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Relation between Fourier series
and Wiener algebras

Roald M. Trigub

Abstract. New relations between the Banach algebras of absolutely
convergent Fourier integrals of complex-valued measures of Wiener and
various issues of trigonometric Fourier series (see classical monographs
by A. Zygmund [1] and N. K. Bary [2]) are described. Those bilateral
interrelations allow one to derive new properties of the Fourier series
from the known properties of the Wiener algebras, as well as new results
to be obtained for those algebras from the known properties of Fourier
series. For example, criteria, i.e. simultaneously necessary and sufficient
conditions, are obtained for any trigonometric series to be a Fourier se-
ries, or the Fourier series of a function of bounded variation, and so
forth. Approximation properties of various linear summability methods
of Fourier series (comparison, approximation of function classes and sin-
gle functions) and summability almost everywhere (often with the set
indication) are considered.

The presented material was reported by the author on 12.02.2021 at
the Zoom-seminar on the theory of real variable functions at the Moscow
State University.

Key words and phrases. Wiener algebra, Fourier series, Fourier–
Stieltjes series, best approximation, modulus of smoothness, convergence
of summation methods in the norm and almost everywhere, Lebesgue
points, d-points, strong summability, grouped series.

1. The Banach algebras of Wiener and Beurling

If µ is a finite complex-valued Borel measure on R, and |µ| is its total
variation (see, e.g., [3, chapter XI]), then

W =W (R) =

f : f(x) =

∫
R

e−itxdµ(t), ∥f∥W = |µ|(R)

 .

Received 30.12.2020

ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України



R. M. Trigub 81

This is a Banach algebra (with pointwise multiplication). Then,

W0 =W0(R) =

f : f(x) = ĝ(x) =

∫
R

g(t)e−itxdt, ∥f∥W0 =

∫
R

|g|


is an ideal in W (R). After joining unity to W0, we have

W1 =W1(R) = {f : f0 + c, ∥f∥W1 = ∥f0∥W0 + |c|, c ∈ C} .

Those algebras have a local property, so functions from different alge-
bras can differ only in a neighborhood of ∞. If, for instance, f ∈ W ,
f(∞) = lim

|x|→∞
f(x) = 0 (this is necessary), and f is a function of bounded

variation in a neighborhood of ∞, then f ∈W0(R) (see, e.g., [4, 6.1.3c]).
In the case of functions of several variables, the Vitali variation is con-
sidered.

The properties of the indicated algebras, which were known at that
time, were collected in the survey article [5]. It contains theorems of
Wiener, Titchmarsh, Beurling, Carleman, Krein, Sz.-Nagy, Stein, etc.
The list of references includes 175 items.

If the measure µ ≥ 0 in the definition of W (R), then we have a cone
W+(R) of positive definite functions, with ∥f∥W+ = f(0) and ∥fg∥ =
∥f∥ · ∥g∥.

There is also the Beurling algebra

W ∗
0 (R) =

f : f(x) =

∫
R

e−itxg(t)dt, ∥f∥W ∗
0
=

∞∫
0

esssup
|x|≥t

|g(x)| dt

 .

(See the theorem in [6], and its generalization in [4, 6.4.9].) For the
properties of this algebra, see [7].

Here are some properties of the Wiener algebras, including those that
were obtained recently. They will be used below.

A. If f ∈ W (R), then f is uniformly continuous on R, and ∀x ∈ R,
the improper integral

→+∞∫
→0

f(x+ t)− f(x− t)

t
dt

converges (not necessarily absolutely). If f̃ is trigonometrically conju-
gate to f (the Hilbert transform), then after its extension by continuity,
∥f̃∥W0 = ∥f∥W0 .
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B. If ∥fn∥W ≤ 1 (n ∈ N) and lim
n→∞

fn(x) = f(x), whereas f ∈ C(R),
then ∥f∥W ≤ 1.

C. (the Wiener 1/f -theorem). If f ∈ W1(R) and f(x) ̸= 0 for x ∈
R ∪ {∞}, then

1

f
∈W1(R) as well (see the reference in [5]).

D. If ∈W (R) (W0(R), W+(R)), and lf is a piecewise linear continu-
ous function defined by its values lf (k) = f(k), k ∈ Z (broken line), then
∥lf∥W ≤ ∥f∥W (∥lf∥W0 ≤ ∥f∥W0 , lf ∈W+(R)) [9, 10].

The relevant story is as follows. This inequality for W+ can be found
already in Feller’s book [8, XIX, 9, Problems 15 and 16] (with reference
to Larry A. Shepp). Since any measure µ = |µ| − (|µ| − µ), then the
inequality in question,with 3 as a coefficient rather than 1, is true for any
real measure, and with 6 for any complex-valued measure. Goldberg [9]
proved this inequality, perhaps not knowing this particular case. At the
same time, the authors of paper [10] did not know about paper [9] (the
reference to paper [9] was added at the last moment, when it was revealed
by a graduate student of DonNU).

For the currently available applications, see Section 2.

E. If f ∈ W0 ∩ L1(R), then f̂ ∈ L1(R) and ∥f ||W0 =
1

2π

∫
R

∣∣∣f̂ ∣∣∣ [11,

Theorem 8].
F. Let f ∈ ACloc(R), f(∞) = 0, f0(x) = sup

|t|≥|x|
|f(t)|, and f1(x) =

esssup
|t|≥|x|

|f ′(t)| <∞. If, additionally, A1 =
1∫
0

f1(x) log
2

x
dx <∞ and

A01 =

∞∫
1

 ∞∫
t

f0(x)f1(x)dx

 1
2

dt

t
<∞,

then f ∈W0(R) and ∥f∥W0(R) < c(A1 +A01) [12].
It is important here that only the simultaneous decrease of the func-

tion and its derivative is taken into account.
G1. If A1 < ∞, f(x) = O

(
1

|x|α

)
(α > 0), f ′(x) = O

(
1

|x|β

)
(β ∈ R),

and α+ β > 1, then f ∈W0(R). Generally speaking, one cannot assume
that α+ β < 1 [12].

G2. If f ∈ Lp(R) (p ∈ (1,∞)), f ′ ∈ Lq(R) (q ∈ (1,∞)), and
1

p
+

1

q
>

1, then f ∈W0. One cannot assume that
1

p
+

1

q
< 1 [13].

The simplest sufficient condition consists in that f and f ′ ∈ L2(R)
(Titchmarsh–Beurling). In other cases, the condition

1

p
+

1

q
= 1 is not
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sufficient (see an important example in the introduction of survey [5]; this
example was examined in [14]).

H. Functions from W ∗
0 ⊂W0 can decrease arbitrarily slowly as |x| →

∞. At the same time, in the case of convexity, the integral condition in
item A may be sufficient as well if we take into account the asymptotics
of the Fourier transform of a convex function. Namely, if f is convex on
[a,+∞) and f(∞) = 0, then ∀x ∈ R \ [−2, 2],

∞∫
a

f(t)eitxdt =
i

x
f

(
a+

π

|x|

)
eiax + θF (|x|) ,

where F decreases on [2,+∞),
∞∫
2

F ≤ V∞
a (f) (total variation), and |θ| ≤

c (see, e.g., [4, 6.4.7 b]).
Here is an example (see [7]):

f0(x) =

{
x sin π

x , |x| ≤ 1

0, |x| ≥ 1
∈W ∗

0 .

For the application of this algebra, see Section 4.

2. Trigonometric Fourier series

In what follows, all functions are assumed to be 2π-periodic, and
T = [−π, π].

If f ∈ L1(T), then its Fourier series can be written in the form

f ∼
∑
k∈Z

f̂kek, ek = eikt, f̂k =
1

2π

∫
T

f(t)e−iktdt (k ∈ Z).

The Fourier–Stieltjes series (or that of a measure) with the coefficients∫
T

e−iktdµ(t)

is determined analogously.
If the measures of the points π and −π are identical, then the measure

µ can be considered 2π-periodic.

Theorem 1 [11]. The series
∑
k

ckek is the Fourier series of a measure

(function) if and only if there exists φ ∈ W (R) (φ ∈ W0(R)), with the
condition φ(k) = ck (k ∈ Z).
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In addition, the variation of the measure on T equals

|µ|(T) =
∫
T

d |µ| = min
φ

∥φ∥W (φ(k) = ck, k ∈ Z)

and the minimum is reached at φ0(x) =
∫
T e

−itxdµ(t).
In the class of entire functions of exponential type at most π, all such

extensions φ look like

φ(x) = φ0(x) + c sinπx.

The measure µ is positive ⇔ ∃φ ∈W+(R).

Let
∑
k

ckek be a trigonometric series. How can we determine from its

coefficients whether it is a Fourier series or belongs to a narrower class
than L1(T)?

We obtain several criteria.

Criterion 1. The series
∑
k

ckek is a Fourier (Fourier–Stieltjes) se-

ries if and only if ∃φ ∈W0(R) (φ ∈W (R)), with the condition φ(k) = ck
(k ∈ Z). It can be verified on the broken line with the nodes (k, ck). The
function increases on T (the measure is positive) if and only if this broken
line belongs to W+

0 .

Proof. Theorem 1 and property D. are applied.

Criterion 2. The series
∑
ckek is the Fourier series of a function

from AC(T) if and only if ∃φ ∈ W0(R), with the condition φ(k) = ck
(k ∈ Z), for which φ1 ∈ W0(R) as well, where φ1(x) = xφ(x). This can
be verified on two broken lines.

Proof. This criterion follows from Criterion 1.

Criterion 3. The series
∑
ckek is the Fourier series of a function of

bounded variation on T if and only if φ ∈ W0(R) and φ1 ∈ W (R) (both
functions from Criterion 2).

Proof. It should be taken into account that f ∈ V (T) if and only if

V (f) = sup
n

∫
T

∣∣∣∣∣∑
k

k

(
1− |k|

n

)
+

f̂ke
ikt

∣∣∣∣∣ dt <∞

(see [2, Chapter 1, Section 60]) and make use of Theorem 1, D andB.
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If f ∈ L1(T), then the conjugate function exists almost everywhere,
but it may be not Lebesgue integrable.

Criterion 4. If f ∈ L1(T), then the conjugate function f̃ ∈ L1(T)
if and only if the broken line with nodes (k, f̂ksign k) (k ∈ Z) belongs to
W0(R).

Proof. This criterion follows from Criterion 1.

The criterion for the convergence of a Fourier series in L1(T) is for-
mulated in a similar way.

We also apply the properties of Wiener algebras to Fourier series.

Theorem 2. If
∑
k

ckek ∼ dµ (the Fourier series of the measure),

lim
|k|→∞

ck = 0 (this is necessary), and
∑
k

|ck − ck+1| < ∞, then
∑
k

ckek is

a Fourier series.

Proof. Taking the broken line φ ∈ W (R) from Criterion 1 and applying
the theorem given above after the definition of W1, we derive that φ ∈
W0(R). It remains to apply Criterion 1 once more.

Theorem 3 (new sufficient conditions).
1). If

∞∑
m=1

1

m

( ∞∑
k=m

sup
|k|≥m

|ck| sup
|k|≥m

|ck − ck+1|

) 1
2

<∞,

then
∑
k

ckek is a Fourier series.

2). If the sequence {ck}∞−∞ ∈ lp only for a certain p ∈ (2,+∞), and
{ck − ck+1}∞−∞ ∈ lq , where 1

p +
1
q > 1, then

∑
k

ckek is a Fourier series

(if p ≤ 2,this is a Fourier series in L2(T)).

Proof. 1) We should take a broken line with nodes (k, ck). According
to Property F, this broken line belongs to W0(R), and we should apply
Theorem 1.

2) Analogously, we should apply Property G2.

Corollary. The condition

sup
|k|≥m

|ck| sup
|k|≥m

|ck − ck+1| = O

(
1

m log3+εm

)
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is sufficient if ε > 0, but not if ε = 0. The latter is confirmed by the
counterexample

∑
k

sign k
log(|k|+2)ek.

Now, let us give an example of the motion in the opposite direction
(from the Fourier series to the Wiener algebras).

Theorem 4. ∀f ∈ W0(R), there exists such an even function g that
g ↗ +∞ and gf ∈W0(R).

See also corollary in Section 4.

Proof. We should apply Salem’s theorem for Fourier series (see [1, Chap-
ter 1 and remarks to Section 11 of Chapter IV]) and Property D.

3. Linear methods for summability of Fourier series

We are going to discuss various aspects of convergence in the norm of
C(T) and Lp(T)).

Fejér (1904) was the first who studied the convergence of the arith-
metic means of partial Fourier sums (the (C, 1)-summation method),

σn(f ;x) =
1

n+ 1

n∑
k=0

Sk(f ;x) =
∑
k

(
1− |k|

n+ 1

)
+

f̂ke
ikx →

n→+∞
f(x).

In essence, the Abel–Poisson summation method was known earlier,

fr(x) =
∑
k

r|k|f̂ke
ikx →

r↗1
f(x).

These are convolution integral operators with positive Fejér and Poisson
kernels, since (1− |x|)+ ∈W+

0 (R) and e−|x| ∈W+
0 (R).

The general linear summability methods determined by a single func-
tion φ : R → C, which is sometimes called the method generator,

Φε(f) ∼
∑
k

φ(kε)f̂kek, (3.1)

have been studied for a long time. As early as 1968, there arose a question
about a comparison of various methods. Namely, for r = 1 − 1

n+1 ∀f ∈
Lp(T), 1 ≤ p ≤ ∞ (L∞ = C(T)), we have

∥f − fr∥p ≍ ∥f − σn(f)∥p

(two-sided inequality with absolute positive constants [15, 16]). In [16],
instead of the (C, 1)-ones, the (C,α)-means are indicated, for any α > 0,
with the constants depending on α, of course.
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For those means to converge, the norms of the operators Φε must be
bounded with respect to ε, whereas for the convergence on polynomials,
it must be lim

x→0
ϕ(x) = ϕ(0) = 1.

Let us further assume that φ is bounded and continuous almost ev-
erywhere. The continuity almost everywhere instead of everywhere was
added by the author [4].

Theorem 5 (the general comparison principle).
I. Let φ and ψ ∈ C(R), from the condition ψ(x) = 1 it follows that

φ(x) = 1 (this is also necessary), and the “transition function” g =
1− φ

1− ψ
after the extension by continuity belongs to W (R). In this case, if

p ∈ [1,+∞] and ε > 0, then

∥f − Φε(f)∥p ≤ ∥g∥W ∥f −Ψε(f)∥p .

If, in addition, ψ ∈ W0(R), then, if p = ∞, the factor ∥g∥W0
cannot be

decreased.
II. The same inequality, but with a certain factor independent of f

and ε is also valid if g ∈W1\W0(R) and g(x) ̸= g(∞) ∀x ∈ R.

Proof. I is in [4, 7.1.11], with the transition in the inequality from p = ∞
to any p ≥ 1.

II follows from I and the Wiener 1/f -theorem.

The comparison in Lp for p ∈ (1,+∞), is considered below (see the
lemma and its application below in this section).

The Gagliardo–Nirenberg inequality (1959) for various partial and
mixed derivatives of the functions of any number of variables in various
Lp-norms is well-known.

Let us consider the following question in the one-dimensional case:
When the inequality

∥Q(D)f∥q ≤ a ∥P (D)f∥p ,

where D = d
dx , P is a polynomial of degree r ∈ N, Q is a polynomial of

degree s ∈ N ∪ {0}, and the constant a does not depend on f ∈ W r
p , is

fulfilled?
Note that if the inequality is valid for all functions satisfying the

condition P (D)f = 0, then Q(z) ≡ cP (z).
If p and q ∈ [1,+∞], three criteria – for the sets T, R, and R+ – were

found in [17].
For instance, for the semiaxis R+ = [0,+∞), the criterion reads as

follows.
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If p > 1 and/or q <∞, then

sup
z:Rez≤0

∣∣∣∣Q(z)

P (z)

∣∣∣∣ <∞.

But if p = 1 and q = ∞, then s < r and ∀δ < 0,

sup
z:Rez≤δ

∣∣∣∣Q(z)

P (z)

∣∣∣∣+ sup
x∈R

|Q(ix)|
|P (ix)|+ |P ′(ix)|

<∞.

Here is an example of a sharp inequality for the semiaxis:
If P (z) = (z − λ)Q(z) and Reλ > 0, then ∀p ≥ 1,

∥Q(D)f∥p ≤
(
p− 1

pReλ

) p−1
p

∥P (D)f∥p .

3.1. Approximation of a class of functions

The question is as follows:

sup
∥f (r)∥≤1

∥f − un(f)∥ = ?

Here, {un} is a sequence of linear bounded operators in Lp(T).
If, following Marcinkiewicz, we introduce the operators

u0,n(f ;x) =
1

2π

∫
T

un(f
θ;x)dθ,

where fθ(x) = f(x+ θ), we obtain

u0,n(f) ∼
∑
k

λk,nf̂kek (multipliers, convolutions).

Then, taking into account that the class of functions satisfying the condi-
tion

∥∥f (r)∥∥ ≤ 1 is translation invariant with respect to the shift f → fθ,
we obtain that, for this class,

∥f − u0,n(f)∥ ≤ ∥f − un(f)∥

(for more details, see [4, 7.1.1]).
Let us restrict ourselves to consideration of the operators Φε(f), with

ε = 1
n (for instance, n ∈ N).
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Theorem 6. If, for r > 0 (r is not necessarily integer), the derivative
(in the Weyl sense)

f (r) ∼
∑
k

ei
rπ
2
signk|k|rf̂kek

and
f̃ ∼ −i

∑
k

signkf̂kek,

then, if a and b ∈ C, a± bi ̸= 0, and p ∈ [1,∞], we have∥∥∥∥∥f −
∑
k

φ

(
k

n

)
f̂kek

∥∥∥∥∥
p

≤ 1

nr
∥g∥W0

∥∥∥af (r) + bf̃ (r)
∥∥∥
p
,

where

g(x) =
[1− φ(x)]e−i

rπ
2
signx

(a+ bi signx)|x|r
.

Theorem 6 follows from the comparison principle (Theorem 5).
The story is as follows. Bernstein (1911) proved, for the class Lip α

(α ∈ (0, 1]), that

sup
f :ω(f ;h)≤hα

∥f − σn(f)∥∞ ≍


1

nα
if α ∈ (0, 1),

log n

n
if α = 1.

(3.2)

Jackson, in his dissertation (1911), constructed polynomials satisfying
the condition

∥f − τn(f)∥∞ ≤ cω

(
f ;

1

n

)
∞
. (3.3)

The first book on approximation theory (de la Vallée Poussin, 1919) in-
cluded the Weierstrass approximation theorem, the Chebyshev alternance
theorem, as well as the Markov, Lebesgue, Fejér, Jackson, Bernstein, and
de la Vallée Poussin theorems.

The modulus of smoothness of order r (ω1 = ω) and step h > 0 equals

ωr(f ;h)p = sup
0<δ≤h

∥∆r
δf(·)∥p ,

where ∆r
δ(f) is the r-th difference of the step δ > 0. Those moduli were

introduced by Bernstein for r ≥ 2(1913), and their main properties were
determined by Marchaud (1927). It turned out [18] that for any r ∈ N,

min
τn

∥f − τn(f)∥p ≤ c(r)ωr

(
f ;

1

n

)
p

. (3.4)
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This implies both Jackson’s theorems; see [4, 19, 20].
For approximation of the Lip 1 class, which is the main case,Jackson

makes use of the Dirichlet kernel to the fourth power (with the corre-
sponding norming)instead of the second power used by Fejér. Then, he
approximated any continuous function by broken lines with equidistant

nodes
{
kπ

n

}
, which already belong to Lip 1.

As mentioned in [20, p. 236], “Bernstein almost proved Jackson’s the-
orem”.

If we take of the Dirichlet kernel to the third power (with the corre-
sponding norming), then, estimating the kernel moments in a similar way,
we obtain O

(
ω2

(
f ;

√
lnn
n

))
, and not better. If we apply the compari-

son principle (dealing with the kernel coefficients, i.e.with the operator
spectrum), we obtain the exact order ω2

(
f ; 1

n

)
[21].

But in order to apply the comparison principle, it turned out possible
to replace ωr(f ;h) by the equivalent linearized modulus

ω̃r(f ;h)p =
1

h

∥∥∥∥∥∥
h∫

0

∆r
δf(·)

∥∥∥∥∥∥
p

,

where sup over δ ∈ (0, h] is replaced by the integral mean in δ:

ω̃r(f ;h)p ≤ ωr(f ;h)p ≤ c(r)ω̃r(f ;h)p.

The left inequality is obvious. To prove the right inequality, the author
used the classical Lindemann theorem about the transcendence of the
exponential function values [4, 8.3.5 b)].

Note that there are various inequalities of the Marchaud type (for the
moduli of smoothness of non-integer order in various metrics, see [22]).
In 1957, when nothing was known in Dnipropetrovsk about such inequali-
ties, A.F. Timan deduced the Marshaud inequality from direct and inverse
theorems of approximation theory in the following way. The direct theo-
rem gives an estimate from above of the best polynomial approximation
via ωr1 . Then, using Bernstein’s method and basing on the inequality for
the polynomial derivative (it is also possible to do if the metric changes),
we arrive at the upper estimate ωr2 for r2 < r1. A.F. Timan proposed
me to give a direct proof of this inequality. But I, a fifth-year student of
the DSU at that time, did not succeed. We learned about Marchaud’s
article (1927) three years later.

Note also that after Kolmogorov’s paper (1935), a lot of mathemati-
cians (S.M. Nikolskii, B. Sz.-Nagy, S.A. Telyakovskii, and others [23])
were engaged in the study of asymptotics of approximation of a function
class.
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3.2. Approximation of individual functions

Quite a long ago, the author found exact two-sided estimates for the
approximation of individual functions via the known and new operators
[24]. The estimates of approximations from above were known earlier.

Examples. (Rogozinski and Bernstein sums)∥∥∥∥f(·)− 1

2

[
Sn

(
f ; ·+ π

2n

)
+ Sn

(
f ; · − π

2n

)]∥∥∥∥ ≍ ω2

(
f ;

1

n

)
,∥∥∥∥f(·)− 1

2

[
Sn(f ; ·) + S

(
f ; ·+ π

n

)]∥∥∥∥ ≍ ω

(
f ;

1

n

)
.

In [24], the polynomials of the Rogozinski–Bernstein type determined
by the function φ = φr were also indicated. There holds for them, with
ε = 1

n (see [1]),

∥f − Φε(f)∥ ≍ ω̃r(f ; ε) ≍ ωr(f ; ε).

V.V. Zhuk [25] proved that

∥f − σn(f)∥ ≍ ω2

(
f ;

1

n

)
+ nω2

(
F̃ ;

1

n

)
,

where F̃ is the conjugate of the periodic integral
x∫
0

(
f(t)− f̂0

)
dt. For a

simple proof based on the comparison principle, see [4, 5.8.8]. The case
p ∈ (1,+∞) is considered below in this section.

After the paper by Ditzian and Ivanov [26], such relations are often re-
ferred to as “strong converse inequalities”. For the Bernstein polynomials
used by Stechkin in [18] (see (3.4)), a special modulus of smoothness had
to be introduced [27]. Thus, an answer to the question of V. I. Ivanov [28]
was obtained.

Let us present only one result for linear means of Fourier series on
the torus Td.

For the Bochner–Riesz means (|x| is the Euclidean norm in Rd, r ∈ N,

δ >
d− 1

2
, ε > 0, and {ej}d1 is a standard basis in Rd), we have∥∥∥∥∥∥f −

∑
k∈Zd

(
1− ε2r|k|2r

)δ
+
f̂kek

∥∥∥∥∥∥ ≍ sup
0<δ≤ε

∥∥∥(∆+
2,δ

)r
f
∥∥∥ ,

where

∆+
2,δf(x) =

d∑
j=1

[f(x− δej)− 2f(x) + f(x+ δej)] ,
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or (the answer in another form),

ω̃0
2r(f ;h) =

∥∥∥∥∥∥∥
∫

|u|≤1

2r∑
ν=0

(−1)ν
(
2r

ν

)
f (·+ (ν − r)hu) du

∥∥∥∥∥∥∥
on the right (see the survey [29]).

Let us now consider separately the issue concerning approximation of
functions in Lp(T) norm, for p ∈ (1,+∞). According to the M. Riesz
projection theorem (see, e.g., [4, 2.4.7]), we have∥∥∥∥∥∥

∑
k≥0

f̂kek

∥∥∥∥∥∥
p

+

∥∥∥∥∥∑
k<0

f̂kek

∥∥∥∥∥
p

≤ c0(p)∥f∥p
(
c0(p) =

2p2

p− 1

)
.

It immediately follows from this that for f̃ ∼ −i
∑
k

f̂ksign kek, there holds

∥f̃∥p ≤ c0(p)∥f∥p [p ∈ (1,+∞)] . (3.5)

It is easy to verify (see also [2, chapter VIII, section 20] that for f1(x) =
f(x) sinnx and f2(x) = f(x) cosnx, we get

Sn(f ;x) = f̃1(x) cosnx− f̃2 sinnx+
1

2π

∫
T

f(x+ t) cosntdt.

Therefore, taking into account inequality (3.5), for any n, we obtain

∥Sn(f)∥p ≤ ∥f̃1∥p + ∥f̃2∥p + (2π)
− 1
p ∥f∥p ≤

≤ c0(p) (∥f1∥p + ∥f2∥p) + ∥f∥p ≤
≤ c1(p)∥f∥p (c1(p) = 2c0(p) + 1) . (3.6)

And by virtue of the Lebesgue inequality, we get

∥f − Sn(f)∥p ≤ [c1(p) + 1]ET
n (f)p, ET

n (f)p = min
τn

∥f − τn∥p,

and convergence of Sn as n→ ∞ follows.

Lemma. If v(λ) =
∑
k∈Z

|λk − λk+1| < ∞, then for p ∈ (1,+∞), we

have ∥∥∥∥∥∑
k∈Z

λkf̂kek

∥∥∥∥∥
p

≤ c(p) [v(λ) + |λ0|] ∥f∥p .
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Proof. Assuming S−1(f) = S̃−1(f) = 0, we obtain

n∑
k=0

λkf̂kek =

n−1∑
k=0

∆λk(Sk(f) + iS̃k(f)) + λn(Sn(f) + iS̃n(f)),

where ∆λk = λk − λk+1. Taking into account (3.6) and the inequality
|λk| ≤ v(λ) + |λ0|, we get∥∥∥∥∥

n∑
k=0

λkf̂kek

∥∥∥∥∥
p

≤ v(λ)c1(p)
(
∥f∥p + ∥f̃∥p

)
+[v(λ) + |λ0|]

(
∥f∥p + ∥f̃∥p

)
.

Now, applying (3.6), we have that, as n→ ∞,∥∥∥∥∥
∞∑
k=0

λkf̂kek

∥∥∥∥∥
p

≤ c2(p)∥f∥p.

But in this case,∥∥∥∥∥
−1∑
−∞

λkf̂kek

∥∥∥∥∥
p

=

∥∥∥∥∥
∞∑
k=1

λ−kf̂−ke−k

∥∥∥∥∥
p

≤ [c2(p) + 2v(λ) + 2|λ0|] ∥f∥p,

which completes the proof.

Thus, we have the following estimate for the multiplier norm in Lp(T):

Λf ∼
∑
k∈Z

λkf̂kek ⇒ ∥Λ∥Lp→Lp ≤ c(p) [v(λ) + |λ0|] .

Let us consider σn(f) as the only example.

Proposition.If p ∈ (1,+∞), then

∥f − σn(f)∥p ≍ ω

(
f ;

1

n

)
p

.

Proof. For comparison, let us take the polynomials

τn(f) =
∑
k

φ

(
k

n

)
f̂kek, φ(x) =

(
1− x2

)
+
+ ix (1− |x|)+ ,

for which

∥f − τn(f)∥p ≍ ω

(
f,

1

n

)
p
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for any p ∈ [1,+∞] (see [4, p. 362]). Taking into account that if λ ̸= 0,
then V∞

−∞(f(λ·)) = V∞
−∞(f), we have to check, by the lemma, that

g(x) =
1− (1− |x|)+

1− φ(x)
and

1

g(x)
∈ V (R).

This is obvious if g(0) = g(+0), since g(x) = 1 for |x| ≥ 1 and g′ is
bounded for 0 0 < |x| < 1.

Let us also present a new asymptotic formula for the approximation

of individual functions, with the error ω2m

(
f ;

1

n

)
, m ∈ N.

Theorem 7 ([30]). Let α > 0, 2m > α, andmα=max {k : kα < 2m} .

If φ(0) = 1, φ(2m) ∈ V ∩Lip δ (∃δ > 0) on

[
0,

2

3

]
, φ ∈ V ∩Lip δ (locally)

for x ≥ 1

3
, and |φ(x)|+ |φ′(x)| = O

(
1
x

)
as x→ +∞, then ∀f ∈ C(T) as

ε→ +0, we have

f(x)−
∑
k∈Z

φ (εα|k|α) f̂keikx =

= −2

mα∑
k=1

φ(k)(0)

k!

1

C1+kα

∞∫
1

∆̇2mf(x)

u1+kα
du+O (ω2m(f ; ε)) ,

where

∆̇2mf(x) =
k∑
ν=0

(
k

ν

)
(−1)νf (x+ (k − 2ν)h)u

is the symmetric difference, and, for q > 1,

Cq = Cq(m) = (−1)m22m+1

∞∫
0

sin2m t

tq
dt.

The theorem is applicable, e.g., to the Gauss–Weierstrass means

(φ(x) = e−|x|), to the Picard means
[
φ(x) =

(
1

1+x

)β
, β ≥ 1

]
, and to the

Riesz means.
Let us also note the relation between trigonometric series and Fourier

integrals due to the author.



R. M. Trigub 95

Let n ∈ Z and let both f and f (r) ∈ V (n,∞), with r ≥ 0 integer, and
let f (ν)(∞) = 0 forν ∈ [0, r]). Then, for 0 < |x| ≤ π, we have

∞∑
k=n

f(k)eikx =

∞∫
n

f(t)eitxdt+
1

2
f(n)einx

+ einx
r−1∑
ν=0

(−i)ν+1

ν!
h(ν)(x)f (ν)(n) +

θ

πr
V∞
n

(
f (r)

)
(
h(x) =

1

x
− 1

2
cotan

x

2
, |θ| ≤ 3

)
.

One arrives at the classical Euler–Maclaurin formula as x → 0 (see [4,
4.5.1]). For r = 1, when the sum on the right is absent, a similar formula
was obtained earlier by E.S. Belinsky (see [4, 4.5.1]).

For a generalization to functions of any number of variables, see [31].

4. Summability almost everywhere. A non-linear summa-
tion method. Some open problems

Kolmogorov [1, 2] gave an example of a Fourier series diverging ev-
erywhere. Luzin (1913) conjectured that the Fourier series of a function
from L2(T) converges almost everywhere [2]. This conjecture was proved
by Carleson (a report at the ICM in Moscow in 1966). When presenting
this report, Kolmogorov said that this was the best result in the analysis
within the past ten years. Hunt immediately strengthened the Carleson
theorem for functions from Lp(T) with p > 1 [32].

A question: For what functions φ

lim
ε→0

Φε(f ;x) = f(x)

almost everywhere, for any f ∈ L1(T)?
Immediately after the appearance of Fejér’s theorem (see Section 3),

Lebesgue proved that

lim
n→∞

σn(f ;x) = f(x)

almost everywhere, i.e. at those points x where

lim
|h|→0

1

h

h∫
0

∣∣f(x+ t)− f(x)
∣∣dt = 0

(the so-called Lebesgue points or l-points).
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For general singular integrals, the criterion of summability at all
Lebesgue points was proved by D.K. Faddeev (1936). For convolution
operators Φε(f), this criterion has a simple form (see [7] or [4, 8.1.3]):

φ(0) = 1, φ ∈W ∗
0 (R). (4.7)

A wider set than the l-points is that of the points of differentiability

of the function F (x) =
x∫
0

f (the d-points). Hahn proved [33] that the

means σn(f ;x) may diverge at d-points. The means (C,α), for α > 1,
already converge at all d-points (Hardy).

Theorem 8. (Criterion for σn) [34]
For

lim
n→∞

σn(f ;x) = F ′(x)

to be valid for the function f ∈ L1(T) at its d-point x, it is necessary and
sufficient that the Fourier series of the continuous function

Fx(t) =
1

t

x+t∫
x

f(u) du

converge at t = 0.

Making use of one of the examples of divergent Fourier series of a
continuous function, we obtain the Hahn theorem [34].

Here is a general sufficient condition for summability at d-points.

Theorem 9. [35] Let φ ∈W0(R) (this is necessary). If also φ(0) = 1
and φ′

1 ∈W0(R), where φ1(x) = xφ(x), then ∀f ∈ L1(T), we have

lim
ε→0

Φε(f ;x) = F ′(x)

at all its d-points. By this, the condition φ′
1 ∈ W0(R) is not necessary,

while the condition φ′
1 ∈W (R) is not sufficient.

Examples. Classical Riesz methods: φ(x) =
(
1 − |x|α

)β
+
, α > 0,

β > 1; Gauss–Weierstrass methods: φ(x) = e−|x|α , α > 0; and Picard
methods: φ(x) = 1(

1+|x|α
)β , α > 0, β > 0. At the same time, the

Rogozinski and Bernstein means may diverge at d-points.
Note that summability at d-points gives rise to summability at l-

points, and summability at l-points gives rise to convergence on C(T)
and, further, on L1(T).
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Form Theorem 9 and Criterion (4.7), it follows that

f, f ′1 ∈W0(R) ⇒ f ∈W ∗
0 (R),

where f1(x) = xf(x).
Marcinkiewicz (1938) proved the uniform convergence of the arith-

metic means of square partial sums for continuous periodic functions
of two variables as well as the convergence almost everywhere for f ∈
L1 log+ L1(T2). L.V. Zhizhiashvili [36], using the maximal Hardy–Little-
wood function, proved the convergence of the indicated means almost
everywhere for all f ∈ L1(T2) (for more general theorems, see the sur-
vey [37]). In [38], it was proved that at the Lebesgue points, unlike the
one-dimensional case, summability may fail for sums of Marcinkiewicz
type.

Note that for f ∈ L1(Td), where d ≥ 2, there may exist Lebesgue
points of two different types (for criteria for functions φ with compact
support, see [39]).

Now, let us consider a nonlinear summability method, namely, strong
summability introduced by Hardy and Littlewood [1, 2]:

ρn(f ;x) =
1

n+ 1

n∑
k=0

∣∣f(x)− Sk(f ;x)
∣∣ ≥ ∣∣f(x)− σn(f ;x)

∣∣. (4.8)

Let {nk}∞1 be a sequence of natural numbers with nk+1 > nk. When
∀f ∈ C(T)

lim
m→∞

1

m

∥∥∥ m∑
k=1

∣∣f(·)− Snk(f ;x)
∣∣∥∥∥

∞
= 0 ?

Salem (1955) proved the sufficiency of the power growth for nm (see [2,
Chapter VII, Section 8]) and the general necessary condition log nm =
O
(√
m
)
. It turned out that given the convexity of {nk}, this is a necessary

and sufficient condition. It was proved independently in [40,41] (Carleson
talked about that at a conference in Budapest in 1979). See also [42].
For generalizations to the multiple case (partial sums over cubes, etc.),
see [43].

Unlike (C, 1)-means, strong means can diverge at Lebesgue points
(Hardy and Littlewood, 1913), but they always converge almost every-
where (Marcinkiewicz–Zygmund, see [1, 2]).

O.D. Gabisoniya [44] determined a set of total measure on T, for
which the convergence takes place:

lim
n→∞

[2πn]∑
k=1


n

k

k
n∫

k−1
n

∣∣f(x+ t)− f(x)
∣∣dt


2

= 0.
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We note now that σn, and the more so strong means, possess a satu-
ration order:

lim
n→∞

n
∥∥f − σn(f)

∥∥
∞ = 0 ⇒ f = const,

and a saturation class (Aleksits, 1941),

∥∥f − σn(f)
∥∥
∞ = O

( 1
n

)
(n→ ∞) ⇔ ω(f̃ , h) = O(h) (h→ +0).

A formula like the Voronovskaya one and its inversion can also be written.
If f̃ ′ ∈ C(T), then

f(x)− σn(f ;x) =
f̃ ′(x)

n
+ o
( 1
n

)
uniformly in x ∈ T. If

f(x)− σn(f ;x) =
h(x)

n
+ o
( 1
n

)
for a certain function h ∈ C(T), then f̃ ′(x) = h(x) (see [24]).

Theorem 10. If p = 1 or p = ∞, then

1) sup
f :ω(f ;h)p≤hα,α∈(0,1]

∥∥ρn(f)∥∥p ≍


1

nα
if α ∈ (0, 1);

lnn

n
if α = 1;

2) sup
f :ω2(f ;h)p≤h

∥∥ρn(f)∥∥p ≍ lnn

n
.

Lemma. Let ET
n (f)p = min

τn

∥∥f − τn
∥∥
p
.

1) If p = 1, then ρn(f)1 ≍
1

n+ 1

n∑
k=0

Ek(f)1;

2) If p = +∞ and ∀εn ↘ 0, then

sup
f :Ek(f)≤εk,k∈N∪{0}

ρn(f)∞ ≍ 1

n+ 1

n∑
k=0

εk.

Proof. For the case p = +∞, the inequality

∥∥ρn(f)∥∥p ≤ c
1

n+ 1

n∑
k=0

ET
k (f)p (4.9)
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was proven in [45]. Adding the generalized Minkowski inequality, we
can use the same proof for p ∈ [1,+∞) as well (the constant c does not
change).

If p = 1, then

ρn(f)1 =
1

n+ 1

n∑
k=0

∥∥f − Sk(f)
∥∥
1
≥ 1

n+ 1

n∑
k=0

ET
k (f)1.

If p = ∞, we should apply inequalities (4.9) and (4.8), as well as an
example of the function from [47] for which

f1(x) =
∞∑
k=1

(εk−1 − εk) cos kx,

ET
n (f1) ≤ εn, ρn(f1) ≥ |f1(0)− σn(f1; 0)| =

1

n+ 1

n∑
k=0

εk.

as εn ↘ 0.

We have also to take into account the classical Bernstein theorem [19]:

For any sequence εn ↘ 0, there exists a function f satisfying the
condition ET

k (f) = εk, k ≥ 0.

Proof. 1) The estimate of the approximation from above in Theorem 10
follows from Lemma and Jackson’s theorem, and from below from the
corresponding result for σn (see (3.2)).

2) Follows from Lemma and Zygmund’s theorem [19]:

ω2(f ;h) = O(h) ⇔ ET
n (f) = O

( 1
n

)
.

In the same way, one can study approximation of the class of functions
with the condition ωr(f ;h) ≤ ψ(h) (or ωr(f̃ , h) ≤ ψ(h)), where ψ ↘ 0
as h↘ 0, and r ∈ (0, 2].

Here are some more open problems.
a) What are the saturation order and the saturation class for ρn(f)?
b) What is the special modulus of continuity ω∗, for which∥∥ρn(f)∥∥∞ ≍ ω∗(f ; εn),

where εn ↘ 0 and does not depend on f?
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c) D. Gát [47] proved that if nk+1 > nk
(
1 + 1

kδ

)
, where k ∈ N and

δ ∈
(
0, 12
)
, then almost everywhere

lim
m→∞

1

m+ 1

∣∣∣f(x)− 1

m+ 1

m∑
k=0

Snk(f ;x)
∣∣∣ = 0.

This is a good result. However, a problem about such a convergence at
all Lebesgue points has been posed long ago (Zalcwasser, 1936).

See also the theorems about grouped series in [48,49].
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