinearly coupled nonlinear oscillators on 2D–lattice, while in [8] su-
personic periodic traveling waves for such systems are studied. Paper [6]
is devoted to the existence of solitary traveling waves for such systems.
Papers [3, 10–12] is devoted to the existence of periodic, homoclinic and
heteroclinic traveling waves for the discrete sine–Gordon type equations
on 2D–lattice. Note that in [14] the existence of standing waves in discrete
nonlinear Shrödinger type equations on 2D–lattice is studied.

In contrast to the previous ones (see [5] and [13]), where traveling
waves with periodic and vanishing derivative of the wave profile were
studied, in this paper the case of traveling waves solutions with periodic
and vanishing profiles is considered.

2. Statement of a problem

A traveling wave solution of Eq. (1.1) is a function of the form

qn,m(t) = u(n cosφ+m sinφ− ct),

where the profile function u(s) of the wave, or simply profile, satisfies the
equation

c2u′′(s) =W ′
1(u(s+ cosφ)− u(s))−W ′

1(u(s)− u(s− cosφ))

+W ′
2(u(s+ sinφ)− u(s))−W ′

2(u(s)− u(s− sinφ)). (2.1)

In what follows, a solution of Eq. (2.1) is understood as a function
u(s) from the space C2(R) satisfying Eq. (2.1) for all s ∈ R.

We consider two types of solutions: periodic and solitary traveling
waves. In the first case profile satisfies periodic condition:

u(s+ 2k) = u(s), s ∈ R, k > 0, (2.2)

and in the second case profile satisfies boundary conditions (vanishing):

lim
s→±∞

u(s) = u(±∞) = 0. (2.3)

Let Xk be the Hilbert space defined by

Xk =
{
u ∈ H1

loc(R) : u(s+ 2k) = u(s), u(0) = 0
}
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with the scalar product

(u, v)k =

k∫
−k

u′(s)v′(s)ds

and corresponding norm ∥u∥k = (u, u)
1
2 . This space is a closed subspace

of the space

X̃k = {u ∈ H1
loc(R) : u′(s+ 2k) = u′(s), u(0) = 0}

with the same scalar product.
Let X be the closure of C∞

0 (R) with respect to the norm

∥u∥ =

 +∞∫
−∞

(u′(s))2ds


1
2

.

Obviously, X is a closed subspace of the space

X̃ := {u ∈ H1
loc(R) : u′ ∈ L2(R)}

with the scalar product

(u, v)X̃ = u(0)v(0) +

+∞∫
−∞

u′(s)v′(s)ds,

therefore, the functions from the space X satisfy the conditions (2.3).
Assume

(i) Wi(r) = ci
2 r

2 + fi(r), where ci ∈ R, fi ∈ C1(R), fi(0) = f ′i(0) = 0
and f ′i(r) = o(r) as r → 0, i = 1, 2;

(ii) exist r0 ∈ R and µ > 2 such that fi(r0) > 0 and

µfi(r) ≤ rf ′i(r), r ∈ R, i = 1, 2.

Lemma 2.1. Under the assumption (ii) there exist constants d > 0 and
d0 ≥ 0 independent of i such that

fi(r) ≥ d|r|µ − d0, i = 1, 2. (2.4)
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Proof. Let fix r0 > 0. Since

f ′i(r) ≥ µ
fi(r)

r

then, by standard results for differential inequalities fi(r) ≥ y(r) as r ≥
r0, where y(r) is solution of differential equation

y′(r) =
µ

r
y(r)

with initial data y(r0) = fi(r0). Obviously,

y(r) =
fi(r0)

rµ0
rµ.

Hence,

fi(r) ≥
fi(r0)

rµ0
rµ, r ≥ r0.

Then for all r ≥ 0

fi(r) ≥ fi(r0)(
rµ

rµ0
− 1) =

fi(r0)

rµ0
rµ − fi(r0).

Similarly, for r ≤ 0

fi(r) ≥
fi(−r0)
rµ0

|rµ| − fi(r0).

Thus, we obtain (2.4) with

d = min[
fi(−r0)
rµ0

,
fi(r0)

rµ0
],

d0 = max[fi(r0), fi(−r0)].

On the spaces Xk and X, we consider the functionals, respectively

Jk(u) =

k∫
−k

[
c2

2
(u′(s))2 −W1(Au(s))−W2(Bu(s))

]
ds,

J(u) =

+∞∫
−∞

[
c2

2
(u′(s))2 −W1(Au(s))−W2(Bu(s))

]
ds,
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where

(Au)(s) := u(s+ cosφ)− u(s) =

s+cosφ∫
s

u′(τ)dτ,

(Bu)(s) := u(s+ sinφ)− u(s) =

s+sinφ∫
s

u′(τ)dτ.

It is not so difficult to verify that the critical points of these functionals
in the spaces Xk and X are solutions of the equation (2.1) satisfying the
conditions (2.2) and (2.3), respectively.

By direct calculation we obtain the following lemma.

Lemma 2.2. The operators A and B are bounded and we have

∥Au∥L2(−k,k) ≤ | cosφ|·∥u′∥L2(−k,k), ∥Bu∥L2(−k,k) ≤ | sinφ|·∥u′∥L2(−k,k),

and

∥Au∥L∞(−k,k) ≤ l1(k) · ∥u′∥L2(−k,k), ∥Bu∥L∞(−k,k) ≤ l2(k) · ∥u′∥L2(−k,k),

where

l1(k) =

{
| cosφ|

√[
1
2k

]
+ 1, 0 < 2k < 1,

| cosφ|, 2k ≥ 1,

and

l2(k) =

{
| sinφ|

√[
1
2k

]
+ 1, 0 < 2k < 1,

| sinφ|, 2k ≥ 1,

where
[

1
2k

]
denotes the integer part of 1

2k .

3. Periodic waves

The main result of this section is the following theorem, which estab-
lishes the existence of periodic waves.

Theorem 3.1. Assume (i) and (ii). Then for every k > 0 and c2 >
a := max{c1, c2, 0} Eq. (2.1) has a nonconstant solution u that satisfies
condition (2.2).

To prove this theorem, we need the mountain pass theorem.
Let I – C1-functional on a Hilbert space H. We say that I satisfies

the Palais–Smale condition, if the following condition is satisfied:
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(PS) Let {un} ⊂ H be a such sequence that {I(un)} is bounded and
I ′(un) → 0, n→ ∞. Then {un} contains a convergent subsequence.

Now we formulate the mountain pass theorem (see [20, 21,23]).

Theorem 3.2. (Mountain pass theorem). Let I — C1-functional
on a Hilbert space H with norm ∥ · ∥, which satisfies the Palais–Smale
condition. Assume that there exist e ∈ H and r > 0 such that ∥e∥ > r
and β := inf

∥u∥=r
I(u) > I(0) ≥ I(e). Then there exists a critical point

u ∈ H of I such that the critical value

I(u) := b = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ β,

where Γ := {γ ∈ C([0, 1],H) : γ(0) = 0, γ(1) = e}. Moreover,

I(u) ≤ sup
τ≥0

I(τe).

We verify the conditions of the mountain pass theorem for the func-
tional Jk.

Lemma 3.1. Under the assumptions of theorem 3.1 functional Jk sat-
isfies the Palais–Smale condition.

Proof. Let {un} ⊂ Xk be a Palais–Smale sequence of Jk at level b, i.e.
Jk(un) → b and J ′

k(un) → 0 as n → ∞. Then, for n large enough, we
have

b+ 1 +
1

µ
∥un∥k ≥ Jk(un)−

1

µ
⟨J ′
k(un), un⟩

=

(
1

2
− 1

µ

) k∫
−k

[
c2(u′n(s))

2 − c1(Aun(s))
2 − c2(Bun(s))

2
]
ds

+

k∫
−k

[
1

µ
f ′1(Aun(s))Aun(s)− f1(Aun(s)

]
ds

+

k∫
−k

[
1

µ
f ′2(Bun(s))Bun(s)− f2(Bun(s)

]
ds.

Due to the assumptions on potentials the second and third integrals are
nonnegative and, by Lemma 2.2, we have

b+ 1 +
1

µ
∥un∥k ≥

(
1

2
− 1

µ

)
(c2 − a)∥un∥2k.
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And this implies that the sequence {un} is bounded in Xk.

Then, up to a subsequence (with the same denotation), un → u
weakly in Xk, hence, Aun → Au and Bun → Bu weakly in Xk, and
strongly in L2(−k, k) and C([−k, k]) (by the compactness of Sobolev
embedding). A straightforward calculation shows that

c2∥un − u∥2k =
k∫

−k

c2(u′n(s)− u′(s))2ds

= ⟨J ′
k(un)− J ′

k(u), un − u⟩

+c1∥Aun −Au∥2L2(−k,k) + c2∥Bun −Bu∥2L2(−k,k)

+

k∫
−k

(
f ′1(Aun(s))− f ′1(Au(s)

)
(Aun(s)−Au(s)) ds

+

k∫
−k

(
f ′2(Bun(s))− f ′2(Bu(s)

)
(Bun(s)−Bu(s)) ds.

Obviously that all the terms on the right part converge to 0 (first, fourth
and fifth by weak convergence, second and third terms converge to 0 by
strong convergence). Thus, ∥un − u∥k → 0 as n → ∞, and proof is
complete.

Lemma 3.2. Under the assumptions of theorem 3.1 there exist r0 > 0
and α0 > 0 independent of k such that inf

∥u∥k=r0
Jk(u) > α0.

Proof. We represent the functional Jk in the form

Jk(u) =
1

2
Ψk(u)− Sk(u),

where

Ψk(u) =

k∫
−k

[
c2(u′(s))2 − c1(Au(s))

2 − c2(Bu(s))
2
]
ds,

Sk(u) =

k∫
−k

[f1(Au(s)) + f2(Bu(s))] ds.
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Then, by lemma 2.2, we have

Jk(u) + Sk(u) =
1

2
Ψk(u) ≥

c2 − a

2
∥u∥2k.

We show that Sk(u) = o(∥u∥2k). Due to (i), for every ε > 0 there exists
δ > 0 such that

max{f1(r), f2(r)} ≤ εr2

2

as |r| ≤ δ.
We set

r0 =
δ

max{l1(k), l2(k)}
,

where l1(k), l2(k) from lemma 2.2. And take u ∈ Xk with norm ∥u∥k =
r0. Then, by lemma 2.2, for almost everyone s we have

|Au(s)| ≤ ∥Au∥L∞(−k,k) ≤ l1(k)∥u∥k ≤ δ,

|Bu(s)| ≤ ∥Bu∥L∞(−k,k) ≤ l2(k)∥u∥k ≤ δ.

Hence,

Sk(u) ≤
ε

2

k∫
−k

[
(Au(s))2 + (Bu(s))2

]
ds ≤ ε

2
∥u∥2k.

By arbitrariness of ε > 0, we have

Sk(u) = o(∥u∥2k).

In particular, if we choose ε such that 0 < ε < c2 − a, then we obtain

Jk(u) ≥ (c2 − a− ε)
r20
2
> 0

and the lemma is proved.

Lemma 3.3. Under the assumptions of theorem 3.1 there exists e ∈ Xk

with norm ∥e∥k > r0 such that Jk(e) ≤ 0.

Proof. By lemma 2.1, for all r

fi(r) ≥ d|r|µ − d0.

Let u ∈ Xk \ {0} and r > 0. Then we have

Jk(ru) =
1

2

k∫
−k

[
c2r2(u′(s))2 − c1r

2(Au(s))2 − c2r
2(Bu(s))2

]
ds
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−
k∫

−k

[f1(A(ru(s))) + f2(B(ru(s)))] ds

≤ r2

2

k∫
−k

[
c2r2(u′(s))2 − c1r

2(Au(s))2 − c2r
2(Bu(s))2

]
ds

−drµ
k∫

−k

[|Au(s)|µ + |Bu(s)|µ] ds+ 4kd0.

Since µ > 2, Jk(ru) → −∞ as r → +∞, hence, there exists r0 = r0(u) >
0 such that Jk(ru) ≤ 0 for all r > r0 and the lemma is proved.

Proof of theorem 3.1. Lemmas 3.1–3.3 show that Jk satisfies all condi-
tions of mountain pass theorem. Hence, Jk has nontrivial critical point
u ∈ Xk, which is a C2-solution of Eq. (2.1) that satisfy (2.2). Obviously
that u is nonconstant. The proof is complete.

4. Solitary waves

The main result of this section is the following theorem, which estab-
lishes the existence of solitary waves.

Theorem 4.1. Assume (i), (ii) and c2 > a := max{c1, c2, 0} Then
Eq. (2.1) has a nonconstant solution u that satisfies boundary conditions
(2.3).

Proof. As we have pointed out in section 3, the functional J satisfies
the mountain pass geometry in X̃. Since there exists e ∈ X such that
J(e) < 0, the functional J also satisfies the mountain pass geometry in
X. Then, by the version of mountain pass theorem without Palais–Smale
(see [23], Theorem 1.15), there exists a Palais–Smale sequence {un} ⊂ X
at level b, i.e. J(un) → b and J ′(un) → 0 in X∗.

As usual, the sequence {un} is bounded in X. Furthermore, ∥un∥ is
bounded below by a positive constant, hence, ∥un∥ ̸→ 0. Then we can
assume that un → u weakly in X. In addition, for every r > 0 there exist
θ > 0, subsequence of {un} (with the same denotation) and {ηn} ⊂ R
such that

ηn+r∫
ηn−r

[
(Aun(s))

2 + (Bun(s))
2
]
ds ≥ θ.
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Replacing un(s) by un(s− ηn), we obtain

r∫
−r

[
(Aun(s))

2 + (Bun(s))
2
]
ds ≥ θ

and the new sequence {un} still form a Palais–Smale sequence. Due to
the compactness of Sobolev embedding, Aun → Au and Bun → Bu in
the space L∞

loc(R), i.e. uniformly on segments, and, hence,

r∫
−r

[
(Au(s))2 + (Bu(s))2

]
ds ≥ θ > 0.

And this implies that u ̸= 0.

Let g ∈ C∞
0 (R). Then for k large enough: [−k, k] ⊃ suppAg ∪

suppBg =: S. For such k we denote by gk ∈ Xk the 2k-periodic extension
of g[−k,k]. Thus, we have

⟨J ′(u), g⟩

=

+∞∫
−∞

[
c2u′(s)g′(s)−W ′

1(Au(s))Ag(s)−W ′
2(Bu(s))Bg(s)

]
ds

=

∫
S

[
c2u′(s)g′(s)−W ′

1(Au(s))Ag(s)−W ′
2(Bu(s))Bg(s)

]
ds

= lim
k→∞

∫
S

[
c2u′k(s)g

′(s)−W ′
1(Auk(s))Ag(s)−W ′

2(Buk(s))Bg(s)
]
ds

= lim
k→∞

k∫
−k

[
c2u′k(s)g

′
k(s)

−W ′
1(Auk(s))Agk(s)−W ′

2(Buk(s))Bgk(s)
]
ds

= lim
k→∞

⟨J ′(uk), gk⟩ = 0.

Hence, u is nontrivial solution of Eq. (2.1) that satisfies boundary condi-
tions (2.3). Obviously that u is nonconstant. The proof is complete.
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Conclusion

Thus, in the present paper we obtain some results on the existence of
periodic and solitary traveling waves in Fermi–Pasta–Ulam type systems
on a two-dimensional lattice.
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