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Abstract. An important open problem in geometric complex anal-
ysis is to establish algorithms for explicit determination of the basic
curvelinear and analytic functionals intrinsically connected with confor-
mal and quasiconformal maps, such as their Teichmüller and Grunsky
norms, Fredholm eigenvalues and the quasireflection coefficient. This is
important also for the potential theory but has not been solved even for
convex polygons. This case has intrinsic interest in view of the connec-
tion of polygons with the geometry of the universal Teichmüller space
and approximation theory.

This survey extends our previous survey of 2005 and presents the
new approaches and recent essential progress in this field of geometric
complex analysis and potential theory, having various important appli-
cations. Another new topic concerns quasireflections across finite collec-
tions of quasiintervals (to which the notion of Fredholm eigenvalues also
can be extended).

2010 MSC. Primary: 30C55, 30C62, 30F60; Secondary: 31A35, 58B15.

Key words and phrases. Grunsky inequalities, univalent function,
Beltrami coefficient, quasiconformal reflection, universal Teichmüller
space, Fredholm eigenvalues, convex polygon.

1. Fredholm eigenvalues and quasiconformal reflections:
general theory

1.1. Quasireflections and quasicurves

The classical Brouwer–Kerekjarto theorem ( [13, 31], see also [90])
says that every periodic homeomorphism of the sphere S2 is topologically
equivalent to a rotation, or to a product of a rotation and a reflection
across a diametral plane. The first case corresponds to orientation pre-
serving homeomorphisms (and then E consists of two points), the second

Received 22.05.2020

ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України



326 Fredholm eigenvalues and quasiconformal...

one is orientation reversing, and then either the fixed point set E is empty
(which is excluded in our situation) or it is a topological circle.

We are concerned with homeomorphisms reversing orientation. Such
homeomorphisms of order 2 are topological involutions of S2 with f ◦f =
id and are called topological reflections.

We shall consider here quasiconformal reflections or quasireflec-
tions on the Riemann sphere Ĉ = C ∪ {∞} = S2, i.e., the orientation
reversing quasiconformal automorphisms of order 2 (involutions) of the
sphere with f ◦ f = id. The topological circles admitting such reflec-
tions are called quasicircles. Such circles are locally quasi-intervals,
i.e., the images of straight line segments under quasiconformal maps of
the sphere S2. Any quasireflection preserves pointwise fixed a quasicircle
L ⊂ Ĉ interchanging its inner and outer domains.

Under quasiconformal map w(z) of a domain D ⊂ Ĉ, we under-
stand an orientation preserving generalized solution of the Beltrami equa-
tion (uniformly elliptic system of the first order)
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are the distributional partial derivatives, µ is a given function from L∞(D)
with ∥µ∥∞ < 1, called the Beltrami coefficient (or complex dilatation)
of the map w, and the quantity k(w) = ∥µ∥∞ is the (quasiconformal) di-
latation of this map. There are some equivalent analytic and geometric
definitions of such maps.

Quasiconformality preserves (up to bounded perturbations) the main
intrinsic properties of conformal maps (see, e.g., [5, 34,66]).

Qualitatively, any quasicircle L is characterized, due to [4], by uniform
boundedness of the cross-ratios for all ordered quadruples (z1, z2, z3, z4)
of the distinct points on L; namely,

z1z2
z1z3

z3z4
z2z4

≤ C <∞

for any quadruple of points z1, z2, z3, z4 on L following this order. Using
a fractional linear transformation, one can send one of the points, for
example, z4, to infinity; then the above inequality assumes the form∣∣∣z2 − z1

z3 − z1

∣∣∣ ≤ C.
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This is shown in [4] by applying the properties of quasisymmetric maps.
Ahlfors has established also that if a topological circle L admits quasire-
flections (i.e., is a quasicircle), then there exists a differentiable quasire-
flection across L which is (euclidian) biLipschitz-continuous. This prop-
erty is very useful in various applications. On its extension to hyperbolic
M -bilipschitz reflections see [26].

Geometrically, a quasicircle is characterized by the property that,
for any two points z1, z2 on L, the ratio of the chordal distance |z1 −
z2| to the diameters of the corresponding subarcs with these endpoints
is uniformly bounded. Note also that every quasicircle has zero two-
dimensional Lebesgue measure.

Other characterizations of quasicircles are given, for example, in [25,
68, 79]. We will not touch here the extension of this theory to higher
dimensions.

Quasireflections across more general sets E ⊂ Ĉ also appear in cer-
tain questions and are of independent interest. Those sets admitting
quasireflections are called quasiconformal mirrors.

One defines for each mirror E its reflection coefficient

qE = inf k(f) = inf ∥∂zf/∂zf∥∞ (1)

and quasiconformal dilatation

QE = (1 + qE)/(1− qE) ≥ 1;

the infimum in (1) is taken over all quasireflections across E, provided
those exist, and is attained by some quasireflection f0.

When E = L is a quasicircle, the corresponding quantity

kE = inf{k(f∗) : f∗(S1) = E} (2)

and the reflection coefficient qE can be estimated in terms of one another;
moreover, due to [5], [57], we have

QE = KE :=
(1 + kE
1− kE

)2
. (3)

The infimum in (2) is taken over all orientation preserving quasicon-
formal automorhisms f∗ carrying the unit circle onto L, and k(f∗) =
∥∂z̄f∗/∂zf∗∥∞.

Theorem 1. For any set E ⊂ Ĉ which admits quasireflections, there is
a quasicircle L ⊃ E with the same reflection coefficient; therefore,

QE = min{QL : L ⊃ E quasicircle}. (4)



328 Fredholm eigenvalues and quasiconformal...

The proof of this important theorem was given for finite sets E =
{z1, ... , zn} by Kühnau in [60], using Teichmüller’s theorem on extremal
quasiconformal maps applied to the homotopy classes of homeomorphisms
of the punctured spheres, and extended to arbitrary sets E ⊂ Ĉ by the
author in [39].

Theorem 1 yields, in particular, that similar to (3) for any set E ⊂ Ĉ,
its quasiconformal dilatation satsfies

QE = (1 + kE)
2/(1− kE)

2,

where kE = inf ∥∂zf/∂zf∥∞ over all quasicircles L ⊃ E and all ori-
entation preserving quasiconformal homeomorphisms f : Ĉ → Ĉ with
f(R̂) = L.

This theorem implies various quantitative consequences. A new its
application will be given in the last section.

We point out that the conformal symmetry on the extended complex
plane is strictly rigid and reduces to reflection z 7→ z̄ within conjugation
by transformations g ∈ PSL(2,C). The quasiconformal symmetry avoids
such rigidity and is possible over quasicircles. Theorem 1 shows that, in
fact, this case is the most general one, since for any set E ⊂ Ĉ we have
QE = ∞, unless E is a subset of a quasicircle with the same reflection
coefficient.

Let us mention also that a somewhat different construction of qua-
siconformal reflections across Jordan curves has been provided in [21];
it relies on the conformally natural extension of homeomorphisms of the
circle introduced by Douady and Earle [17].

The quasireflection coefficients of curves are closely connected with
intrinsic functionals of conformal and quasiconformal maps such as their
Teichmüller and Grunsky norms and the first Fredholm eigenvalue, which
imply a deep quantitative characterization of the features of these maps.

One of the main problem here, important also in applications of geo-
metric complex analysis, is to establish the algorithms for explicit deter-
mination of these quantities for individual quasicircles or quasiintervals.
This was remains open a long time even for generic quadrilaterals.

1.2. Fredholm eigenvalues

Recall that the Fredholm eigenvalues ρn of an oriented smooth
closed Jordan curve L on the Riemann sphere Ĉ = C ∪ {∞} are the
eigenvalues of its double-layer potential, or equivalently, of the integral
equation

u(z) +
ρ

π

∫
L

u(ζ)
∂

∂nζ
log

1

|ζ − z|
dsζ = h(z),
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which has has many applications (here nζ is the outer normal and dsζ is
the length element at ζ ∈ L).

The least positive eigenvalue ρL = ρ1 plays a crucial role and is nat-
urally connected with conformal and quasiconformal maps . It can be
defined for any oriented closed Jordan curve L by

1

ρL
= sup

|DG(u)−DG∗(u)|
DG(u) +DG∗(u)

,

where G and G∗ are, respectively, the interior and exterior of L; D de-
notes the Dirichlet integral, and the supremum is taken over all functions
u continuous on Ĉ and harmonic on G ∪G∗. In particular, ρL = ∞ only
for the circle.

An upper bound for ρL is given by Ahlfors’ inequality [3]

1

ρL
≤ qL, (5)

where qL denotes the minimal dilatation of quasireflections across L.
In view of the invariance of all quantities in (5) under the action of

the Möbius group PSL(2,C)/±1, it suffices to consider the quasiconfor-
mal homeomorphisms of the sphere carrying S1 onto L whose Beltrami
coefficients µf (z) = ∂z̄f/∂zf have support in the unit disk D = {|z| < 1},
and f |D∗(z) = z + b0 + b1z

−1 + ..., where D∗ = Ĉ \ D (or in the upper
half-plane U = {ℑz > 0}). Then qL is equal to the minimum k0(f)
of dilatations k(f) = ∥µ∥∞ of quasiconformal extensions of the function
f∗ = f |D∗ into D.

The inequality (5) serves as a background for defining the value ρL,
being combined with the features of Grunsky inequalities given by the
classical Kühnau–Schiffer theorem. The related results can be found, e.g.
in surveys [42, 57,61] and the references cited there.

In the following sections, we provide a new general approach.

1.3. The Grunsky and Milin inequalities

Let

D = {z : |z| < 1}, D∗ = {z ∈ Ĉ = C ∪ {∞} : |z| > 1}.

In 1939, Grunsky discovered the necessary and sufficient conditions for
univalence of a holomorphic function in a finitely connected domain on the
extended complex plane Ĉ in terms of an infinite system of the coefficient
inequalities. In particular, his theorem for the canonical disk D∗ yields
that a holomorphic function f(z) = z+const+O(z−1) in a neighborhood



330 Fredholm eigenvalues and quasiconformal...

of z = ∞ can be extended to a univalent holomorphic function on the
D∗ if and only if its Grunsky coefficients αmn satisfy∣∣∣ ∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ ≤ 1, (6)

where αmn are defined by

log
f(z)− f(ζ)

z − ζ
= −

∞∑
m,n=1

αmnz
−mζ−n, (z, ζ) ∈ (D∗)2, (7)

the sequence x = (xn) runs over the unit sphere S(l2) of the Hilbert space

l2 with norm ∥x∥2 =
∞∑
1
|xn|2, and the principal branch of the logarithmic

function is chosen (cf. [30]). The quantity

κ(f) = sup
{∣∣∣ ∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ : x = (xn) ∈ S(l2)
}
≤ 1 (8)

is called the Grunsky norm of f .
For the functions with k-quasiconformal extensions (k < 1), we have

instead of (8) a stronger bound∣∣∣ ∞∑
m,n=1

√
mn αmnxmxn

∣∣∣ ≤ k for any x = (xn) ∈ S(l2), (9)

established first in [53] (see also [42,46]). Then

κ(f) ≤ k(f), (10)

where k(f) denotes the Teichmüller norm of f which is equal to the
infimum of dilatations k(wµ) = ∥µ∥∞ of quasiconformal extensions of f
to Ĉ. Here wµ denotes a homeomorphic solution to the Beltrami equation
∂zw = µ∂zw on C extending f .

Note that the Grunsky (matrix) operator

G(f) = (
√
mn αmn(f))

∞
m,n=1

acts as a linear operator l2 → l2 contracting the norms of elements x ∈ l2;
the norm of this operator equals κ(f) (cf. [28, 29]).

For most functions f , we have in (10) the strong inequality κ(f) <
k(f) (moreover, the functions satisfying this inequality form a dense sub-
set of Σ), while the functions with the equal norms play a crucial role in
many applications (see [42,46,52,54–56]).
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The method of Grunsky inequalities was generalized in several di-
rections, even to bordered Riemann surfaces X with a finite number of
boundary components(cf. [30, 66, 71, 79,86]; see also [27]). In the general
case, the generating function (7) must be replaced by a bilinear differen-
tial

− log
f(z)− f(ζ)

z − ζ
−RX(z, ζ) =

∞∑
m,n=1

βmn φm(z)φn(ζ) : X ×X → C,

(11)
where the surface kernel RX(z, ζ) relates to the conformal map jθ(z, ζ)
of X onto the sphere Ĉ slit along arcs of logarithmic spirals inclined at
the angle θ ∈ [0, π) to a ray issuing from the origin so that jθ(ζ, ζ) = 0
and

jθ(z) = (z − zθ)
−1 + const+O(1/(z − zθ)) as z → zθ = j−1

θ (∞)

(in fact, only the maps j0 and jπ/2 are applied). Here {φn}∞1 is a canonical
system of holomorphic functions on X such that (in a local parameter)

φn(z) =
an,n
zn

+
an+1,n

zn+1
+ . . . with an,n > 0, n = 1, 2, . . . ,

and the derivatives (linear holomorphic differentials) φ′
n form a complete

orthonormal system in H2(X).
We shall deal only with simply connected domains X = D∗ ∋ ∞ with

quasiconformal boundaries (quasidisks). For any such domain, the kernel
RD vanishes identically on D∗×D∗, and the expansion (11) assumes the
form

− log
f(z)− f(ζ)

z − ζ
=

∞∑
m,n=1

βmn√
mn χ(z)m χ(ζ)n

, (12)

where χ denotes a conformal map of D∗ onto the disk D∗ so that χ(∞) =
∞, χ′(∞) > 0.

Each coefficient αmn(f) in (12) is represented as a polynomial of a
finite number of the initial coefficients b1, b2, . . . , bs of f ; hence it depends
holomorphically on Beltramicoefficients of quasiconformal extensions of
f as well as on the Schwarzian derivatives

Sf (z) =
(f ′′(z)
f ′(z)

)′
− 1

2

(f ′′(z)
f ′(z)

)2
, z ∈ D∗. (13)

These derivatives range over a bounded domain in the complex Banach
space B(D∗) of hyperbolically bounded holomorphic functions φ ∈ D∗

with norm
∥φ∥B = sup

D∗
λ−2
D∗(z)|φ(z)|,
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where λD∗(z)|dz| denotes the hyperbolic metric of D∗ of Gaussian cur-
vature −4. This domain models the universal Teichmüller space T
with the base point χ′(∞)D∗ (in holomorphic Bers’ embedding of T).

A theorem of Milin [71] extending the Grunsky univalence criterion for
the disk D∗ to multiply connected domains D∗ states that a holomorphic
function f(z) = z + const+O(z−1) in a neighborhood of z = ∞ can be
continued to a univalent function in the whole domain D∗ if and only if
the coefficients βmn in (12) satisfy, similar to the classical case of the disk
D∗, the inequality ∣∣∣ ∞∑

m,n=1

βmn xmxn

∣∣∣ ≤ 1 (14)

for any point x = (xn) ∈ S(l2). We call the quantity

κD∗(f) = sup
{∣∣∣ ∞∑

m,n=1

βmn xmxn

∣∣∣ : x = (xn) ∈ S(l2)
}
, (15)

the generalized Grunsky norm of f . By (14), κD∗(f) ≤ 1 for any f
from the class Σ(D∗) of univalent functions in D∗ with hydrodynamical
normalization

f(z) = z + b0 + b1z
−1 + . . . near z = ∞.

The inequality κD∗(f) ≤ 1 is necessary and sufficient for univalence of f
in D∗ (see [30, 71,79]).

The norm (15) also is dominated by the Teichmüller norm k(f) of
this map. Similar to (10),

κD∗(f) ≤ k(f) = tanh τT(0, SF ),

where τT denotes the Teichmüller distance on the universal Teichmüller
space T with the base point D, and for the most of univalent functions,
we also have here the strict inequality.

The quasiconformal theory of generic Grunsky coefficients has been
developed in [47]. This technique is a powerful tool in geometric complex
analysis having fundamental applications in the Teichmüller space theory
and other fields.

Note that in the case D∗ = D∗, βmn =
√
mn αmn; for this disk, we

shall use the notations Σ and κ(f). We denote by S the canonical class
of univalent functions F (z) = z + a2z

2 + . . . in the unit disk D.
The Grunsky norm of univalent functions F ∈ S is defined similar to

(5), (6); so any such F (z) and its inversion f(z) = 1/F (1/z) univalent
in D∗ have the same Grunsky coefficients αmn. Technically it is more
convenient to deal with functions univalent in D∗.
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1.4. Extremal quasiconformality

A crucial point here is that the Teichmüller norm on Σ is intrinsi-
cally connected with integrable holomorphic quadratic differen-
tials ψ(z)dz2 on the complementary domain

D = Ĉ \D∗

(the elements of the subspace A1(D) of L1(D) formed by holomorphic
functions), while the Grunsky norm naturally relates to the abelian
structure determined by the set of quadratic differentials

A2
1(D) = {ψ ∈ A1(D) : ψ = ω2}

having only zeros of even order on D.

We describe the general intrinsic features. Let L be a quasicircle
passing through the points 0, 1,∞ which is the common boundary of two
domains D and D∗. Let L be an oriented quasiconformal Jordan curve
(quasicircle) on the Riemann sphere Ĉ with the interior and exterior
domains D and D∗. Denote by λD(z)|dz| the hyperbolic metric of D
of Gaussian curvature −4 and by δD(z) = dist(z, ∂D) the Euclidean
distance from the point z ∈ D to the boundary. Then

1

4
≤ λD(z)δD(z) ≤ 1,

where the right hand inequality follows from the Schwarz lemma and the
left from Koebe’s 1

4 theorem.
Consider the unit ball of Beltrami coefficients supported on D,

Belt(D)1 = {µ ∈ L∞(C) : µ|D∗ = 0 ∥µ∥∞ < 1}

and take the corresponding quasiconformal automorphisms wµ(z) of the
sphere Ĉ satisfying on C the Beltrami equation ∂zw = µ∂zw preserving
the points 0, 1,∞ fixed. Recall that k(w) = ∥µw∥∞ is the dilatation of
the map w.

Take the equivalence classes [µ] and [wµ] letting the coefficients µ1
and µ2 from Belt(D∗)1 be equivalent if the corresponding maps wµ1 and
wµ2 coincide on L (and hence on D). These classes are in one-to-one
correspondence with the Schwarzians Swµ on D∗ which fill a bounded
domain in the space B2(D

∗) modelling the universal Teichmüller space
T = T(D∗) with the base point D∗. The quotient map

ϕT : Belt(D)1 → T, ϕT(µ) = Swµ
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is holomorphic (as the map from L∞(D) to B2(D)). Its intrinsic Te-
ichmüller metric is defined by

τT(ϕT(µ), ϕT(ν))=
1

2
inf
{
logK

(
wµ∗◦

(
wν∗
)−1)

: µ∗∈ϕT(µ), ν∗∈ϕT(ν)
}
,

It is the integral form of the infinitesimal Finsler metric

FT(ϕT(µ), ϕ
′
T(µ)ν) = inf{∥ν∗/(1− |µ|2)∥∞ : ϕ′T(µ)ν∗ = ϕ′T(µ)ν}

on the tangent bundle T T of T, which is locally Lipschitzian.
The Grunsky coefficients give rise to another Finsler structure F (x, v)

on the bundle T T. It is dominated by the canonical Finsler structure
FT(x, v) and allows one to reconstruct the Grunsky norm along the
geodesic Teichmüller disks in T (see [41]).

We call the Beltrami coefficient µ ∈ Belt(D∗)1 extremal (in its class)
if

∥µ∥∞ = inf{∥ν∥∞ : ϕT(ν) = ϕT(µ)}

and call µ infinitesimally extremal if

∥µ∥∞ = inf{∥ν∥∞ : ν ∈ L∞(D∗), ϕ′T(0)ν = ϕ′T(0)µ}.

Any infinitesimally extremal Beltrami coefficient µ is globally extremal
(and vice versa), and by the basic Hamilton-Krushkal-Reich-Strebel the-
orem the extremality of µ is equivalent to the equality

∥µ∥∞ = inf{| < µ,ψ >D∗ | : ψ ∈ A(D) : ∥ψ∥ = 1}

(where A(D) is the space of the integrable holomorphic quadratic differ-
entials on D (the subspace of L1(D) formed by holomorphic functions on
D) and the pairing

⟨µ, ψ⟩D =

∫∫
D
µ(z)ψ(z)dxdy, µ ∈ L∞(D), ψ ∈ L1(D) (z = x+ iy).

Let w0 := wµ0 be an extremal representative of its class [w0] with
dilatation

k(w0) = ∥µ0∥∞ = inf{k(wµ) : wµ|L = w0|L},

and assume that there exists in this class a quasiconformal map w1 whose
Beltrami coefficient µA1 satisfies the inequality ess supAr

|µw1(z)| < k(w0)
in some ring domain R = D∗ \G complement to a domain G ⊃ D∗. Any
such w1 is called the frame map for the class [w0], and the corresponding
point in the universal Teichmüller space T is called the Strebel point.
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These points have the following important properties.

Theorem 2. (i) If a class [f ] has a frame map, then the extremal map
f0 in this class (minimizing the dilatation ∥µ∥∞) is unique and either a
conformal or a Teichmüller map with Beltrami coefficient µ0 = k|ψ0|/ψ0

on D, defined by an integrable holomorphic quadratic differential ψ0 on
D and a constant k ∈ (0, 1) [92].

(ii) The set of Strebel points is open and dense in T [24, 65].

The first assertion holds, for example, for asymptotically conformal
curves L. Similar results hold also for arbitrary Riemann surfaces (cf.
[19, 24]).

Recall that a Jordan curve L ⊂ C is called asymptotically confor-
mal if for any pair of points a, b ∈ L,

max
z∈L

|a− z|+ |z − b|
|a− b|

→ 1 as |a− b| → 0,

where z lies between a and b.
Such curves are quasicircles without corners and can be rather patho-

logical (see, e.g., [81, p. 249]. In particular, all C1-smooth curves are
asymptotically conformal.

The polygonal lines are not asymptotically conformal, and the pres-
ence of angles causes non-uniqueness of extremal quasireflections.

The boundary dilatation H(f) admits also a local version Hp(f) in-
volving the Beltrami coefficients supported in the neighborhoods of a
boundary point p ∈ ∂D. Moreover (see, e.g., [24, Ch. 17]), H(f) =
supp∈∂DHp(f), and the points with Hp(f) = H(f) are called substan-
tial for f and for its equivalence class.

On the unique and non-unique extremality see, e.g., [12,18,34,70,81,
91,92,99].

The extremal quasiconformality is naturally connected with extremal
quasireflections.

1.5. Complex geometry and basic Finsler metrics on universal
Teichmüller space

Recall that the universal Teichmüller space T is the space of qua-
sisymmetric homeomorphisms h of the unit circle S1 = ∂D factorized by
Möbius transformations. Its topology and real geometry are determined
by the Teichmüller metric which naturally arises from extensions of these
homeomorphisms h to the unit disk. This space admits also the com-
plex structure of a complex Banach manifold (and this is valid for all
Teichmüller spaces).
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One of the fundamental notions of geometric complex analysis is the
invariant Kobayashi metric on hyperbolic complex manifolds, even in the
infinite dimensional Banach or locally convex complex spaces.

The canonical complex Banach structure on the space T is defined by
factorization of the ball of Beltrami coefficients

Belt(D)1 = {µ ∈ L∞(C) : µ|D∗ = 0, ∥µ∥ < 1},

letting µ, ν ∈ Belt(D)1 be equivalent if the corresponding maps wµ, wν ∈
Σ0 coincide on S1 (hence, on D∗) and passing to Schwarzian derivatives
Sfµ . The defining projection ϕT : µ → Swµ is a holomorphic map from
L∞(D) to B. The equivalence class of a map wµ will be denoted by [wµ].

An intrinsic complete metric on the space T is the Teichmüller metric,
defined above in Section 1.4, with its infinitesimal Finsler form (structure)
FT(ϕT(µ), ϕ

′
T(µ)ν), µ ∈ Belt(D)1; ν, ν∗ ∈ L∞(C).

The space T as a complex Banach manifold also has invariant met-
rics. Two of these (the largest and the smallest metrics) are of special
interest. They are called the Kobayashi and the Carathéodory metrics,
respectively, and are defined as follows.

The Kobayashi metric dT on T is the largest pseudometric d on T
does not get increased by holomorphic maps h : D → T so that for any
two points ψ1, ψ2 ∈ T, we have

dT(ψ1, ψ2) ≤ inf{dD(0, t) : h(0) = ψ1, h(t) = ψ2},

where dD is the hyperbolic Poincaré metric on D of Gaussian curva-
ture −4, with the differential form

ds = λhyp(z)|dz| := |dz|/(1− |z|2).

The Carathéodory distance between ψ1 and ψ2 in T is

cT(ψ1, ψ2) = sup dD(h(ψ1), h(ψ2)),

where the supremum is taken over all holomorphic maps h : D → T.
The corresponding differential (infinitesimal) forms of the Kobayashi

and Carathéodory metrics are defined for the points (ψ, v) of the tangent
bundle T (T), respectively, by

KT(ψ, v) = inf{1/r : r > 0, h ∈ Hol(Dr,T), h(0) = ψ, dh(0) = v},
CT(ψ, v) = sup{|df(ψ)v| : f ∈ Hol(T,D), f(ψ) = 0},

where Hol(X,Y ) denotes the collection of holomorphic maps of a complex
manifold X into Y and Dr is the disk {|z| < r}.
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The Schwarz lemma implies that the Carathéodory metric is dom-
inated by the Kobayashi metric (and similarly for their infinitesimal
forms). We shall use here mostly the Kobayashi metric.

Due to the fundamental Gardiner-Royden theorem, the Kobayashi
metric on any Teichmüller spaces is equal to its Teichmüller metric (see
[18,20,24,84]).

For the the universal Teichmüller space T, we have the following
strengthened version of this theorem for universal Teichmüller space given
in [37].

Theorem 3. The Teichmüller metric τT(ψ1, ψ2) of either of the spaces T
or T(D∗) is plurisubharmonic separately in each of its arguments; hence,
the pluricomplex Green function of T equals

gT(ψ1, ψ2) = log tanh τT(ψ1, ψ2) = log k(ψ1, ψ2),

where k is the norm of extremal Beltrami coefficient defining the distance
between the points ψ1, ψ2 in T (and similar for the space T(D∗)).

The differential (infinitesimal) Kobayashi metric KT(ψ, v) on the tan-
gent bundle T (T) of T is logarithmically plurisubharmonic in ψ ∈ T,
equals the infinitesimal Finsler form FT(ψ, v) of metric τT and has con-
stant holomorphic sectional curvature κK(ψ, v) = −4 on the tangent bun-
dle T (T).

In other words, the Teichmüller–Kobayashi metric is the largest in-
variant plurisubharmonic metric on T.

The generalized Gaussian curvature κλ of an upper semicontin-
uous Finsler metric ds = λ(t)|dt| in a domain Ω ⊂ C is defined by

κλ(t) = −D log λ(t)

λ(t)2
,

where D is the generalized Laplacian

Dλ(t) = 4 lim inf
r→0

1

r2

{ 1

2π

∫ 2π

0
λ(t+ reiθ)dθ − λ(t)

}
(provided that −∞ ≤ λ(t) < ∞). Similar to C2 functions, for which D
coincides with the usual Laplacian, one obtains that λ is subharmonic on
Ω if and only if Dλ(t) ≥ 0; hence, at the points t0 of local maximuma of
λ with λ(t0) > −∞, we have Dλ(t0) ≤ 0.

The sectional holomorphic curvature of a Finsler metric on a
complex Banach manifold X is defined in a similar way as the supremum
of the curvatures over appropriate collections of holomorphic maps from
the disk into X for a given tangent direction in the image.
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The holomorphic curvature of the Kobayashi metric K(x, v) of any
complete hyperbolic manifold X satisfies κKX

≥ −4 at all points (x, v)
of the tangent bundle T (X) of X, and for the Carathéodory metric CX
we have κC(x, v) ≤ −4.

Finally, the pluricomplex Green function of a domain X on a
complex Banach space manifold E is defined as gX(x, y) = supuy(x)
(x, y ∈ X), where supremum is taken over all plurisubharmonic func-
tions uy(x) : X → [−∞, 0) satisfying uy(x) = log ∥x − y∥ + O(1)
in a neighborhood of the pole y. Here ∥ · ∥ is the norm on X and
the remainder term O(1) is bounded from above. If X is hyperbolic
and its Kobayashi metric dX is logarithmically plurisubharmonic, then
gX(x, y) = log tanh dX(x, y), which yields the representation of gT in
Theorem 3.

For details and general properties of invariant metrics, we refer to
[15,32] (see also [1, 42]).

Theorem 3 has various applications in geometric function theory and
in complex geometry Teichmüller spaces. Its proof involves the technique
of the Grunsky coefficient inequalities.

Plurisubharmonicity of a function u(x) on a domain D in a Banach
space X means that u(x) is upper continuous in D and its restriction to
the intersection of D with any complex line L is subharmonic.

A deep Zhuravlev’s theorem implies that the intersection of the uni-
versal Teichmüller space T with every complex line is a union of simply
connected planar (moreover, this holds for any Teichmüller space); see,
[53, p. 75–82], [104].

1.6. The Grunsky–Milin inequalities revised

Denote by Σ0(D∗) the subclass of Σ(D∗) formed by univalent Ĉ-
holomorphic functions in D∗ with expansions f(z) = z+ b0+ b1z

−1+ . . .
near z = ∞ admitting quasiconformal extensions to Ĉ. It is dense in
Σ(D∗) in the weak topology of locally uniform convergence on D∗

Each Grunsky coefficient αmn(f) is a polynomial of a finite number
of the initial coefficients b1, b2, . . . , bm+n−1 of f ; hence it depends holo-
morphically on Beltrami coefficients of extensions of f as well as on the
Schwarzian derivatives Sf ∈ B2(D

∗).
Consider the set

A2
1(D) = {ψ ∈ A1(D) : ψ = ω2}

consisting of the integrable holomorphic quadratic differentials on D hav-
ing only zeros of even order and put

αD(f) = sup {|⟨µ0, ψ⟩D| : ψ ∈ A2
1, ∥ψ∥A1(D) = 1}.
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The following theorem from [47] completely describes the relation be-
tween the Grunsky and Teichmüller norms (more special results were
obtained in [35,54]).

Theorem 4. For all f ∈ Σ0(D∗),

κD∗(f) ≤ k
k + αD(f)

1 + αD(f)k
, k = k(f),

and κD∗(f) < k unless
αD(f) = ∥µ0∥∞, (16)

where µ0 is an extremal Beltrami coefficient in the equivalence class [f ].
The last equality is equivalent to κD∗(f) = k(f).

If κ(f) = k(f) and the equivalence class of f (the collection of maps
equal to f on S1 = ∂D∗) is a Strebel point, then the extremal µ0 in this
class is necessarily of the form

µ0 = ∥µ0∥∞|ψ0|/ψ0 with ψ0 ∈ A2
1(D). (17)

Note that geometrically (16) means the equality of the Carathéodory
and Teichmüller distances on the geodesic disk {ϕT(tµ0/∥µ0∥) : t ∈ D}
in the universal Teichmüller space T and that the mentioned above the
strict inequality κ(f) < k(f) is valid on the (open) dense subset of Σ0 in
both strong and weak topologies (i.e., in the Teichmüller distance and in
locally uniform convergence on D∗).

An important property of the Grunsky coefficients αmn(f) = αmn(SF )
is that these coefficients are holomorphic functions of the Schwarzians
φ = Sf on the universal Teichmüller space T. Therefore, for every f ∈ Σ0

and each x = (xn) ∈ S(l2), the series

hx(φ) =
∞∑

m,n=1

√
mn αmn(φ)xmxn (18)

defines a holomorphic map of the space T into the unit disk D, and
κD∗(F ) = supx |hx(SF )|.

The convergence and holomorphy of the series (18) simply follow from
the inequalities∣∣∣ M∑

m=j

N∑
n=l

√
mn αmnxmxn

∣∣∣2 ≤ M∑
m=j

|xm|2
N∑
n=l

|xn|2

(for any finite M, N) which, in turn, are a consequence of the classical
area theorem (see, e.g., [80, p. 61], [72, p. 193]).
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Using Parseval’s equality, one obtains that the elements of the distin-
guished set A2

1(D) are represented in the form

ψ(z) =
1

π

∞∑
m+n=2

√
mn xmxnz

m+n−2 (19)

with x = (xn) ∈ l2 so that ∥x∥l2 = ∥ψ∥A1 (see [35]). This result extends
to arbitrary domains D with quasiconformal boundaries but the proof is
much more complicated (see [46]).

Let us mention also that a new model of the universal Teichmüller
space using the Grunsky coefficients has been constructed in [48].

1.7. The first Fredholm eigenvalue and Grunsky norm

One of the basic tools in quantitative estimating the Freholm eigen-
values ρL of quasicircles is given by the classical Kühnau-Schiffer theorem
mentioned above. This theorem states that the value ρL is reciprocal to
the Grunsky norm κ(f) of the Riemann mapping function of the exterior
domain of L (see. [55,85]).

Another important tool is the following Kühnau’s jump inequality
[57]:

If a closed curve L ⊂ Ĉ contains two analytic arcs with the interior
intersection angle πα′, then

1

ρL
≥ |1− |α′||. (20)

This implies the lower estimate for qL and 1/ρL. By approximation,
this inequality extends to smooth arcs.

One of the standard ways of establishing the reflection coefficients qL
(respectively, the Fredholm eigenvalues ρL) consists of verifying wether
the equality in (5) or the equality κ(f∗) = k0(f

∗) hold for a given curve
L (cf. [35, 56–58,103]).

This was an open problem a long time even for the rectangles stated
by R. Kühnau, after it was established only [57], [103] that the answer
is in affirmative for the square and for close rectangles R whose moduli
m(R) vary in the interval 1 ≤ m(R) < 1.037; moreover, in this case qL =
1/ρL = 1/2. The method exploited relied on an explicit construction of
an extremal reflection. The complete answer was given in [41].

The relation between the basic curvelinear functionals intrinsically
connected with conformal and quasiconformal maps is described in
Kühau’s paper [64].
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1.8. Holomorphic motions

Let E be a subset of Ĉ containing at least three points.
A holomorphic motion of E is a function f : E×D → Ĉ such that:
(a) for every fixed z ∈ E, the function t 7→ f(z, t) : E × D → Ĉ is

holomorphic in D;
(b) for every fixed t ∈ D, the map f(z, t) = ft(z) : E → Ĉ is injective;
(c) f(z, 0) = z for all z ∈ E.
The remarkable lambda-lemma of Mañé, Sad and Sullivan [69] yields

that such holomorphic dependence on the time parameter provides qua-
siconformality of f in the space parameter z. Moreover: (i) f extends to
a holomorphic motion of the closure E of E;
(ii) each ft(z) = f(t, z) : E → Ĉ is quasiconformal; (iii) f is jointly
continuous in (z, t).

Quasiconformality here means, in the general case, the boundedness
of the distortion of the circles centered at the points z ∈ E or of the
cross-ratios of the ordered quadruples of points of E.

The Slodkowski lifting theorem ( [89], see also [8, 14, 16]) solves the
problem of Sullivan and Thurston on the extension of holomorphic mo-
tions from any set to a whole sphere:

Extended lambda-lemma. Any holomorphic motion f : E × D → Ĉ
can be extended to a holomorphic motion f̃ : Ĉ×D → Ĉ, with f̃ |E×D = f .

The corresponding Beltrami differentials µ
f̃t
(z) = ∂z̄ f̃(z, t)/∂z f̃(z, t)

are holomorphic in t via elements of L∞(C), and Schwarz’s lemma yields

∥µ
f̃t
∥∞ ≤ |t|,

or equivalently, the maximal dilatations K(f̃t) ≤ (1 + |t|)/(1− |t|). This
bound cannot be improved in the general case.

Holomorphic motions have been important in the study of dynamical
systems, Kleinian groups, holomorphic families of conformal maps and of
Riemann surfaces as well as in many other fields (see, e.g., [8, 14, 18, 43,
69,74–76,88,94,95], and the references there.

There is an intrinsic connection between holomorphic motions and Te-
ichmüller spaces, first mentioned by Bers and Royden in [10]. McMullen
and Sullivan introduced in [76] the Teichmüller spaces for arbitrary holo-
morphic dynamical systems, and this approach is now one of the basic in
complex dynamics.
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2. Unbounded convex polygons

2.1. Main theorem

The inequalities (5), (20) have served a long time as the main tool
for establishing the exact or approximate values of the Fredholm value
ρL and allowed to establish it only for some special collections of curves
and arcs.

In this section, we present, following [41, 48], a new method which
enables us to solve the indicated problems for large classes of convex
domains and of their fractional linear images. This method involves in an
essential way the complex geometry of the universal Teichmüller space T
and the Finsler metrics on holomorphic disks in T as well as the properties
of holomorphic motions on such disks.

It is based on the following general theorem for unbounded convex do-
mains giving an explicit representation of the main associated curvelinear
and analytic functionals invariants by geometric characteristics of these
domains solving the problem for unbounded convex domains completely.

Theorem 5. For every unbounded convex domain D ⊂ C with piecewise
C1+δ-smooth boundary L (δ > 0) (and all its fractional linear images),
we have the equalities

qL = 1/ρL = κ(f) = κ(f∗) = k0(f) = k0(f
∗) = 1− |α|, (21)

where f and f∗ denote the appropriately normalized conformal maps
D → D and D∗ → D∗ = Ĉ \ D, respectively, k0(f) and k0(f

∗) are
the minimal dilatations of their quasiconformal extensions to Ĉ; κ(f)
and κ(f∗) stand for their Grunsky norms, and π|α| is the opening of the
least interior angle between the boundary arcs Lj ⊂ L. Here 0 < α < 1
if the corresponding vertex is finite and −1 < α < 0 for the angle at the
vertex at infinity.

The same is true also for the unbounded concave domains (the com-
plements of convex ones) which do not contain ∞; for those one must
replace the last term by |β| − 1, where π|β| is the opening of the largest
interior angle of D.

The proof of Theorem 5 is outlined in [41], [43]. In the next section we
provide an extension of this important theorem to nonconvex polygons
giving the detailed proof.

The equalities of type (21) were known earlier only for special closed
curves (see [54,57,61,103]), for example, for polygons bounded by circular
arcs with a common inner tangent circle. The proof of Theorem 5 involves
a completely different approach; it relies on the properties of holomorphic
motions.
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Let us mention also that the geometric assumptions of Theorem 5 are
applied in the proof in an essential way. Its assertion extends neither to
the arbitrary unbounded nonconvex or nonconcave domains nor to the
arbitrary bounded convex domains.

This theorem has various important consequences. It distinguishes a
broad class of domains, whose geometric properties provide the explicit
values of intrinsic conformal and quasiconformal characteristics of these
domains.

2.2. Examples

1. Let L be a closed unbounded curve with the convex interior which
is C1+δ smooth at all finite points and has at infinity the asymptotes
approaching the interior angle πα < 0. For any such curve, Theorem 5
yields the equalities

qL = 1/ρL = 1− |α|. (22)

2. More generally, assume that L also has a finite angle point z0 with
the angle opening πα0. Then, similar to (22),

qL = 1/ρL = max(1− |α0|, 1− |α∞|).

Simultaneously this quantity gives the exact value of the reflection
coefficient for any convex curvelinear lune bounded by two smooth arcs
with the common endpoints a, b, because any such lune is a Moebius
image of the exterior domain for the above curve L.

Other quantitative examples illustrating Theorem 5 are presented in
[43].

3. Extension to unbounded non-convex polygons

3.1. An open question

An open question is to establish the extent in which Theorem 5 can
be prolonged to arbitrary unbounded polygons.

Our goal is to show that this is possible for unbounded rectilinear
polygons for which the extent of deviation from convexity is sufficiently
small.

This extension essentially increases the collections of individual polyg-
onal curves and arcs with explicitly established Fredholm eigenvalues and
reflection coefficients.
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3.2. Main theorem

Let Pn be a rectilinear polygon with the finite verticesA1, A2, ... , An−1

and with vertex A∞ = ∞, and let the interior angle at the vertex Aj be
equal to παj and at A∞ be equal to πα∞, where α∞ < 0 and all aj ̸= 1,
so that α1 + · · · + αn−1 + α∞ = 2. Let fn be the conformal map of the
upper half-plane U = {z : ℑz > 0} onto Pn which without loss of gener-
ality, can be normalized by fn(z) = z − i+O(z − i) as z → i (assuming
that Pn contains the origin w = 0).

An important geometric characteristic of polynomials is the quantity

|1− |α|| = max {|1− |α1||, . . . , |1− |αn−1||, |1− |α∞||}; (23)

it valuates the local boundary quasiconformal dilatation of Pn.
Using this quantity, we first prove that an assertion similar to Theo-

rem 5 fails for the generic rectilinear polygons.

Theorem 6. There exist rectilinear polygons Pn whose conformal map-
ping functions fn satisfy

κ(fn) = k(fn) > |1− |a||, (24)

where a is defined via (23).

Proof. We shall use the rectangles P4; in this case all αj = 1/2. It is
known that the mapping function f4 of any rectangle has equal Grunsky
and Teichmüller norms,

κ(f4) = k(f4)

(see [40,57,103]).
Using the Moebius map σ : z 7→ 1/z, we transform the rectangle into

a (nonconvex) circular quadrilateral σ(P4) with angles π/2 and mutually
orthogonal edges so that two unbounded edges from these are rectilin-
ear and two bounded are circular, and note that for sufficiently long
rectangles must be

k(f̂4) = κ(f̂4) = 1/ρσ(∂P4) > 1/2, (25)

where f̂4 denotes the conformal map D → σ(P4).
Indeed, as was established by Kühnau [57]), the quadrilaterals with

the side ratios (conformal module) greater than 3.31 have the reflection
coefficient q∂P4 > 1/2 (the last inequality follows also from the fact that
the long rectangles give in the limit a half-strip with two unbounded par-
allel sides. Such a domain is not a quasidisk, so its reflection coefficient
equals 1); this proves (25).
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Any circular quadrilateral σ(P4) satisfying (25) can be approximated
by appropriate rectilinear polygons Pn. Assuming now that the equal-
ities of type (21) or (24) are valid for all such polygons, one obtains a
contradiction with (25), because both dilatation k(f) and q∂P are lower
continuous functionals under locally uniform convergence of quasiconfor-
mal maps (i.e., k(f) ≤ lim inf k(fn) as fn → f in the indicated topology,
and similarly for the reflection coefficient). This contradiction proves the
theorem.

For the indicated polygons, we also have the strict inequality 1/ρ∂Pn <
|1− |a|| giving only a lower bound for ρ∂Pn .

3.3. The main result of this section

The main result of this section is

Theorem 7. [49] Let Pn be a unbounded rectilinear polygon, neither
convex nor concave, and hence contain the vertices Aj whose inner angles
παj have openings παj with 1 < αj < 2. Assume that all such αj satisfy

αj − 1 < |1− |α||, (26)

where α is given by (23) (which means that the maximal value in (23) is
attained at some vertex Aj with 0 < |aj | < 1).

For any such polygon, taking appropriate Moebius map σ : D → U ,
we have the equalities

κ(fn ◦ σ) = k(fn) = q∂Pn = 1/ρ∂Pn = |1− |α||. (27)

Proof. Let Pn be an unbounded rectilinear polygon. Its conformal map-
ping function fn : U → Pn fixing the infinite point and with fn(i) = 0 is
represented by the Schwarz–Christoffel integral

fn(ζ) = d1

z∫
0

(ξ − a1)
α1−1 . . . (ξ − an−1)

αn−1−1dξ + d0, (28)

where all aj = f−1
∗ (Aj) ∈ R and d0, d1 are the corresponding complex

constants. The logarithmic derivative bf = (log f ′)′ = f ′′/f ′ of this map
has the form

bfn(z) =
n−1∑
1

(αj − 1)(z − aj)
−1.
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Letting Iα = {t ∈ R : −1/|1 − |α|| < t < 1/|1 − |α||}, Dα = {t ∈
C : |t| < 1/|1 − |α||}, we construct for fn an ambient complex isotopy
(holomorpic motion)

w(z, t) : U × Dα → Ĉ, (29)

(containing fn as a fiber map), which is injective in the space coordinate
z for any fixed t, holomorphic in t for a fixed z and w(z, 0) ≡ z.

First observe that for real r ∈ Iα the solution Wr to the equation
w′′(z) = rbf4(z)w

′(z) with the initial conditions wr(i) = i, wr(∞) = ∞
satisfies

bWr(z) =

n−1∑
1

r
αj − 1

z − aj
=

n∑
1

αj(r)− 1

z − aj
,

where

αj(r) = r(αj − 1) + 1. (30)

If the interior angles of the initial polygon Pn satisfy the assumption
(26), then all the functions Wr are represented by an integral of type
(27) (replacing αj by αj(r), and with suitable constants d0r, d1r).

Geometrically this means that the exterior angle 2π − παj(r) at any
finite vertex Aj(r) decreases with r (but the value αj(r)− 1 increases if
1 < αj < 2). Under the assumption (26), the admissible bounds for the
possible values of angles ensure the univalence of this integral on U for
every indicated t. This yields that every Wr(U) also is a polygon with
the interior angles παj(r) for r ̸= 0, while W0(U) = U .

Now we pass to the conformal map gn(ζ) = fn ◦ σ0(ζ) of the unit
disk D onto Pn, using the function σ0(ζ) = (1 + ζ)/(1− ζ). This map is
represented similar to (28) by

gn(ζ) = d1

ζ∫
0

n∏
1

(ξ − ej)
αj−1dξ + d0,

where the points ej are the preimages of vertices ej = g−1
n (Aj) on the

unit circle {|ζ| = 1}. Pick d1 to have g′n(0) = 1. For this function, we
have a natural complex isotopy

w̃t(ζ) =
1

t
gn(tζ) : D× D → C, (31)

with

bw̃t
(ζ) =

w̃′′
t (ζ)

w̃′
t(ζ)

= t
g′′n(tζ)

g′n(tζ)
= tbgn(tζ). (32)
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Following (31), we set for t = reiθ,

w̃t(ζ) = e−iθWr ◦ σ0(eiθζ).

The relations (32) yield that this function also is univalent in D.
The corresponding Schwarzians Sw̃r

(ζ) = rb′w̃r
(ζ) − r2bw̃r

(ζ)2/2 fill
a real analytic line Γ in the universal Teichmüller space T (modeled
as a bounded domain in the complex Banach space B of hyperbolically
bounded holomorphic functions on D). This line is located in the holo-
morphic disk Ω̃ = b(G) ⊂ T, where b denotes the map t 7→ Sw̃t

and
G ⊃ Iα is a simply connected planar domain.

By Zhuravlev’s theorem (see [51,104]), this domain contains for each
r ∈ Iα also the points Sw̃t

with |t| ≤ r (representing the curvelinear
polygons with piecewise analytic boundaries).

This generates the holomorphic motions (complex isotopies) w̃(ζ, t) :
D×G→ Ĉ and w(z, t) : U → Ĉ with w(z, 1) = fn(z).

The basic lambda-lemma for holomorphic motions implies that every
fiber map wt(z) is the restriction to U of a quasiconformal automorphism

W̃t(z) of the whole sphere Ĉ, and the Beltrami coefficients

µ(z, t) = ∂zŴt(z)/∂zŴt(z), t ∈ Dα,

in the lower half-plane U∗ = {z : ℑz < 0} depend holomorphically on t
as elements of the space L∞(U∗).

So we have a holomorphic map µ(·, t) from the disk Dα into the unit
ball of Beltrami coefficients supported on U∗,

Belt(U∗)1 = {µ ∈ L∞(C) : µ(z)|U = 0, ∥µ∥ < 1},

and the classical Schwarz lemma implies the estimate

k(Ŵt) = ∥µ
Ŵt

∥∞ ≤ |1− |α|||t|.

It follows that the extremal dilatation of the initial map fn(z) = Ŵ1(z)|U
satisfies

k(fn) ≤ |1− |α||.

Hence, also q∂Pn ≤ |1−|α|| and by the inequality (10), κ(fn) ≤ |1−|α||.
On the other hand, Kühnau’s lower bound (20) implies

1

ρ∂Pn

≥ |1− |α||.

Together with (5), this yields that the polygon Pn admits all equalities
(27) completing the proof of the theorem.
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3.4. Some applications

Theorem 7 widens the collections of curves with explicitly given Fred-
holm eigenvalues and reflection coefficients.

For example, let L be a saw-tooth quasicircle with a finite number
of triangular and trapezoidal teeth joined by rectilinear segments. We
assume that the angles of these teeth satisfy the condition (26). Then we
have the following consequence of Theorem 7.

Corollary 1. For any quasicircle L of the indicated form, its quasire-
flection coefficient qL and Fredholm eigenvalue ρL are given by

qL = 1/ρL = |1− |a||,

where |α| is defined similar to (23) by angles between the subintervals
of L. The same is valid for images γ(L) under the Moebius maps γ ∈
PSL(2,C).

4. Connection with complex geometry of universal
Teichmüller space

4.1. Another reason why the convex polygons are interesting for quasi-
conformal theory is their close geometric connection with the geometry
of universal Teichmüller space.
1. Introductory remarks. There is an interesting still unsolved
completely question on shape of holomorphic embeddings of Teichmüller
spaces stated in [9]:

For an arbitrary finitely or infinitely generated Fuchsian group Γ is
the Bers embedding of its Teichmüller space T(Γ) starlike?

Recall that in this embedding T(Γ) is represented as a bounded do-
main formed by the Schwarzian derivatives Sw of holomorphic univalent
functions w(z) in the lower half-plane U∗ = {z : ℑz < 0}) (or in the disk)
admitting quasiconformal extensions to the Riemann sphere Ĉ = C∪{∞}
compatible with the group Γ acting on U∗.

It was shown in [36] that universal Teichmüller space T = T(1) has
points which cannot be joined to a distinguished point even by curves of a
considerably general form, in particular, by polygonal lines with the same
finite number of rectilinear segments. The proof relies on the existence of
conformally rigid domains established by Thurston in [101] (see also [7]).

This implies, in particular, that universal Teichmüller space is not
starlike with respect to any of its points, and there exist points φ ∈ T
for which the line interval {tφ : 0 < t < 1} contains the points from
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B \ S, where B = B(U∗) is the Banach space of hyperbolically bounded
holomorphic functions in the half-plane U∗ with norm

∥φ∥B = 4 sup
U∗

y2|φ(z)|

and S denotes the set of all Schwarzian derivatives of univalent functions
on U∗. These points correspond to holomorphic functions on U∗ which
are only locally univalent.

Toki [102] extended the result on the nonstarlikeness of the space T
to Teichmüller spaces of Riemann surfaces that contain hyperbolic disks
of arbitrary large radius, in particular, for the spaces corresponding to
Fuchsian groups of second kind. The crucial point in the proof of [102] is
the same as in [36]

On the other hand, it was established in [37] that also all finite di-
mensional Teichmüller spaces T(Γ) of high enough dimensions are not
starlike.

The nonstarlikeness causes obstructions to some problems in the Te-
ichmüller space theory and its applications to geometric complex analysis.

The argument exploited in the proof of Theorems 5 and 7 provide
much simpler constructive proof that the universal Teichmüller space
is not starlike, representing explicitly the functions which violate this
property. It reveals completely different underlying geometric features.

Pick unbounded convex rectilinear polygon Pn with finite vertices
A1, . . . , An−1 and An = ∞. Denote the exterior angles at Aj by παj
so that π < αj < 2π, j = 1, . . . , n − 1. Then, similar to (28), the
conformal map fn of the lower half-plane H∗ = {z : ℑz < 0} onto
the complementary polygon P ∗

n = Ĉ \ Pn is represented by the Schwarz–
Christoffel integral

fn(z) = d1

z∫
0

(ξ − a1)
α1−1(ξ − a2)

α2−1...(ξ − an−1)
αn−1−1dξ + d0,

with aj = f−1
n (Aj) ∈ R and complex constants d0, d1; here f−1

n (∞) = ∞.
Its Schwarzian derivative is given by

Sfn(z) = b′fn(z)−
1

2
b2fn(z) =

n−1∑
1

Cj
(z − aj)2

−
n−1∑
j,l=1

Cjl
(z − aj)(z − al)

, (33)

where bf = f ′′/f ′ and

Cj = −(αj − 1)− (αj − 1)2/2 < 0, Cjl = (αj − 1)(αl − 1) > 0.
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It defines a point of the universal Teichmüller space T modeled as a
bounded domain in the space B(H∗) of hyperbolically bounded holomor-
phic functions on H∗ with norm ∥φ∥B(H∗) = supH∗ |z − z|2|φ(z)|.

Denote by r0 the positive root of the equation

1

2

[n−1∑
1

(αj − 1)2 +

n−1∑
j,l=1

(αj − 1)(αl − 1)
]
r2 −

n−1∑
1

(αj − 1) r − 2 = 0,

and put Sfn,t = tb′fn − b2fn/2, t > 0. Then for appropriate αj , we have

Theorem 8. [45] For any convex polygon Pn, the Schwarzians rSfn,r0
define for any 0 < r < r0 a univalent function wr : H∗ → C whose
harmonic Beltrami coefficient νr(z) = −(r/2)y2Sfn,r0(z) in H is extremal
in its equivalence class, and

k(wr) = κ(wr) =
r

2
∥Sfn,r0∥B(H∗). (34)

By the Ahlfors–Weill theorem [6], every φ ∈ B(H∗) with ∥φ∥B(H∗) <
1/2 is the Schwarzian derivative SW of a univalent function W in H∗,
and this function has quasiconformal extension onto the upper half-plane
H = {z : ℑz > 0} with Beltrami coefficient of the form

µφ(z) = −2y2φ(z), φ = Sf (z = x+ iy ∈ H∗)

called harmonic. Theorem 8 yields that any wr with r < r0 does not
admit extremal quasiconformal extensions of Teichmüller type, and in
view of extremality of harmonic coefficients µSwr

the Schwarzians Swr for
some r between r0 and 1 must lie outside of the space T; so this space is
not a starlike domain in B(H∗).

4.2. There are unbounded convex polygons Pn for which the equalities
(34) are valid in the strengthened form

k(fn) = κ(fn) =
1

2
∥Sfn∥B(H∗) (35)

for all r ≤ 1, completing the bounds (21).
We illustrate this on the case of triangles. Let P3 be a triangle with

vertices A1, A2 ∈ R and A3 = ∞ and exterior angles α1, α2, α3. The
logarithmic derivative of conformal map f3 : H∗ → P ∗

3 has the form

bf3(z) =
α1 − 1

z − a1
+
α2 − 1

z − a2

with aj = f−1
3 (Aj) ∈ R, j = 1, 2, and similar to (34),

Sf3(z) =
C1

(z − a1)2
+

C2

(z − a2)2
− C12

(z − a1)(z − a2)
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with

Cj = −(αj − 1)− 1

2
(αj − 1)2 = −

α2
j + 1

2
< 0, j = 1, 2;

C12 = (α1 − 1)(α2 − 1) > 0.

If the angles of P ∗
3 satisfy α1, α2 < |a3|, where −πα3 is the angle at A3,

the arguments from [45] yield that the harmonic Beltrami coefficient µSf3

satisfies (35).

4.3. In fact, the requirement of convexity for Pn can be weakened, as it
follows from the results of [50].

Surprisingly, this construction is closely connected also with the
weighted bounded rational approximation in sup norm.

5. Quasiconformal features and fredholm eigenvalues of
bounded convex pokygons

5.1. Affine deformations and Grunsky norm

As it was mentioned above, there exist bounded convex domains even
with analytic boundaries L whose conformal mapping functions have dif-
ferent Grunsky and Teichmüller norms, and therefore, ρL < 1/qL.

The aim of this chapter is to provide the classes of bounded convex
domains, especially polygons, for which these norms are equal and give
explicitly the values of the associate curve functionals k(f), κ(f), qL, ρL.

One of the interesting questions is whether the equality of Teichmüller
and Grunsky norms is preserved under the affine deformations

gc(w) = c1w + c2w + c3

with c = c2/c1, |c| < 1 (as well as of more general maps) of quasidisks.
In the case of unbounded convex domains, this follows from Theo-

rem 5. We establish this here for bounded domains D.
More precisely, we consider the maps gc, which are conformal in the

complementary domain D∗ = Ĉ \D and have in D a constant quasicon-
formal dilatation c, regarding such maps as the affine deformations
and the collection of domains gc(D) as the affine class of D.

If f is a quasiconformal automorphism of Ĉ conformal in D∗ mapping
the disk D onto a domain D, then for a fixed c the maps gc|D ◦ f and
(gc ◦ f)|D differ by a conformal map h : D → gc(D) and hence have in
the disk D the same Beltrami coefficient.
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Note that the inequality |c| < 1 equivalent to |c2| < |c1| follows imme-
diately from the orientation preserving under this map and its composi-
tion with conformal map by forming the corresponding affine deformation
(which arises after extension the constant Beltrami coefficient c by zero
to the complementary domain).

The following theorem solves the problem positively.

Theorem 9. For any function f ∈ Σ0 with κ(f) = k(f) mapping the
disk D∗ onto the complement of a bounded domain (quasidisk) D and any
affine deformation gc of this domain (with |qc| < 1), we have the equality

κ(gc ◦ f) = k(gc ◦ f). (36)

Theorems 9 essentially increases the set of quasicircles L ⊂ Ĉ for
which ρL = 1/qL giving simultaneously the explicit values of these curve
functionals. Even for quadrilaterals, this fact was known until now only
for some special types of them (for rectangles [41,55–57] and for rectilinear
or circular quadrilaterals having a common tangent circle [103]).

5.2. Scheme of the proof of Theorem 9

The proof follows the lines of Theorem 1.1 in [44] and is divided into
several lemmas.

First, we establish some auxiliary results characterizing the homotopy
disk of a map with κ(f) = k(f).

Take the generic homotopy function

ft(z) = tf(z/t) = z + b0t+ b1t
2z−1 + b2t

3z−2 + · · · : D∗ × D → Ĉ.

Then Sft(z) = t−2Sf (t
−1z) and this point-wise map determines a holo-

morphic map χf (t) = Sft(·) : D → T so that the homotopy disks
D(Sf ) = χf (D) foliate the space T. Note also that

αmn(ft) = αmn(f)t
m+n,

and if F (z) = 1/f(1/z) maps the unit disk onto a convex domain, then
all level lines f(|z| = r) for z ∈ D∗ are starlike.

Lemma 1. If the homotopy function ft of f ∈ Σ0 satisfy κ(ft0) = k(ft0)
for some 0 < t0 < 1, then the equality κ(ft) = k(ft) holds for all |t| ≤ t0
and the homotopy disk D(Sft) has no critical points t with 0 < |t| < t0.

Take the univalent extension f1 of f to a maximal disk D∗
b = {z ∈ Ĉ :

|z| > b}, (0 < b < 1) and define

f∗(z) = b−1f1(bz) ∈ Σ0, |z| > 1.
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Its Beltrami coefficient in D is defined by holomorphic quadratic differ-
entials ψ ∈ A2

1 of the form (19), and we have the holomorphic map, for a
fixed xb = (xbn) ∈ l2,

hxb(Sf∗t ) =

∞∑
m,n=1

√
mn αmn(f

∗)xbmx
b
n(bt)

m+n (37)

of the disk D(Sf∗) into D. In view of our assumption on f , the series (37)
is convergent in some wider disk {|t| < a}(a > 1).

Using the map (37), we pull back the hyperbolic metric λD(t) =
|dt|/(1 − |t|2) to the disk D(SF1) (parametrized by t) and define on this
disk the conformal metric ds = λ

h̃x
(t)|dt| with

λ
h̃
xb
(t) = (hxa ◦ χf1)∗λD =

|h̃′
xb(t)||dt|

1− |h̃xb(t)|2
. (38)

of Gaussian curvature −4 at noncritical points. In fact, this is the sup-
porting metric at t = a for the upper envelope λκ = supx∈S(l2) λh̃

xb
(t) of

metrics (38) followed by its upper semicontinuous regularization

λκ(t) 7→ λ∗κ(t) = lim sup
t′→t

λκ(t
′)

(supporting means that λ
h̃
xb
(a) = λκ(a) and λ

h̃
xb
(t) < λκ(t) in a neigh-

borhood of a).
The metric λκ(t) is logarithmically subharmonic on D and its gene-

ralized Laplacian

∆u(t) = 4 lim inf
r→0

1

r2

{ 1

2π

∫ 2π

0
u(t+ reiθ)dθ − λ(t)

}
satisfies

∆log λκ ≥ 4λ2κ

(while for λ
h̃
xb

we have at its noncritical points ∆log λ
h̃
xb

= 4λ2
h̃
xb

).

As was mentioned above, the Grunsky coefficients define on the tan-
gent bundle T (T) a new Finsler structure Fκ(φ, v) dominated by the in-
finitesimal Teichmüller metric F (φ, v). This structure generates on any
embedded holomorphic disk γ(D) ⊂ T the corresponding Finsler metric
λγ(t) = Fκ(γ(t), γ

′(t)) and reconstructs the Grunsky norm by integration
along the Teichmüller disks:

Lemma 2. [44] On any extremal Teichmüller disk D(µ0) = {ϕT(tµ0) :
t ∈ D} (and its isometric images in T), we have the equality

tanh−1[κ(f rµ0)] =
r∫

0

λκ(t)dt.
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Taking into account that the disk D(Sf ) touches at the point φ = Sfa
the Teichmüller disk centered at the origin of T and passing through this
point and that the metric λκ does not depend on the tangent unit vectors
whose initial points are the points of D(Sf ), one obtains from Lemma 2
and the equality κ(fa) = k(fa) that also

λκ(a) = λK(a). (39)

The following lemma is a needed reformulation of Theorem 3.

Lemma 3. [44] The infinitesimal forms KT(φ, v) and FT(φ, v) of both
Kobayashi and Teichmüller metrics on the tangent bundle T (T) of T are
continuous logarithmically plurisubharmonic in φ ∈ T and have constant
holomorphic sectional curvature κK(φ, v) = −4.

We compare the metric λ
h̃
xb

with λK using Lemmas 2, 3 and Minda’s
maximum principle given by

Lemma 4. [72] If a function u : D → [−∞,+∞) is upper semicon-
tinuous in a domain D ⊂ C and its (generalized) Laplacian satisfies the
inequality ∆u(z) ≥ Ku(z) with some positive constant K at any point
z ∈ D, where u(z) > −∞, and if

lim sup
z→ζ

u(z) ≤ 0 for all ζ ∈ ∂D,

then either u(z) < 0 for all z ∈ D or else u(z) = 0 for all z ∈ Ω.

Lemma 4 and the equality (39) imply that the metrics λ
h̃
xb
, λκ, λK

must be equal in the entire disk D(SF ), which yields by Lemma 2 the
equality

κ(fr) = k(fr) =
∣∣∣ ∞∑
m,n=1

√
mn αmn(F1)r

m+nxrmx
r
n

∣∣∣
for all r = |t| ∈ (0, 1) (with (xrn) ∈ S(l2) depending on r) and that for any
f ∈ Σ0 with κ(f) = k(f) its homotopy disk D(SF ) has only a singularity
at the origin of T.

We may now investigate the action of affine deformations on the set
of functions f ∈ Σ0 with equal Grunsky and Teichmüller norms.

Lemma 5. For any affine deformation gc of a convex domain D with
expansion gc(w) = w + bc0 + bc1w

−1 + . . . near w = ∞, we have

bc1 =
Sgc(∞)

6
=

1

6
lim
z→∞

w4Sgc(w) ̸= 0,
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and for sufficiently small |c| all composite maps

Wf,c(z) = gc ◦ f(z) = z + b̂c0 + b̂c1z
−1 + . . . , f ∈ Σ0,

also satisfy b̂c1 ̸= 0.

Finally, we use the following important result of Kühnau [55].

Lemma 6. For any function f(z) = z + b0 + b1z
−1 + · · · ∈ Σ0 with

b1 ̸= 0, the extremal quasiconformal extensions of the homotopy functions
ft to D are defined for sufficiently small |t| ≤ r0 = r0(f) (r0 > 0) by
nonvanishing holomorphic quadratic differentials, and therefore, κ(ft) =
k(ft).

Using these lemmas, one establishes the equalities λκ = λK on the
disk D(SWf,c

) and
κ(WF,c) = k(WF,c). (40)

The final step of the proof is to extend the last equality to all c with
|c| < 1.

Applying again the chain rule for Beltrami coefficients µ, ν from the
unit ball in L∞(C),

wµ ◦ wν = wτ with τ = (ν + µ̃)/(1 + νµ̃)

and µ̃(z) = µ(wν(z))wνz/w
ν
z (so for ν fixed, τ depends holomorphically on

µ in L∞ norm) and defining the corresponding functions (37), one gets
now the holomorphic functions of c ∈ D. Then, constructing in a similar
way the corresponding Finsler metrics

λ
h̃x
(c) = |h̃′x(c)||dc|/(1− |h̃x(c)|2), |c| < 1.

and taking their upper envelope λκ(c) and its upper semicontinuous reg-
ularization, one obtains a subharmonic metric of Gaussian curvature
κλκ ≤ −4 on the nonsingular disk {|c| < 1}. One can repeat for this
metric all the above arguments using the already established equality
(40) for small |c|.

5.3. Generalization

The arguments in the proof of Theorem 9 are extended almost straight-
forwardly to more general case:

Theorem 10. Let F ∈ Σ0 and κ(F ) = k(F ). Let h be a holomorphic
map D → T without critical points in D and h(0) = SF . Denote by gc

the univalent solution of the Schwarzian equation

Sg = (h(c) ◦H)(H ′)2 + SH ,
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where H(w) = F−1(w), on the domain F (D∗). Then, for any c ∈ D, the
composition gc ◦ F also satisfies κ(gc ◦ F ) = k(gc ◦ F ).

Note that by the lambda lemma for holomorphic motions, the map
h determines a holomorphic disk in the ball of Beltrami coefficients on
F (D), which yields, together with assumptions of the theorem, that for
small |c|,

gc(w) = w + bc0 + bc1w
−1 + . . . as w → ∞

with bc1 ̸= 0. This was an essential point in the proof.

5.4. Bounded polygons: a counterexample to Theorem 5

The case of bounded convex polygons has an intrinsic interest, in view
of the following negative fact underlying the features and contrasting
Theorem 5.

Theorem 11. There exist bounded rectilinear convex polygons Pn with
sufficiently large number of sides such that

ρ∂Pn < 1/q∂Pn .

It follows simply from Theorem 9 that if a polygon Pn, whose edges
are quasiconformal arcs, satisfies ρ∂Pn = 1/q∂Pn then this equality is
preserved for all its affine images. In particular, this is valid for all recti-
linear polygons obtained by affine maps from polygons with edges having
a common tangent ellipse (which includes the regular n-gons).

Theorem 11 naturally gives raise to the question whether the property
ρ∂Pn = 1/q∂Pn is valid for all bounded convex polygons with sufficiently
small number of sides.

In the case of triangles this immediately follows from Theorem 7 as
well as from Werner’s result.

Noting that the affinity preserves parallelism and moves the lines to
lines, one concludes from Theorem 9 that the equality ρ∂P4 = 1/q∂P4 holds
in particular for quadrilaterals P4 obtained by affine transformations from
quadrilaterals which are symmetric with respect to one of diagonals and
for quadrilaterals whose sides have common tangent outwardly ellipse (in
particular, for all parallelograms and trapezoids). For the same reasons,
it holds also for hexagons with axial symmetry having two opposite sides
parallel to this axes.

In fact, Theorem 9 allows us to establish much stronger result an-
swering the question positively for quadrilaterals.

Theorem 12. For every rectilinear convex quadrilateral P4, we have

κ(f) = k(f) = q∂P4 = 1/ρ∂P4 , (41)
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where f is the appropriately normalized conformal map of D∗ onto P ∗
4 .

The proof of this theorem essentially relies on Theorem 9 and on result
of [41] that the equalities (41) are valid for all rectangles, and hence for
their affine transformations.

Fix such a quadrilateral P 0
4 = A0

1A
0
2A

0
3A

0
4 and consider the collection

P0 of quadrilaterals P4 = A0
1A

0
2A

0
3A4 with the same first three vertices

and variable A4; the corresponding A4 runs over a subset E of the trice
punctured sphere Ĉ \ {A0

1, A
0
2, A

0
3}.

The collection P0 contains the trapezoids, for which we have the
equalities (41) by Theorem 9 (and consequently, the infinitesimal equality
(39) at the corresponding points a).

Similar to the proof of Theorem 7, one obtains in the universal Te-
ichmüller space T a holomorphic disk Ω extending the real analytic curve
filled by the Schwarzians which correspond to the values t = A on E. On
this disk, one can construct, similar to (38), the corresponding metric λκ.
Lemmas 4-6 again imply that this metric must coincide at all points of Ω
with the dominant infinitesimal Teichmüller-Kobayashi metric λK of T.
Together with Lemma 2, this provides the global equalities (41) for all
points of the disk Ω (and hence for the prescribed quadrilateral P 0

4 ).

6. Reflections across finite collections of quasintervals

6.1.

There are only a few exact estimates of the reflection coefficients of
quasiconformal arcs (quasiintervals) and some their sharp upper bounds
presented in [38,39]. The most of these bounds have been obtained using
the classical Bernstein-Walsh-Siciak theorem which quantitatively con-
nects holomorphic extension of a function defined on a compact K b Cn
with the speed of its polynomial approximation. Another approach was
applied by Kühnau in [58,59,62,63]. In particular, using somewhat mod-
ification of Teichmüller’s Verschiebungssatz [100], he established in [63]
the reflection coefficient of the set E which consists of the interval [−2i, 2i]
and a separate point t > 0. All these result are presented in [43].

6.2. Reflections across the finite collections of quasiintervals

Theorems 5 and 7 open a new way in solving this problem following
the lines of the first example after Theorem 5. Namely, given a finite
union

L =
∪
L1

∪
L2 · · ·

∪
LN
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of smooth curvelinear quasiintervals (possibly mutually separated) such
that L can be extended without adding new vertices (angular points) to
a quasicircle L0 ⊃ L containing z = ∞ and bounding a convex polygon
PN which satisfies the assumptions of Theorem 5 or a polygon considered
in Theorem 7, then by these theorems, the reflection coefficient of the set
L equals

qL = |1− |a||, (42)

where α is defined for L0 similar to (23).
The main point here is to get a convex (or sufficiently close to convex,

as in Theorem 7) polygon, because the initial and final arcs of components
Lj can be smoothly extended and then rounded off.

Note also that adding to L a finite number of appropriately located
isolated points z1, . . . zm does not change the reflection coefficient (42).

7. Some open problems

1. The first problem is the following question of Kühnau (personal com-
munication):

Does the reflection coefficient of a rectangle R be a monotone nonde-
creasing function of its conformal module µR (the ratio of the vertical
and horizontal side lengths) ?

The results of Kühnau and Werner for the rectangles R state that if
the module µ(R) satisfies 1 ≤ µ(R) < 1.037, then

q∂R = 1/ρ∂R = 1/2;

if µ(R) > 2.76, then q∂R > 1/2 (see [57,103]).
On the other hand, the reflection coefficients of long rectangles are

close to 1, because the limit half-strip is not a quasidisk.

2. To what extent can be generalized the above theorems to convex poly-
gons with infinite number of vertexes?

The existence of an obstruction follows from Theorem 11.
Let us mention also that the underlying fact of many extension results

is the Ahlfors–Weill theorem ensuring quasiconformal extension across
quasiconformal curves with sufficiently small B-norm of exterior confor-
mal mapping function.

3. Similar question on estimating quasiconformal reflection coefficients
and Fredholm eigenvalues for quasiintervals formed by infinite collections
of rectilinear intervals.
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In particular, find the reflection coefficients and Fredholm eigenvalues
of arbitrary reclinear polygons whose neighbor sides are orthogonal.

4. Let L be a finite collection of parallel linear segments either located
on a line or intersecting a line under the same angle. Find the reflection
coefficient qL.
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J. Anal. Math., 75, 299–338.
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[54] Kühnau, R. (1982). Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte
und Grunskysche Koeffizientenbedingungen. Ann. Acad. Sci. Fenn. Ser. AI.
Math., 7, 383–391.
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[69] Mañé, R., Sad, P., Sullivan, D. (1983). On the dynamics of rational maps. Ann.
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[70] Matelević, M. (2013). Quasiconformal maps and Teichmüller theory - extremal
mappings. Overview II, Bulletin T.CXLV de l”Académie serbe des sciences et
des arts - 2013, No 38, 129–172.

[71] Milin, I.M. (1977). Univalent Functions and Orthonormal Systems. Transl. of
Mathematical Monographs, vol. 49. Transl. of Odnolistnye funktcii i normirovan-
nie systemy, Amer. Math. Soc., Providence, RI.

[72] Minda, D. (1987). The strong form of Ahlfors’ lemma. Rocky Mountain J. Math.,
17, 457–461.

[73] Mitra, S. (2000). Teichmüller spaces and holomorphic motions. J. Anal. Math.
81, 1–33.

[74] Mitra, S. (2010). On extensions of holomorphic motionsa survey. Geometry of
Riemann surfaces. London Math. Soc. Lecture Note Ser., 368. Cambridge Univ.
Press, Cambridge, 283–308.

[75] Mitra, S., Sudeb, Shiga, H. (2010). Extensions of holomorphic motions and
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