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Selectors and orderings of coarse spaces

Igor Protasov

Abstract. Given a coarse space (X, E), we consider linear orders on X
compatible with the coarse structure E and explore interplays between
these orders and macro-uniform selectors of (X, E).
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1. Introduction and preliminaries

The notion of selectors comes from Topology. Let X be a topological
space, exp X denotes the set of all non-empty closed subsets ofX endowed
with some (initially, the Vietoris) topology, F be a non-empty closed
subset of exp X. A continuous mapping f : F → X is called an F-
selector of X if f(A) ∈ A for each A ∈ F .

Formally, coarse spaces, introduced independently in [9] and [13] can
be considered as asymptotic counterparts of uniform topological spaces.
But actually, this notion is rooted in Geometry, Geometrical Group The-
ory and Combinatorics, see [3, 5, 13] and [9].

The investigation of selectos of coarse spaces was initiated in [8]. We
begin with some basic definitions.

Given a set X, a family E of subsets of X × X is called a coarse
structure on X if

• each E ∈ E contains the diagonal △X := {(x, x) : x ∈ X} of X;

• if E, E′ ∈ E then E ◦E′ ∈ E and E−1 ∈ E , where E ◦E′ = {(x, y) :
∃z ((x, z) ∈ E, (z, y) ∈ E′)}, E−1 = {(y, x) : (x, y) ∈ E};
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• if E ∈ E and △X ⊆ E′ ⊆ E then E′ ∈ E .

Elements E ∈ E of the coarse structure are called entourages on X.
For x ∈ X and E ∈ E the set E[x] := {y ∈ X : (x, y) ∈ E} is called

the ball of radius E centered at x. Since E =
∪
x∈X({x} × E[x]), the

entourage E is uniquely determined by the family of balls {E[x] : x ∈ X}.
A subfamily E ′ ⊆ E is called a base of the coarse structure E if each set
E ∈ E is contained in some E′ ∈ E ′.

The pair (X, E) is called a coarse space [13] or a ballean [9], [12].
A coarse spaces (X, E) is called connected if, for any x, y ∈ X, there

exists E ∈ E such that y ∈ E[x]. A subset Y ⊆ X is called bounded if
Y ⊆ E[x] for some E ∈ E , and x ∈ X. If (X, E) is connected then the
family BX of all bounded subsets of X is a bornology on X. We recall
that a family B of subsets of a set X is a bornology if B contains the
family [X]<ω of all finite subsets of X and B is closed under finite unions
and taking subsets. A bornology B on a set X is called unbounded if
X /∈ B. A subfamily B′ of B is called a base for B if, for each B ∈ B,
there exists B′ ∈ B′ such that B ⊆ B′.

Each subset Y ⊆ X defines a subspace (Y, E|Y ) of (X, E), where E|Y =
{E ∩ (Y × Y ) : E ∈ E}. A subspace (Y, E|Y ) is called large if there exists
E ∈ E such that X = E[Y ], where E[Y ] =

∪
y∈Y E[y].

Let (X, E), (X ′, E ′) be coarse spaces. A mapping f : X → X ′ is
called macro-uniform if for every E ∈ E there exists E′ ∈ E ′ such that
f(E(x)) ⊆ E′(f(x)) for each x ∈ X. If f is a bijection such that f and
f−1 are macro-uniform, then f is called an asymorphism. If (X, E) and
(X ′, E ′) contain large asymorphic subspaces, then they are called coarsely
equivalent.

For a coarse space (X, E), we denote by exp X the family of all non-
empty subsets of X and by exp E the coarse structure on exp X with the
base {exp E : E ∈ E}, where

(A,B) ∈ exp E ⇔ A ⊆ E[B], B ⊆ E[A],

and say that (exp X, exp E) is the hyperballean of (X, E). For hyperbal-
leans, see [4], [10], [11].

Let F be a non-empty subspace of exp X. We say that a macro-
uniform mapping f : F −→ X is an F-selector of (X, E) if f(A) ∈ A for
each A ∈ F . In the case F ∈ [X]2, F = BX and F = exp X, an F-
selector is called a 2-selector, a bornologous selector and a global selector
respectively.

We recall that a connected coarse space (X, E) is discrete if, for each
E ∈ E , there exists a bounded subset B of (X, E) such that E[x] = {x}
for each x ∈ X \ B. Every bornology B on a set X defines the discrete
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coarse space XB = (X, EB), where EB is a coarse structure with the base
{EB : B ∈ B}, EB[x] = B if x ∈ B and EB[x] = {x} if x ∈ X \ B.
On the other hand, every discrete coarse space (X, E) coincides with XB,
where B is the bornology of bounded subsets of (X, E).

Theorem 1 [8]. For a bornology B on a set X, the discrete coarse
space XB admits a 2-selector if and only if there exists a linear order ≤
on X such that the family of intervals {[a, b] : a, b ∈ X, a ≤ b} is a base
for B.

In section 2, we analyze interrelations between linear orders compati-
ble with coarse structures and selectors. In Section 3, we apply obtained
results to characterize cellular ordinal coarse spaces which admit global
selectors. We conclude with Section 4 on selectors of universal spaces.

2. Selectors and orderings

Proposition 1. Let (X, E) be a coarse space, f : [X]2 → X, f(A) ∈
A for each A ∈ [X]2. Then the following statements are equivalent

(i) f is a 2-selector;

(ii) for every E ∈ E, there exists F ∈ E such that E ⊆ F and if
{x, y} ∈ [X]2, f({x, y}) = x (f({x, y}) = y) and y ∈ X \ F [x] then
f({x′, y}) = x′ (f({x′, y}) = y) for each x′ ∈ E[x].

Proof. (i) ⇒ (ii). Let E = E . Since f is macro-uniform, there
exists F ∈ E , F = F−1, E ⊆ F such that, for any (A,A′) ∈ exp E,
we have (f(A), f(A′)) ∈ F . Let A = {x, y}, A′ = {x′, y}, x′ ∈ E[x],
f({x, y}) = x. Then f({x, y}), f({x′, y}) ∈ F , (x, f({x′, y}) ∈ F so
f({x′, y}) = x′. The case (f({x, y}) = y) is analogical.

(ii) ⇒ (i). Let E ∈ E , E = E−1 and let F ∈ E , F = F−1 is given by
(ii). To verify that f is macro-uniform, we show that if A,A′ ∈ [X]2 and
(A,A′) ∈ exp E then (f(A), f(A′)) ∈ F .

Let A = {x, y}, f({x, y}) = x, A′ = {x′, y′}, f({x′, y′}) = x′. We
suppose that (x, x′) /∈ F and f({x′, x}) = x. By the choice of F ,
f({x′, z}) = z for each z ∈ E[x]. Since E[x] ∩ A′ ̸= ∅, we have y′ ∈ E[x]
so f({x′, y′}) = y′, contradicting f({x′, y′}) = x′. Hence, (x, x′) ∈ F .
The case (f({x′, x}) = x′) is analogical. 2
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Let (X, E) be a coarse space. We say that a linear order ≤ on X is
compatible with the coarse structure E if, for every E ∈ E , there exists
F ∈ E such that E ⊆ F and if {x, y} ∈ [X]2, x < y (y < x) and
y ∈ X \ F [x] then x′ < y (y < x′) for each x′ ∈ E[x].

Proposition 2. Let (X, E) be a coarse space and let ≤ be a linear
order on X compatible with E. Then the following statements hold

(i) the mapping f : [X]2 → X, defined by f(A) = min A, is a 2-
selector of (X, E);

(ii) for every E ∈ E, there exists H ∈ E such that E ⊆ H and if
A,A′ ∈ [X]2 and (A,A′) ∈ exp E then (min A, min A′) ∈ H;

(iii) if (X, E) is connected then, for any a, b ∈ X, a < b, the interval
[a, b] = {x ∈ X : a ≤ x ≤ b} is bounded in (X, E).

Proof. The statement (i) follows from Proposition 1, (ii) follows
from (i).

To prove (iii), we use the connectedness of (X, E) to find E ∈ E ,
E = E−1 such that (a, b) ∈ E. Then we take F ∈ E , F = F−1 given
by the definition of an order compatible with the coarse structure. We
assume that [a, b] is unbounded and choose c ∈ [a, b], a < c < b such that
c ∈ X \ F [a]. Then x < c for each x ∈ E[a], in particular b < c and we
get a contradiction. 2

Proposition 3. Let (X, E) be a coarse space, ≤ be a well order on
X compatible with E. Then XE has a global selector.

Proof. For each A ∈ exp X, we put f(A) = min A and note that f
is a global selector. 2

Proposition 4. Let (X, E) be a connected coarse space with the
bornology B of bounded subsets, XB denotes the discrete coarse space
defined by B. If f is a 2-selector of (X, E) then f is a 2-selector of XB.

Proof. For each B ∈ B, we denote by EB the set {(x.y) : x, y ∈
B}∪ △X . Then {EB : B ∈ B} is the coarse structure of XE and EB ∈ E
for each B ∈ B.

Let A,A′ ∈ [X]2 and (A,A′) ∈ exp EB. Since f is a 2-selector of
(X, E), there exists F ∈ E , F = F−1 such that (f(A), f(A′)) ∈ F .



I. Protasov 75

If A∩B = ∅ then A = A′. If A ⊆ B then A′ ⊆ B, so (f(A), f(A′)) ∈
EB.

Let A = {b, a}, A′ = {b′, a}, b ∈ B, b′ ∈ B and a ∈ X \ B. If
a ∈ F [{b, b′}] then f(A), f(A′) ∈ F [{b, b′}]. If a /∈ F [{b, b′}] then either
f(A) = f(A′) = a of f(A), f(A′) ∈ {b, b′}.

In all considered cases, we have (f(A), f(A′)) ∈ EF [B]. Hence, f is a
2-selector of XB. 2

Proposition 5. Let (X, E), (X ′, E ′) are coarsely equivalent. If
(X ′, E ′) admits a global selector then (X, E) admits a global selector. The
same is true for 2-selector and bornologous selectors.

Proof. We consider the case of global selector. Let f ′ : exp X ′ → X ′

is a global selector of (X ′, E ′). We suppose that (X, E), (X ′, E ′) are
asymorphic and h : (X, E) → (X ′, E ′) is an asymorphism. We denote by
h the natural extension h : exp X → exp X ′ of h. Then the straitforward
verification gives that h−1f ′h is a global selector of (X, E).

Now let X ′ is a large subset of (X, E), E ′ = EX′ , f ′ : exp X ′ → X
is a global selector of (X ′, E ′). We take H ∈ E such that X = H[X ′].
Let Y ∈ exp X. For each y ∈ Y , we pick zy ∈ X ′ such that y ∈ H[zy].
Let Z = {zy : y ∈ Y } and z = f ′(Z). We take xz ∈ Y such that
xz ∈ H[z] and put f(Y ) = xz. Then the straightforward verification
gives us f : exp X → X is a global selector of (X, E). 2

Question 1. Let ≤ be a linear order on X compatible with E. Is E
an interval coarse structure?

Question 2. Let a coarse space (X, E) admits a global selector.
Does there exist a linear order on X compatible with E?

Question 3. Let a coarse space (X, E) admits a 2-selector. Does
(X, E) admit a bornologous selector?

Question 4. Let a coarse space (X, E) admits a bornologous selec-
tor. Does (X, E) admit a global selector?
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3. Selectors of cellular spaces

Let (X, E) be a coarse space. An entourage E ∈ E is called cellular
if E is an equivalence relation. If (X, E) is connected and E has a base
consisting of cellular entourages then (X, E) is called cellular. By [12,
Theorem 3.1.3], (X, E) is cellular if and only if asdim (X, E) = 0.

Every discrete coarse space and every coarse space of an ultrametric
space are cellular.

Following [12, p. 63], we say that a coarse space (X, E) is ordinal if E
has a base well-ordered by inclusion. We note that if E has a base linearly
ordered by inclusion then (X, E) is cellular. For the structure of cellular
ordinal spaces, see [1].

Let κ, γ be cardinals. Following [1], we denote κ<γ = {(xα)α<γ : xα ∈
κ, xα = 0 for all but finitely many α < γ}, Kα = {((xα)α<γ , (yα)α<γ) :
xβ = yβ for each β ≤ α}.

We take the coarse structure Kγ with the base {Kγ : α < γ} and
observe that each entourage Kα is cellular. Thus, the macrocube (κγ ,Kγ)
is cellular and ordinal.

We denote 0 = (xα), xα = 0 for each α < γ and, for x = (xα)α<γ , x ̸=
0,max x = {max α : xα ̸= 0}. Given any x = (xα)α<γ , y = (yα)α<γ , x ̸=
0 y ̸= 0, we write x ≺ y if either max x < max y or max x = max y = α
and xα < yα. Also, 0 ≺ x for x ̸= 0. Then ≼ is a total order on κγ
compatible with the coarse structure Kγ .

Theorem 2. Every cellular ordinal space (X, E) admits a well-
ordering compatible with E.

Proof. We put κ = |X|. By [1, Lemma 5.1], there exists an asymor-
phic embedding f : (X, E) → (κ,Kκ). The total order ≼ defined above
on κκ induces the total order ≼f(X) on f(X) compatible with the coarse
of the subspace f(X) of (κ,Kκ). Applying f−1, we get the desired total
order on (X, E). 2

Theorem 3. Every cellular ordinal space (X, E) admits a global
selector f : exp X → X.

Proof. Apply Theorem 2 and Proposition 3. 2

Question 5. How can one detect whether a given cellular coarse
space admits a global selector?
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Now we apply obtained results to coarse spaces of groups. Let G be a
group with the identity. We denote by EG the coarse structure of G with
the base

{{(x, y) ∈ G×G : y ∈ Fx : F ∈ [G]<ω, e ∈ F}

and say that (G, EG) is the finitary coarse space of G. It should be men-
tioned that finitary coarse spaces of groups are used as tools in Geometric
Group Theory, see [3, 5].

Theorem 4. If a group G is uncountable then (G, EG) does not
admit a 2-selector.

Proof. We note that the bornology of bounded subsets of (G, EG) is
[G]<ω. Apply Proposition 4 and Theorem 1. 2

It is easy to see that (G, EG) is cellular if and only if G is locally finite,
i.e. each finite subset of G generates a finite subgroup.

Theorem 5. If G is a countable locally finite group then the finitary
coarse space (G, EG) admits a global selector.

Proof. We note that EG has a countable base and apply Theorem 2.2

Any two countable locally finite groups are coarsely equivalent [2],
for classification of countable locally finite groups up to asymorphisms,
see [6].

4. Selectors of universal spaces

Let X be a set, E ⊆ X ×X, δX ⊆ X. We say that an entourage E is

• locally finite if E[x], E−1[x] are finite for each x ∈ X;

• finitary if there exists a natural number n such that |E[x]| < n,
|E−1[x]| < n for each x ∈ X.



78 Selectors and orderings of coarse spaces

A coarse space (X, E) is called locally finite (finitary) if each entourage
E ∈ E is locally finite (finitary). If E,H are locally finite (finitary) then
E ◦H, E−1 are locally finite (finitary). We denote

Λ = {E : E ∈ ω × ω, E is a locally finite entourage},
F = {E : E ∈ ω × ω, E is a finitary entourage},

and say that (ω,Λ) (resp.(ω,F)) is the universal locally finite (resp. fini-
tary) space.

We denote by Sω the group of all permutations of ω, id is the identity
permutation. By [7, Theorem 3], the coarse structure F has the base

{{(x, y) : x ∈ Fy} : F ∈ [Sω]
ω, id ∈ F}.

Theorem 6. The coarse space (ω,Λ) admits a global selector.

Proof. We denote by ≤ the natural order on ω, prove that ≤ is
compatible with Λ and apply Proposition 3.

For E ∈ Λ, let E = {(x, y) : minE[x] ≤ y ≤ maxE[x]}. Clearly,
E ∈ Λ. If x, y ∈ X, x < y and y ∈ ω \ E[x] then x′ < y for each
x′ ∈ E[x]. 2

Theorem 7. The coarse space (ω,F) does not admit 2-selectors.

Proof. We suppose the contrary and let f be a 2-selector of (ω,F).
We define a binary relation ≺ on X by x ≺ y if and only if x ̸= y and
f({x, y}) = x. Then we choose inductively an injective sequence (an)n∈ω
in ω such that either ai ≺ aj for all i < j or aj ≺ ai for all i < j. We
consider only the first case, the second is analogous.

We partition {an : n < ω} into consequive with respect to ≺ intervals
{Tn : n < ω} of length 2n + 1. We define a permutation h of order
2 of ω as follows. For x ∈ ω \ {an : n < ω}, hx = x. We take Tn,
Tn = {am, . . . , am+2n+1} and put ham = am+2n+1, ham+1 = am+2n, . . . ,
ham+n+1 = am+n+1. We put F = {h, id}, E = {(x, y) : y ∈ Fx}.
Since f is macro-uniform, there exists H ∈ F such that if A,A′ ∈ [X]2,
A ⊆ E[A′], A′ ⊆ E[A] then (f(A), f(A′)) ∈ H.

We take k such that |H[x]| < k for each x ∈ ω. Let n > k. Since
({am+i, am+n+1}, {am+n+1, am+2n+1−i) ∈ E for each i ∈ {0, . . . , n1},
(am+i, am+n+1) ∈ H contradicting |H[am+n+1]| < k. 2
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