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Abstract. We find two-sides estimates for the best uniform approxi-
mations of classes of convolutions of 2π-periodic functions from unit ball
of the space Lp, 1 ≤ p <∞, with fixed kernels, modules of Fourier coef-

ficients of which satisfy the condition
∞∑

k=n+1

ψ(k) < ψ(n). In the case of

∞∑
k=n+1

ψ(k) = o(1)ψ(n) the obtained estimates become the asymptotic

equalities.
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Let Lp, 1 ≤ p <∞, be the space of 2π–periodic functions f summable
to the power p on [−π, π), in which the norm is given by the formula

∥f∥Lp = ∥f∥p =
( π∫
−π

|f(t)|pdt
)1/p

,

L∞ be the space of measurable and essentially bounded 2π–periodic func-
tions f with the norm

∥f∥L∞ = ∥f∥∞ = ess sup
t

|f(t)|,
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and C be the space of continuous 2π–periodic functions f , in which the
norm is defined by the equality

∥f∥C = max
t

|f(t)|.

Denote by Cψ
β̄,p
, 1 ≤ p ≤ ∞, the set of all 2π-periodic functions f ,

representable as convolution

f(x) =
a0
2

+
1

π

π∫
−π

φ(x− t)Ψβ̄(t)dt, a0 ∈ R, φ ∈ B0
p , (1)

B0
p = {φ ∈ Lp : ∥φ∥p ≤ 1, φ ⊥ 1},

with a fixed generated kernel Ψβ̄ ∈ Lp′ , 1/p+1/p′ = 1, the Fourier series
of which has the form

S[Ψβ̄ ](t) =

∞∑
k=1

ψ(k) cos

(
kt− βkπ

2

)
, βk ∈ R, ψ(k) ≥ 0. (2)

A function f in the representation (1) is called (ψ, β̄)-integral of the
function φ and is denoted by J ψ

β̄
φ (f = J ψ

β̄
φ). If ψ(k) ̸= 0, k ∈ N,

then the function φ in the representation (1) is called (ψ, β̄)-derivative
of the function f and is denoted by fψ

β̄
(φ = fψ

β̄
). The concepts of

(ψ, β̄)-integral and (ψ, β̄)-derivative was introduced by Stepanets (see,
e.g., [31, 32]). Since φ ∈ Lp and Ψβ̄ ∈ Lp′ , then (see. [32, Proposition
3.9.2.]) the function f of the form (1) is a continuous function, i.e. Cψ

β̄,p
⊂

C.
In the case βk ≡ β, β ∈ R, the classes Cψ

β̄,p
are denoted by Cψβ,p.

For ψ(k) = k−r, r > 0, the classes Cψ
β̄,p

та Cψβ,p are denoted by W r
β̄,p

and W r
β,p, respectively. The W r

β,p are the well-known Weyl–Nagy classes
(see, e.g., [12,29,31,32]). In other words W r

β,p, 1 ≤ p ≤ ∞, are the classes
of 2π-periodic functions f , representable as convolutions of the form

f(x) =
a0
2

+
1

π

π∫
−π

φ(x− t)Br,β(t)dt, a0 ∈ R, (3)

the Weyl–Nagy kernels Br,β(·) of the form

Br,β(t) =

∞∑
k=1

k−r cos

(
kt− βπ

2

)
, r > 0, β ∈ R, (4)
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with functions φ ∈ B0
p . The function φ in the formula (3) is called the

Weyl–Nagy derivative of the function f and is denoted by f rβ .
If r ∈ N and β = r, then the functions Br,β(·) of the form (4)

are the well-known Bernoulli kernels and the corresponding classes W r
β,p

coincide with the well-known classes W r
p , which consist of 2π-periodic

functions f with absolutely continuous derivatives f (k) up to (r − 1)-
th order inclusive and such that ∥f (r)∥p ≤ 1. In addition, for almost
everywhere x ∈ R f (r)(x) = f rr (x) = φ(x), where φ is the function from
(3).

For ψ(k) = e−αk
r
, α > 0, r > 0, the classes Cψ

β̄,p
are denoted by

Cα,r
β̄,p
. In the case of r = 1, βk ≡ β, β ∈ R, and p = ∞ the sets Cα,r

β̄,p
are

well-known classes of the Poisson integrals Cα,1β,∞ (see, e.g., [30–32]).
If f ∈ C by En(f)C we denote the best uniform approximation of the

function f by elements of the subspace T2n−1 of trigonometric polynomi-
als Tn−1 of the order n− 1:

Tn−1(x) =
α0

2
+

n−1∑
k=1

(αk cos kx+ βk sin kx), αk, βk ∈ R.

Let N be the some functional class from the space C (N ⊂ C). Then
the quantity

En(N)C = sup
f∈N

En(f)C = sup
f∈N

inf
Tn−1∈T2n−1

∥f(·)− Tn−1(·)∥C (5)

is called the best uniform approximation of the class N by elements of
the subspace T2n−1 of trigonometric polynomials Tn−1 of the order n−1.

At present, the exact values for the quantities of the form (5) are
known for important functional classes N. In particular, thanks to the
articles of Favard [7, 8], Akhiezer and Krein [1], Nikol’skii [14], Dzyadyk
[4, 5], Stechkin [29] and Sun [34] the exact values of the best uniform
approximations of the Weyl–Nagy classes W r

β,∞ are found for arbitrary
r > 0 and β ∈ R.

For the classes of the Poisson integrals Cα,1β,∞ the exact values of the
form (5) are also known for all α > 0 and β ∈ R thanks to the articles of
Krein [11], Bushanskij [3] and Shevaldin [28] (see also [2, 32]).

The exact values of the best approximations En(N)C were obtained
in a number of other cases (see, e.g., [16–20,22,32]).

In the general case, the problem of finding of the exact values of the
best uniform approximations of the classes Cψ

β̄,p
for 1 ≤ p ≤ ∞ remains

open, and therefore, the investigation of the asymptotic behavior of the
quantities En(C

ψ

β̄,p
)C as n→ ∞ is relevant.
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In this paper we investigate the problem of finding of the asymptotic
equalities for the quantities (5) as n → ∞ in the case, when the classes
N are the classes Cψ

β̄,p
, 1 ≤ p ≤ ∞, and the sequences ψ(k) decrease to

zero very rapidly, in particular, when

∞∑
k=n+1

ψ(k) = o(1)ψ(n). (6)

This work can be considered a continuation of the authors’ research
[21,24,25], in which the asymptotics of the best uniform approximations
of classes of the generalized (ψ, β̄)-integrals were investigated.

Note that in the case of p = ∞ the asymptotic equalities and even
the exact values of the quantities En(C

ψ

β̄,∞)C are known under certain
restrictions on ψ(k) (see, e.g., [22, 33]).

For a fixed N ⊂ C denote by En(N)C the quantity

En(N)C = sup
f∈N

∥f(·)− Sn−1(f ; ·)∥C , (7)

where Sn−1(f ; ·) is the partial Fourier sum of order n− 1 of the function
f .

Since
En(N)C ≤ En(N)C , N ⊂ C, (8)

then the quantities (7) are naturally used for upper bounds for the best
approximations of the classes N.

The problem of finding of the asymptotic equalities for the quantities
of the form (7) as n → ∞ is called the Kolmogorov–Nikol’skii problem
for the Fourier sums. The Kolmogorov–Nikol’skii problem has a rich
history. Reviews on the history of this problem can be found e.g. in the
monographs [31,32].

For characteristics of the form (7) on the Weyl–Nagy classes W r
β,∞

(N =W r
β,∞) the following asymptotic formula holds

En(W r
β,∞)C =

4

π

lnn

nr
+O

(
1

nr

)
, r > 0, β ∈ R. (9)

For r ∈ N and β = r this estimate was obtained by Kolmogorov [9], for
arbitrary r > 0 by Pinkevich [15] and Nikol’skii [13]. In the general case
the estimate (9) follows from results of Efimov [6] and Telyakovskii [35].

In these works the parameters r and β of the Weyl–Nagy classes
were assumed to be fixed, and the question about the dependence of the
remainder term in the estimates (9) on these parameters was not con-
sidered. The character of the dependence on r and β of the remainder
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term in the estimate (9) was investigated by Sokolov, Selivanova, Natan-
son, Telyakovskii, Stechkin and other authors (see [26,30,36,37] and the
references therein).

In the work of Stechkin [30] the asymptotic behavior of the quantities
En(W r

β,∞)C was completely investigated as n→ ∞ and r → ∞. Namely,
he proved that for arbitrary r ≥ 1 and β ∈ R the following equality takes
place

En(W r
β,∞)C =

1

nr

(
8

π2
K(e−r/n) +O(1)

1

r

)
, (10)

where

K(q) =

π/2∫
0

dt√
1− q2 sin2 t

(11)

is a complete elliptic integral of the first kind, and O(1) is a quantity
uniformly bounded with respect to r, n and β.

In addition, Stechkin [30, Theorem 4] proved that for rapidly grow-
ing r the remainder in the equality (10) can be improved. Namely, for
arbitrary r ≥ n+ 1 and β ∈ R the following formula holds

En(W r
β,∞)C =

1

nr

(
4

π
+O(1)

(
1 +

1

n

)−r
)
, (12)

where O(1) is a quantity uniformly bounded with respect to r, n and β.
If r/n→ ∞ then the estimate (12) becomes the asymptotic equality.

In the works of Telyakovskii [36,37] it was shown that the second term
in the formula (12) can be replaced by a smaller one, namely, we can write
O(1)(1 + 2/n)−r instead of O(1)(1 + 1/n)−r, and it s also the estimate
(12) sharper by separating out the following terms of the asymptotics.

In the work of authors [26], in particular, the formula of Stechkin (12)
was generalized on classes W r

β̄,p
. Namely, it is proved that if 1 ≤ p ≤ ∞,

n ∈ N and β̄ = {βk}∞k=1 is arbitrary sequence of real numbers, then for
r ≥ n+ 1 the following estimate holds

En(W r
β̄,p)C = n−r

(
∥ cos t∥p′

π
+O(1)

(
1 +

1

n

)−r
)
,

1

p
+

1

p′
= 1, (13)

where O(1) is a quantity uniformly bounded in all parameters.
For the classes of the generalized Poisson integrals Cα,rβ,p and for all

fixed α > 0, r > 0, β ∈ R and 1 ≤ p ≤ ∞ the asymptotic equalities
for the quantities (7) as n → ∞ are known due to works of Nikol’skii
[14], Stechkin [30], Stepanets [31, 32], Telyakovskii [36, 37], Serdyuk and
Stepanyuk [27].
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As for the classes Cψ
β̄,p

, for the rapidly decreasing sequences ψ(k)
(in particular, when the condition (6) is satisfied) the asymptotics of
the quantities En(Cψβ̄,p)C are known for all 1 ≤ p ≤ ∞ and βk ∈ R
(see [23, 27, 31, 32, 36, 37]). Therefore, the main goal of this work is fo-
cused on finding lower estimates for the best approximations En(C

ψ

β̄,p
)C ,

1 ≤ p ≤ ∞.

In present paper we find two-sides estimates for the quantities
En(C

ψ

β̄,p
)C and En(Cψβ̄,p)C , from which, in particular, it follows that under

condition (6)

En(C
ψ

β̄,p
)C ∼ En(Cψβ̄,p)C ∼

∥ cos t∥p′
π

ψ(n), (14)

where 1 ≤ p ≤ ∞, βk ∈ R,
1

p
+

1

p′
= 1, and A(n)∼B(n) as n → ∞

means that lim
n→∞

A(n)/B(n)=1.

It should be noted that the asymptotic equality (14) is a manifestation
of the high-smoothness effect, which occurs when the first harmonic in
the remainder of the Fourier series after the (n − 1)-th member of the
generating kernels Ψβ̄(t) of the form (2) is a dominant in estimating of
the Lp′-norm of the specified remainder of the series. When the sequences
ψ(k) decrease to zero not so fast,the equalities En(C

ψ

β̄,p
)C and En(Cψβ̄,p)C

for 1 ≤ p < ∞ do not asymptotically coincide with each other and for
p = ∞ can be different even in order.

Let n ∈ N. In what follows, we will require that the sequence of
modules of the Fourier coefficients of the generated kernel Ψβ̄(t) satisfies
the condition

∞∑
k=n+1

ψ(k) < ψ(n). (15)

Theorem 1. For arbitrary {βk}∞k=1, βk ∈ R, 1 < p ≤ ∞, n ∈ N and
ψ(k) ≥ 0, which satisfy the condition (15), the following inequality holds

En(C
ψ

β̄,p
)C ≥

∥ cos t∥p′
π

(
ψ(n)−

∞∑
k=n+1

ψ(k)

)
, (16)

where
1

p
+

1

p′
= 1.

Proof. Let us consider a function

φn,p(t) = ∥ cos t∥1−p
′

p′ | cosnt|p′−1sign cosnt. (17)
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Since φn,p ⊥ 1 and for 1 < p <∞ π∫
−π

|φn,p(t)|pdt

 1
p

= ∥ cos t∥1−p
′

p′

 π∫
−π

| cosnt|p(p′−1)dt

 1
p

= ∥ cos t∥1−p
′

p′

 π∫
−π

| cosnt|p′dt

 1
p

= ∥ cos t∥1−p
′

p′


 π∫
−π

| cosnt|p′dt

 1
p′


p′
p

= ∥ cos t∥1−p
′

p′ ∥ cos t∥
p′
p

p′ = 1,

then ∥φn,p∥p = 1 and therefore φn,p ∈ B0
p , 1 < p <∞.

We also put φn,∞(t) = sign cosnt. Obviously that φn,∞ ∈ B0
∞.

Let us consider a function

fn,p,β̄(x) =
1

π

π∫
−π

φn,p(x− t)Ψβ̄(t)dt

from the class Cψ
β̄,p
, 1 < p ≤ ∞. We have

fn,p,β̄(x) =
1

π

π∫
−π

φn,p(x− t)
∞∑
k=1

ψ(k) cos

(
kt− βkπ

2

)
dt

=
1

π

π∫
−π

φn,p(x− t)

n−1∑
k=1

ψ(k) cos

(
kt− βkπ

2

)
dt

+
1

π

π∫
−π

φn,p(x− t)
∞∑
k=n

ψ(k) cos

(
kt− βkπ

2

)
dt. (18)

Since φn,p(t) is the
2π

n
-periodic function, then according to [10, Pro-

position 4.1.2] it is orthogonal to all trigonometric polynomials of order
n− 1. Therefore, from (18) we obtain
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fn,p,β̄(x) =
1

π

π∫
−π

φn,p(x− t)

∞∑
k=n

ψ(k) cos

(
kt− βkπ

2

)
dt

=
1

π

π∫
−π

φn,p(t)ψ(n) cos

(
n(x− t)− βnπ

2

)

+
1

π

π∫
−π

φn,p(x− t)
∞∑

k=n+1

ψ(k) cos

(
kt− βkπ

2

)
dt =: F1(x) + F2(x). (19)

By virtue of Hölder’s inequality and the fact that φn,p∈B0
p , 1<p≤∞,

we obtain the estimate

∥F2∥C ≤ 1

π
∥φn,p∥p

∥∥∥∥∥
∞∑

k=n+1

ψ(k) cos

(
kt− βkπ

2

)∥∥∥∥∥
p′

=
1

π

∥∥∥∥∥
∞∑

k=n+1

ψ(k) cos

(
kt− βkπ

2

)∥∥∥∥∥
p′

≤
∥ cos t∥p′

π

∞∑
k=n+1

ψ(k). (20)

Taking into account that

F1(x)=
1

π

π∫
−π

∥ cos t∥1−p
′

p′ | cosnt|p′−1sign cosntψ(n) cos

(
n(x−t)−βnπ

2

)
dt

=
∥ cos t∥1−p

′

p′

π
ψ(n)

π∫
−π

| cosnt|p′−1sign cosnt

×
(
cos

(
nx− βnπ

2

)
cosnt+ sin

(
nx− βnπ

2

)
sinnt

)
dt,

we consider on the period

[
βnπ

2n
, 2π +

βnπ

2n

)
the set of 2n points

βnπ

2n
= x0 < x1 < . . . < x2n−1 < 2π +

βnπ

2n
of the form

xm =
βnπ

2n
+
mπ

n
, m = 0, 2n− 1. (21)

Let us show that

F1(xm) =
(−1)m∥ cos t∥p′

π
ψ(n), m = 0, 2n− 1. (22)
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Indeed, as for any t ∈ [−π, π)

| cosnt|p′−1sign cosnt cos

(
n(xm − t)− βnπ

2

)

= | cosnt|p′−1sign cosnt cos

(
βnπ

2
+mπ − nt− βnπ

2

)
= (−1)m| cosnt|p′−1sign cosnt cosnt = (−1)m| cosnt|p′ ,

then
F1(xm) =

=
∥ cos t∥1−p

′

p′

π
ψ(n)

π∫
−π

| cosnt|p′−1sign cosnt cos

(
n(xm−t)−

βnπ

2

)
dt

=
∥ cos t∥1−p

′

p′

π
ψ(n)(−1)m

π∫
−π

| cosnt|p′dt =
(−1)m∥ cos t∥p′

π
ψ(n).

From (15), (20) and (22) it follows that

|F1(xm)| =
∥ cos t∥p′

π
ψ(n) >

∥ cos t∥p′
π

∞∑
k=n+1

ψ(k) ≥ ∥F2∥C ≥ |F2(xm)|,

and hence for fn,p,β̄(xm) = F1(xm)+F2(xm) the following relations hold

signfn,p,β̄(xm) = signF1(xm) = (−1)m, m = 0, 1, . . . , 2n− 1, (23)

and
|fn,p,β̄(xm)| ≥ |F1(xm)| − |F2(xm)| ≥ |F1(xm)| − ∥F2∥C

≥
∥ cos t∥p′

π

(
ψ(n)−

∞∑
k=n+1

ψ(k)
)
. (24)

Then by virtue of Valle Poussin’s theorem (see, i.e., [31, Theorem 6.2.2])

En(fn,p,β̄)C ≥ min
m=0,1,...,2n−1

|fn,p,β̄(xm)| ≥
∥ cos t∥p′

π

(
ψ(n)−

∞∑
k=n+1

ψ(k)
)
.

Theorem 2. For arbitrary {βk}∞k=1, βk ∈ R, n ∈ N and ψ(k) ≥ 0, which
satisfy the condition (15), the following inequality holds

En(C
ψ

β̄,1
)C ≥ 1

π

(
ψ(n)−

∞∑
k=n+1

ψ(k)

)
. (25)
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Proof. Let us consider a function

φn,1(δ, t) =


(−1)m

2δ
, t ∈

(
mπ

n
− δ

2n
,
mπ

n
+

δ

2n

)
, m ∈ Z,

0, t ∈ R \ ∪
m∈Z

(
mπ

n
− δ

2n
,
mπ

n
+

δ

2n

)
, m ∈ Z,

(26)
where 0 < δ < π

2 .

According to the definition

signφn,1(δ, t) = sign cosnt, t ∈
(
mπ

n
− δ

2n
,
mπ

n
+

δ

2n

)
, m ∈ Z,

(27)

and the function φn,1(δ, t) is
2π

n
-periodic function. Besides

∥φn,1(δ, ·)∥1 =
2n−1∑
m=0

1

2δ

2δ

2n
= 1, (28)

that is for any 0 < δ < π
2 φn,1(δ, ·) ∈ B0

1 .

Let us consider a function

fn,1,β̄(δ, x) =
1

π

π∫
−π

φn,1(δ, x− t)Ψβ̄(t)dt (29)

from the class Cψ
β̄,1

. Since φn,1(δ, t) ⊥
n−1∑
k=1

ψ(k) cos
(
kt− βkπ

2

)
, then

fn,1,β̄(δ, x) = F1(δ, x) + F2(δ, x),

where

F1(δ, x) =
1

π

π∫
−π

φn,1(δ, x− t)ψ(n) cos

(
nt− βnπ

2

)
dt

=
1

π
ψ(n)

π∫
−π

φn,1(δ, t) cos

(
n(x− t)− βnπ

2

)
dt, (30)

F2(δ, x) =
1

π

π∫
−π

φn,1(δ, x− t)

∞∑
k=n+1

ψ(k) cos

(
kt− βkπ

2

)
dt. (31)
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By virtue of Hölder’s inequality and the equality (28)

∥F2(δ, ·)∥C ≤ 1

π
∥φn,1(δ, ·)∥1

∥∥∥∥∥
∞∑

k=n+1

ψ(k) cos

(
kt− βkπ

2

)∥∥∥∥∥
∞

≤ 1

π

∞∑
k=n+1

ψ(k). (32)

Let us consider on the segment

[
βnπ

2n
, 2π +

βnπ

2n

)
the following point

set

xm =
βnπ

2n
+
mπ

n
, m = 0, 2n− 1.

Let us show that

F1(δ, xm) =
(−1)m

π

2

δ
sin

δ

2
ψ(n), m = 0, 2n− 1. (33)

Indeed, since

φn,1(δ, t) cos

(
n(xm − t)− βnπ

2

)

= φn,1(δ, t) cos

(
n

(
βnπ

2n
+
mπ

n
− t

)
− βnπ

2

)
= φn,1(δ, t) cos(mπ − nt) = (−1)mφn,1(δ, t) cosnt,

Then, in view of (27), (28) and (30),

F1(xm) =
1

π
ψ(n)

π∫
−π

(−1)mφn,1(δ, t) cosntdt

=
(−1)m

π
ψ(n)

2n−1∑
m=0

π
2n

+mπ
2n∫

− π
2n

+mπ
2n

φn,1(δ, t) cosntdt

=
(−1)m

π
ψ(n)

2n−1∑
m=0

δ
2n

+mπ
2n∫

− δ
2n

+mπ
2n

(−1)m

2δ
cosntdt

=
(−1)m

π
ψ(n)

2n−1∑
m=0

1

2δ

δ
2n∫

− δ
2n

cosntdt
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=
(−1)m

π
ψ(n)

2n

2δn

δ
2∫

− δ
2

cos tdt =
(−1)m

π
ψ(n)

2

δ
sin

δ

2
.

Choose δ so small that

2

δ
sin

δ

2
ψ(n) >

∞∑
k=n+1

ψ(k). (34)

For such δ, taking into account (32), (33) and (34),

|F1(δ, xm)| =
2

δ
sin

δ

2
ψ(n) >

1

π

∞∑
k=n+1

ψ(k) ≥ ∥F2(δ, ·)∥C ≥ |F2(δ, xm)|,

and hence for fn,p,β̄(δ, xm) = F1(δ, xm)+F2(δ, xm) the following relations
hold

signfn,p,β̄(δ, xm) = signF1(δ, xm) = (−1)m, m = 0, 1, . . . , 2n− 1, (35)

and

|fn,p,β̄(δ, xm)| ≥ |F1(δ, xm)| − |F2(δ, xm)| ≥ |F1(δ, xm)| − ∥F2(δ, ·)∥C

≥ 1

π

(2
δ
sin

δ

2
ψ(n)−

∞∑
k=n+1

ψ(k)
)
. (36)

Then by virtue of Valle Poussin’s theorem (see, i.e., [31, Theorem 6.2.2])

En(fn,p,β̄(δ, ·))C ≥ min
m=0,1,...,2n−1

|fn,p,β̄(δ, xm)|

≥ 1

π

(2
δ
sin

δ

2
ψ(n)−

∞∑
k=n+1

ψ(k)
)
, (37)

where δ satisfy the condition (34), and therefore, by virtue of the belong-

ing fn,p,β̄(δ, ·) ∈ Cψ
β̄,1
, the following inequality is true

En(C
ψ

β̄,1
)C ≥ 1

π

(2
δ
sin

δ

2
ψ(n)−

∞∑
k=n+1

ψ(k)
)
. (38)

Taking the limit as δ → 0 in the inequality (38), we obtain (25).

The main statement of the work is the following theorem.
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Theorem 3. For arbitrary {βk}∞k=1, βk ∈ R, 1 ≤ p ≤ ∞, n ∈ N and
ψ(k) ≥ 0, which satisfy the condition (15), the following inequalities hold

∥ cos t∥p′
π

(
ψ(n)−

∞∑
k=n+1

ψ(k)
)
≤ En(C

ψ

β̄,p
)C ≤ En(Cψβ̄,p)C

≤
∥ cos t∥p′

π

(
ψ(n) +

∞∑
k=n+1

ψ(k)
)
, (39)

where
1

p
+

1

p′
= 1.

If ψ(k) satisfies the condition (6), then the following asymptotic equalities
hold

En(Cψβ̄,p)C
En(C

ψ

β̄,p
)C

}
=

∥ cos t∥p′
π

ψ(n) +O(1)

∞∑
k=n+1

ψ(k), (40)

where O(1) are the quantities uniformly bounded in all parameters.

Note that the asymptotic equality (40) for the quantities En(Cψβ̄,p)C
is established in paper [23].

Proof. Taking into account Theorems 1 and 2, it suffices to verify the
validity of the last inequality in (39).

By virtue of Hölder’s inequality for arbitrary f ∈ Cψ
β̄,p
, 1 ≤ p ≤ ∞,

∥f − Sn−1(f)∥C ≤ 1

π
∥φ∥p

∥∥∥∥∥
∞∑
k=n

ψ(k) cos

(
nt− βkπ

2

)∥∥∥∥∥
p′

≤ 1

π

∞∑
k=n

ψ(k)

∥∥∥∥cos(nt− βkπ

2

)∥∥∥∥
p′
=

∥ cos t∥p′
π

∞∑
k=n

ψ(k).

Thus,

En(Cψβ̄,p)C ≤
∥ cos t∥p′

π

∞∑
k=n

ψ(k). (41)

Inequalities (39) follow from (16), (25) and (41).
To verify the validity of the asymptotic equalities (40) just go to the

limit as n→ ∞ in (39) and take into account the condition (6).

Note that the condition (6) is satisfied if ψ(k) satisfies the condition
D0 :

lim
k→∞

ψ(k + 1)

ψ(k)
= 0. (42)

We give the corollaries of Theorem 3 in some important special cases.
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Theorem 4. Let 1 ≤ p ≤ ∞, r > 1, n ∈ N and {βk}∞k=1 be an arbitrary
sequence of real numbers. Then for r ≥ n+ 1 such that(

1 +
1

n

)−r
<

(
2 +

1

n

)−1

(43)

the following inequalities hold

∥ cos t∥p′
π

n−r

(
1−

2 + 1
n(

1 + 1
n

)r
)

≤ En(W
r
β̄,p)C ≤ En(W r

β̄,p)C

≤
∥ cos t∥p′

π
n−r

(
1 +

2 + 1
n(

1 + 1
n

)r
)
, (44)

where
1

p
+

1

p′
= 1.

Proof. Put ψ(k) = k−r, r > 1, and make sure that the condition (15) is
folowed from the inequality (43).

Since for arbitrary n ∈ N and r ≥ n+ 1

∞∑
k=n+1

1

kr
<

1

(n+ 1)r
+

∞∫
n+1

dt

tr
=

1

(n+ 1)r
+

1

(r − 1)(n+ 1)r−1

=
1

(n+ 1)r
r + n

r − 1
≤ 1

nr
1

(1 + 1
n)
r

2r − 1

r − 1
≤ 1

nr
1

(1 + 1
n)
r

(
2 +

1

n

)
, (45)

then under the condition (43) we obtain

∞∑
k=n+1

1

kr
<

1

nr
.

Then, applying Theorem 3 for ψ(k) = k−r, from (39) and (45) we obtain
(44).

Note that if the condition

lim
n→∞

r

n
= ∞, (46)

is satisfied, then the condition (43) is also satisfied for sufficiently large
n, because(

1 +
1

n

)−r
=

((
1 +

1

n

)n+1
)− r

n+1

≤ e−
r

n+1 → 0, n→ ∞.
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And therefore
2 + 1

n(
1 + 1

n

)r → 0 при n→ ∞.

Taking the limit as n→ ∞ in the inequalities (44), we obtain asymptotic
equalities for the quantities En(W r

β̄,p
)C and En(W r

β̄,p
)C .

Theorem 5. Let 1 ≤ p ≤ ∞, r > 1, n ∈ N and {βk}∞k=1 be an arbitrary
sequence of real numbers. If the condition (46) is satisfied, then the
following asymptotic equalities hold

En(W r
β̄,p

)C

En(W
r
β̄,p

)C

}
=

1

nr

(
∥ cos t∥p′

π
+O(1)

(
1 +

1

n

)−r
)
, (47)

where
1

p
+

1

p′
= 1 and O(1) are the quantities uniformly bounded in all

parameters.

The asymptotic equality (47) for the quantities En(Cψβ̄,p)C is estab-
lished in [26].

As it showed in [31, P. 163–164]

∞∑
k=n+1

e−αk
r
< e−αn

r

(
1 +

1

αrnr−1

)
e−αrn

r−1
, r > 1, α > 0, n ∈ N.

(48)
So, if the condition(

1 +
1

αrnr−1

)
e−αrn

r−1
< 1, r > 1, α > 0, (49)

is satisfied, then
∞∑

k=n+1

e−αk
r
< e−αn

r
,

and therefore from Theorem 3 for the classes Cα,r
β̄,p

we obtain the following
statement.

Theorem 6. Let 1 ≤ p ≤ ∞, r > 1, α > 0, n ∈ N and {βk}∞k=1 be
an arbitrary sequence of real numbers. If the inequality (49) is satisfied,
then the following relations hold

∥ cos t∥p′
π

e−αn
r

(
1−

(
1 +

1

αrnr−1

)
e−αrn

r−1

)
≤ En(C

α,r

β̄,p
)C

≤ En(Cα,rβ̄,p
)C ≤

∥ cos t∥p′
π

e−αn
r

(
1 +

(
1 +

1

αrnr−1

)
e−αrn

r−1

)
,
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where
1

p
+

1

p′
= 1.

As n→ ∞ the following asymptotic equalities hold

En(Cα,rβ̄,p
)C

En(C
α,r

β̄,p
)C

}
=e−αn

r

(
∥ cos t∥p′

π
+O(1)

(
1+

(
1+

1

αrnr−1

)
e−αrn

r−1

))
,

(50)
where O(1) are the quantities uniformly bounded in all parameters.

Note that for p = ∞ the asymptotic equality (50) for the quantities
En(Cα,rβ̄,p

)C was obtained by Stepanets [31] and for 1 ≤ p <∞ in [23].
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