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Belonging of Laplace—Stieltjes integrals
to convergence classes
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Abstract. For positive continuous functions o and ﬁ increasing to +o0o

on [zo,+00) and Laplace—Stieltjes integral I(o f f(x)e®?dF (z), o €
R, a generalized convergence af-class is defined by the condition
7 a(ln I(0))
————**do < +o0.
/5

o0
Under certain conditions on the functions «, 8, f and F' , it is proved
that the integral I belongs to the generalized convergence af-class if

and only if f z) B (7 ﬁ) < +oo, fi(x) = JTO%. For a

positive convex on (—oo, +00) function ® and integral I, a convergence

®-class is defined by the condition [ %(n)lw)
oo g

is proved that under certain conditions on ®, f and F' the integral I

oo}
belongs the convergence ®-class if and only if [ — dx <
zo

do < 4oo and it

& ((1/) In (1/f()))

+o00. Conditions are also found in the fulfilment of which the integral
type of Laplace-Stieltjes [ f(z)g(zo)dF (z) belongs to the generalized
0

convergence af-class if and only if the function g belongs to this class.
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1. Introduction

For an entire transcendental function

e .
= Z anz", z=re" (1)
n=0
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let M¢(r) = max{|f(2)| : |2| = r}. If f has an order ¢ € (0, +00) and
minimal type then for the growth characteristic it is used [1, p. 62| a

concept of the convergence class (Valiron’s convergence class) defined by

ln M¢(r)

the condition f x| dr < 4o00. G. Valiron [2, p. 18| proved that

o0

if function (1) belongs to the convergence class then 3 |a,|9/" < 4o0.
n=1

Direct generalizations of power developments of entire functions are entire

(absolutely convergent in C) Dirichlet series

D(S) =ag + Z an €Xp (S)\n), S=0+ Zt; (2)

n=1

where (Ay,) is an increasing to +o0o sequence of positive number. We put
M(o,D) = sup{|F(c +it)| : t € R}, suppose that the R-order pr of
the function D is equal p € (0,+00) and define a convergence class by
condition

/ e % 1In M(o,D)do < +00. (3)
0

Generalizing Valiron’s theorem P. Kamthan [3| showed that if the
sequence (\,,) has a positive finite step (i. e. 0 <h < A1 — Ay < H <
In |ap| — In|an41]

)\n+1 - )\n
order that condition (3) was executed, it is necessary and sufficient that
3 faule/ < +oc.

O M. Mulyava [4] removed the condition for the step of the sequence
of exponents and proved that if In n = O(\,) as n — oo then in order
for the relation (3) to be fulfilled, it is necessary and in the case, when

kn(F) / +oo as m — oo, it is sufficient that E( — A1) |an ¥ <

+oo for n > 0) and k,(F) = T 400 as n — oo, then in

+00. Moreover, she [4-5] investigated the belongmg of entire Dirichlet
series to a generalized convergence af-class defined by condition

70‘(ln M(©,D)) 1 < 400 (4)

Blo)
o0
where a and 8 are positive continuous functions increasing to +oo on
(29, +00). By LY we denote a class of positive continuously differentiable
functions « increasing to 400 on [zg, +00) and such that a((1+o(1))x) =
(14 o0(1))a(z) as x — +oo. The following theorem is true (see [4] and
6, p. 13]).



M. M. SHEREMETA, O. M. MULYAVA 257

Theorem A. Let o be a concave on [xg, +00) function and a(e®) € L°,
Be L xﬁ/(x) > ¢ >0 for all z € [xg,+00) and T@dx < +00

T BE) T v 2o B(@) |
Suppose that In n = o(\, 87 (ca(A\,))) as n — oo for each ¢ € (0,+00).
Then in order that an entire Dirichlet series belongs to the generalized
convergence af3-class, it is necessary and in case, when ki, (F) 7 400 as

n — o0, it is sufficient that

+oo
> 1 1 do
> (@) ~ 0= <An1“|an|) <t B = [ 59

xT

Another generalization of Valiron convergence class is the convergence
®-class studied for Dirichlet series in the articles [7-9].

As in [10], let © be a class of positive unbounded functions ® on
(—00, +00) such that the derivative @’ is positive continuously differen-
tiable and increasing to +oo on (—oo, +00). For @ € Q let ¢ be the
®(0)
o'(ar)
with @ in the sense of Newton. Then [10] the function ¥ is continuously
differentiable and increasing to +o0o on (—oo, +00) and the function ¢
is continuously differentiable and increasing to +oo on (xg, +00). For
entire Dirichlet series ®-class is defined in [7] by the condition

be the function associated

inverse function to ® and ¥(o) = o —

o0

/ ®'(0)In M(o, D)
®%(0)

do < 400. (6)

g0

Combining Theorem 1 from [7] and Theorem 1 from [9], we get the fol-
lowing theorem.

Theorem B. Let ® € Q, the function ®(0)/®(0) is nondecreasing
on [og, +00) and

(o) ®(0)
(®'(0))?

0<h< <H<+0c0, 0o >oyp. (7)

Suppose that

[ma®) o
to/ () =T (t)_éf‘
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In order that (6) holds, it is necessary and in the case, when kn,(F) /400
as n — 00, it is sufficient that

o0

)\n - )\nfl

Z 1 1
n=no ' [ —1
’ (A “w)

Here we will obtain analogues of Theorems A and B for Laplace—
Stieltjes integrals.

< +o0. (8)

2. Belonging of Laplace-Stieltjes integrals to a generalized
convergence af-class

Let V be a class of nonnegative nondecreasing unbounded continuous
on the right functions F' on [0, 400). For a nonnegative function f on
[0,400) the integral

/ f(@)e dF(z), o €R, (9)
0

is called of Laplace-Stieltjes [11, p. 7]. Integral (9) is a direct gen-
eralization of the ordinary Laplace integral I(o fo )e*?dx and
of Dirichlet series (2) with nonnegative coefﬁmentb an end exponents
A, 0 < Ay T 400 (n — 00), if we choose F(z) = n(z) = > 1 and
An<z

f(An) =an >0 for all n > 0.

Let u(o) = p(o, I) = max{f(x)e® : x > 0} (o € R) be the maximum
of the integrand, o. be the abscissa of convergence of the integral (9) and
o, be the abscissa of maximum of the integrand. Then [11, p. 8| 0, =

1

lim —In and if either In F(z) = o(x) or In F(z) = o(ln f(z))
o—to0 T f(2)
as ¢ — +oo then [11, p. 13] 6. > 0,. From whence it follows that if

In F(x) = o(z) as  — 400 and

1
r(z):=—-In — — 400, =z — +0o0, (10)

then integral (9) converges for all o € R. Further we assume that (10)
holds.
By a definition [11, p. 21] a positive function f has regular variation in

z+b
regard to F if there exist a > 0, b > 0 and h > 0 such that f f)dFE(t) >

hf(x) for all x > a.
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Let, as above, a and [ be positive continuous functions increasing to
+00 on [zg, +00). We will say that integral (9) belongs to the generalized
convergence «f-class if

o0

/ a(ln I(0))

5(0) do < +o0, (11)

g0

and will find conditions on f under which (11) holds.
Before to pass to the analog of Theorem A we will specify on some
property of functions from the class LP.

Lemma 1. If 8 € LY then for each X € [1, +o0) and all z > xo()\) the
inequalities 1 < B(Ax)/B(x) < M(A) < 00 hold.

Indeed, if 8 € L° then [12] 8 is RO-varying and, thus, [13, p. 86|
1< B(Ax)/B(x) < M(X) < 400 for each A € [1, +00) and all z > zo(A).
The following analog of Theorem A is true.

Theorem 1. Let the functions a and B satisfy the conditions of Theorem
A. Suppose that F € V, In F(x) = o(xB8  (ca(z)) as  — oo for each
¢ € (0,+00) and the function f has regular variation in regard to F. If
the function v(z) == —(In f(x))’ is continuous and increasing to +00 on
[0, +00) then condition

T 1 1 T do
o (z)p <ln><+oo, Bz :/ —, 12
[ @ (G W= e
o
is necessary and sufficient in order that integral (9) belongs to the gener-
alized convergence af-class.

Proof. We begin from the sufficiency. At first we show that conditions
(11) and

o0

o(in p(o, 1)
//B(U)da < 400 (13)

oo
are equivalent. Indeed, since f has regular variation in regard to F' then
[11, p. 75]
In u(o,I) < (1+o0(1))In I(o), o — +oc. (14)
Therefore, (11) implies (13).
On the other hand, from (13) it follows that for all ¢ > oy

[e.e]

aln u(e, 1)) T B
1> /ma)da > a(ln u(o, 1)) J/ %da = a(ln (o, I))B1(0).

[
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Therefore, in view of the condition 3 € L° for the generalized order
00p(In p1) we have

— g el D) o L
sl )= I =50 = ol Bi(0)B(0)

1 lim ——~
= 0'—1>I"11‘100 ﬁ(o-) f;""l d:c/,@’(x) = 0'—1>1:‘11‘1C>O ﬁ(cr) <

Since |11, p. 77-78]

— a(z
ko) = T M < g ),
B < In )

z flx)
we have kop(f) < +oo and, thus, In f(z) < —z8 Y(a(z)/k)) for some
k < +oo and all © > z¢(k). Therefore, in view of the condition In F(x) =
o(xB~(ca(z)) as x — oo for each ¢ € (0, +00) we obtain

—  In F(x)

e (1) "

and, thus [11, p. 61],

oy <kon(1%) < xen (7))

1—¢

for every e € (0, 1) and all ¢ > og(g). Since 8 € L by Lemma 1 (13)
implies (11).

As in |11, p. 24|, let v(o) be central point of the maximum of inte-
grand. Then [11, p. 26] v(o) / +00 as 0 — +oo and

o

In p(o) = In p(oop) +/ v(t)dt, (15)

g0

from whence we get

[

1o (o) > I ulon) + | 10 = Ipln) + Suo/2) 2 vio )

and
In pu(o) <lInp(og) + (6 — oo)v(o) < 20v(0)

for all o enough large. Thus,
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a(v(o/2)) < a(lnp(o)) < a(exp{ln20 +In v(o)})

) <

< a(exp{2max{In20,In v(o)}})

< cra(exp{max{In 20,1n v(0)}}) = ¢t max{«a(20), a(In v(0))}
= c1(a(20) + a(ln v(0))), ¢ = const > 1,

ao(z)

+oo

i. e. by the conditions
Y ] 5@
and, thus, (11) holds if and only if

7 a(v(0))
/UO (o) do < 4o00. (16)

If the function v(z) := —(In f(x))’ is continuous and increasing to
+00 on [zg, +00) then v(o) is unique point of the maximum of the
function In f(x) + ox. Moreover, this function v(o) is continuous and
increasing to 400 on [0, +00).

Clearly,
+Oo o(v()) = — +Ooa vio o
/UO o = / (v(0))dB1 (o)

dr < +oo and B € L it follows that (13)

+oo
= —a(v(0))B1(0)],,+ Bi(o)a (v(o))dv(o).
Since a(v(0))pi(o) > 0, from whence it follows that (16) holds if and

only if .
Bi(o)d/ (v(o))dv (o) < +o0. (17)

o0

On the other hand, 0 <1In u(o) =In f(v(o)) + ov(o), i. e.

1 1 ln,u(a)> 1 1
v(o)  flv(o))  wlo) ~wlo)  flv(0))

and since the function (i is non-increasing, we have

o)< (5 i)

Therefore, if (12) holds then in view of the continuity of v(o) we get
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+oo

Bi(o)a (v(0))dv (o)

g0

SL?md@“”&(véf“f@@»)““”<+“'

The sufficiency of condition (12) is proved.
Now we prove its necessity. Since z = v(o) is a solution of the
equation —v'(z) + ¢ = 0 then 0 = v'(v(0)) and from (12) we get

[ &((0))B1 (v (W(e))dv(0) < +o0, i. .

g0

o0

/ o (2)B1 (v (2))dar < +o0. (18)

g0

From a theorem proved in [14] it follows that if a(z) and b(x) are
continuous functions on (0, +00), —00 < A < a(x) < B < +o00, b(x) \,
b>0 as x — 400, and for a positive function f on (A, B) the function
fY? is convex on (A, B) then

O/yb(x)f (i/xa(t)dt) dr < <p€1>po/yb(w)f(a(x))dx, 0<y< +o0.

0
(19)
We choose b(z) = o/(z), a(x) = v'(x), f(x) = p1(x) and show that
the function B%/ P is convex for some p > 1. Indeed,

B @) = 1) (A @) - P2 G0,

p

" o p;l / 2 _ 1 / Ooi _ ;1
(@) (w) = ——=(Ai()) 52)? (5 () 5 p )
and in view of the condition z5'(x)/B(z) > h > 0 for > xg

o) 2z
dr , dr zf (x)
M >B(x) | w75 =

J 50y = Ty M

B'(z)

-1
Therefore, choosing p > 1 such that h — . > 0, we get the inequality
p

(ﬁi/p(x))” > 0 for z > xp, i. e. the function ﬁi/p(:r) is convex and in
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view of (19) and (18)

/O/(:E)Bl x/v'(t)dt dx < (pfl> /a'(:n)ﬂl(v'(a:))dw < 400.
0 o To (20)
Since
m ! = L~ LI 0 1[1L T 00
m[v (t)dt =1n @) In o) (1+o0(1))1 @)’ — 00,

and from the condition 3 € LU it follows that B1(z(1 + o(1))) = (1 +
0(1))B1(z) as * — +oo, (20) implies (12). The proof of Theorem 1 is
complete. O

We remark that the condition of the increase of the function —(In f(x))’
in Theorem 1 is an analogue of the condition of the increase of the se-
quence (kp(F')) in Theorem A. This condition was used in the proof of
both the sufficiency and necessity of the condition (12) in Theorem 1.
At the same time, the nondecreasing of the sequence (k,(F')) was used
only to prove the sufficiency of the condition (5) in Theorem A. However,
by reducing Laplace-Stiltjes integral to Dirichlet series and using Theo-
rem A, we can prove the necessity of condition (12) without using the

condition of the increase of the function —(In f(z))".

Proposition 1. Let the functions a and [ satisfy the conditions of
Theorem A and F € V. Suppose that there exists a sequence (A,) such
that 0 = Ao < Ap T 400, Ap+1 — An < H < +00 for all n and

Ani1
f@)dF(t) > h* f(x), h* >0, (21)

An

for all x € [An, Ans1]. If Inn = oA, B~ (ca(M\,))) as n — oo for each
¢ € (0,400) then (11) implies (12).

Proof. If we write

o)=Y / F(@)e™ dF (), (22)

then for o > 0
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)\n+ 1 >\n+1 )\n+ 1

A / F@)dF(z) < / F(2)e™ dF (z) < M1 / F(@)dF(z)
An An An
At
< efoghno / f(x)dF(x).
An

Therefore, if we put 4, = [ /\/\:“ f(t)dF(t) and consider Dirichlet series
D(o) =Y Apexp{oi}, (23)
n=0

then we obtain the estimates D(c) < I(0) < e”?D(0), i. e. In D(0) <
In I(0) <In D(o) + Ho for all ¢ > 0. Since a € LY, by Lemma 1
a(ln D(o) + Ho) < a(2max{ln D(c), Ho} < Ka(max{ln D(c),Ho}

< Kmax{a(ln D(0)),a(Ho)}<K(a(ln D(c))+a(Ho)), K=const > 0,

and in view of the conditions 5 € L? and nggdw < +oo the correlation
o
(11) holds if and only if
/oz(h;(lj)(a))da < +00. (24)
0
But from Theorem A it follows that if condition (24) holds then
00 Foo
S (et —athu ) (5] < 4o i) = x o
i e.
(o) — a(hn))s <A1 P— ) < 4oo.  (25)
=1 no [ (AR ()

On the other hand,
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r 1 o M 1.1
! - —In—— | d
[ o ()= 2 / <x“f<x>> ’
>\TLO n
o0
< 3 @0hwin) —alh) max 6 (s
n=ng
Since the function « is continuously differentiable and a(e®) € L°, this
/
function is slowly increasing and, thus, xa((a;:) — 0 as ¢ — +o00. From
oz

whence it follows that o/(z) — 0 as  — 400 and from the concavity of
a it follows that o/ (z) \( 0 as © — 4o00. Therefore, a(Ap4+1) — a(A,) <
a(Ap) — a(A—1) and, thus,

7 <)ﬁl( 1nf(1$)>dx

o

< 3 (al) —a(ho)), max B (iln f(lx)> (26)

Therefore, in view of (25) we need the estimate

1.1 1 L
,\ngri:lgi{nﬂ ﬁl <$ N f(l‘)) S 1l61 (An ! f)i\nn+1 f(t)dF<t)> ’ ( )

because (26), (27) and (25) imply (12).
The conditions A\p,+1 — A, < H < 400 and (21) imply
1 1 1 1 1 1
< —1In _ 1+ ))ln r — +00

1
P T T D W 13 ) R ()

and, since (31 is decreasing function, from whence (27) follows. Proposi-
tion 1 is proved. O

3. Belonging of Laplace—Stieltjes integrals to a conver-
gence $-class

Let ® € Q. We will say that integral (9) belongs to the convergence

d-class if -
/¢«g$jwha<+m. (28)

g0
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To obtain an analogue of Theorem B, we need the following statement.

Lemma 2. Let F € V, ® € Q and the function ®'(0)/®(0) is nonde-
creasing on [0y, +00). If In u(o,I) < ®(o) for o > o¢ and In F(z) =
o(z) as x — 400 then

In I(o) <In p(o,I)+1In F(g(o)) +0(1), o — 40, (29)

where g(o) = ®' (¥ (o + *(0))) and B*(c) = ®(c)/P' (V~1(0)).

Inequality (29) was obtained in the proof of Theorem 5.1.3 in [11, p.
103-106] (see also [15]).
The following analog of Theorem B is true.

Theorem 2. Let the function ® satisfies the conditions of Theorem B.
Suppose that F € V| f has reqular variation in regard to F' and

oo

In F(x) . ~
| sty <+ (30)

Zo

In order that integral (9) belongs to convergence ®-class, it is necessary
and in the case, when the function v(xz) := —(In f(z))" is continuous and
increasing to +00 on [rg, +00), it is sufficient that

[e.e]

d

/ - x — < +oc. (31)
a0 O —In —
z o f(x)

Proof. At first we show that the conditions (29) and

T (o) In p(o, 1)

d 32

/ 52(0) o < 400 (32)

o0

are equivalent.
Indeed, in view of (14) from (28) we get (32).

@// q) (I)/
On the other hand, since ¥/(0) = (jL(g) and the function (o)
(@'()) ®(0)

O(V(p(r) o P(p(z))
'(W(p(x))) — @(p(x))

is non-decreasing, we have and by L’Hopital’s

rule
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T In F(t) e T dt
> e = 7 | i
(14+0(1))In F(x) v - o0

(¥(p(z)

whence it follows that In F(z) = o(®(¥(p(x)))) as © — +oo. But
(U (p(x))) < P(p(x)) = O(P'(p(z))) = O(x) as * — +o0. Therefore,

In F(x) = o(z) as © — 400.
From (32) it follows that

e o]

(o) In p(0) . In p(o)
> T e

[

for all 0 > 0, i. e. In p(o) < ®(o) for all ¢ > op. Therefore, by Lemma

2 estimate (29) is correct, and it remains for us to prove that

- [ 2 Pl

d
(o) o < 400,

g0

(33)
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Since

a+ﬁ*(0):a+m<

=0+ 0 o) - V(T o)) =T o)

and the function ®'(¢)/®(o) is non-decreasing, we have for some & =

£(0) € (¥(0), o)

7= ] 30) (o)
[ (0 L(0)) In F(@ (3} (T(0))
<cf ST I(0) o I(o)

_e/q)’(\ll_l(a))ln F(@' (W1 (¥ (o)) d¥ (o)
) 2T (0)) o(U~1(0))) (U=(o))

. 70 () In F(@'(V"1(0) &"()0(0) |

¥—1(a0)

T ®(0) In F(® (U (o))
el [ G w2

¥—1(a9)

O(p())

Since (¥(p(x))) = FoR from whence and (30) we get
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T

g [ @) I F@) o)
I<ell | p e e

z0)

oo
In F(x)
=eH / ———————dz < 4o0.
z®(¥(p(2)))
z0)
i. e. (33) holds and (32) and (28) are equivalent.

Now, suppose that (32) holds. Since the function ®'(¢)/®(0) is non-
() In (o)
®(0)
and increasing to +o0o on [og, +00). Therefore, there exits a continuous

and increasing to +oo on [zg, +00) function o(z) such that

decreasing on [0, +00), the function A(o) := is continuous

= "E,
P(o(x))
D
and, since in view of (32) [ ﬂclJ < +00, we have
50 2(0)

[_a NG
U[ @(o(m))d"(w)‘/ B(o(ay) ) < Foo

o0

© d
Let B(o) = [ W:i) Using L’Hopital’s rule we obtain

. . Zodx/(b(x) (o)
m Blo)elo) = lim gy = A0 Gy <+
Therefore,
sB(o(w) = TR b ()
o wlo@) _ o)

as £ — +o00 and
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o0 [e.o]

/B(a(az))dac = :cB(a(g;))\jo‘”—/de(a(x))

g0 g0

o0

= const —i—g[ mdd(&:) < +00.

From (7) it follows that

[e.o]

B dx 17 " () 1
B@_/(@ZH!@%WM_Hwﬂ

o

and, therefore,
[e.e]

dx
/(I)/(O'(ZL‘)) < +o0. (34)

o

Since In p(o(z)) > In f(z) + zo(z), we have

npol@) 1, L _
@) s T T L R T @) f(z)’
from whence we get 1 1
U(o(z)) < ;m T@)

For some & = (o) € [¥(0), o] we have

0<In®(c)—In & (¥(0)) = 2’/’((8 (o0 —¥(0))

_ ¥ 0(0) _ O _

1(§) (0~ ((9))* T
i. e. (o) =0(P'(¥(0))) as 0 — +00 and, thus,

@wu»SK@@w@mSA@(;mﬂ;),

where K = const > 0. From whence and (34) we get (31). The necessity
of (31) is proved.
Now we prove its sufficiency. At first we remark that the condition
v(x) T +00 as x — +oo implies (10), and (7) implies
oo oo
/da<1/¢”(0)da_ 1 < 4oo
(o) ~ hJ (¥(0))*  he'(00) '

o g0
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% d 1
Therefore, B(z) = xf WZ) 10asz — 400, B(z) < 7o () and in view
of (32)
/3(11 1>d <+ (35)
—In — ) dx 0.
z - fx)
Zo
As above, let v(o) be central point of the maximum of integrand. Since
v(z) := —(In f(x)) is continuous and increasing to +oo on [zg, +00),
as in the proof Theorem 1 we obtain o > In , and in view
v(o)  f(v(o))
of (35)
73( Y )</OOB< Lot >d1/( ) < 400, (36)
o)dv(o) < o :
v(e)  f(v(9))
oo g0
But - -
+o0 > /B(U)du(o) = B(U)V(U)‘:j—/V(U)B'(U)dU
oo g0
> const + / ;((Z)) do.
o0
Therefore,
T (o) In p(o) T 1
—————do = |1 d| ———
[ ey = oo (5
oo g0
const—i—]O /au(x)dx d L
- ®(0)
o0 0
= const + / g(((;))da < +00,
a0
i. e. (32) holds. The proof of Theorem 2 is complete. O

Choosing ®(c) = 2" (9 > 0, p > 1) for o > 0, from Theorem 2 we
obtain the following statement.

oo 1p(P=1/p 4
Corollary 1. Let F eV, [ ————In F(z)dr < +00 and f has reg-
x

o

o0
ular variation in regard to F. In order that [ oP~'e=¢% In I(0)do < +oc,
o
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it is necessary and in the case, when the function v(x) := —(In f(z))

is continuous and increasing to +0o on [rg, +00), it is sufficient that
o dx

J

a0 T(@)P~Lexp{or(z)P}

< 400, where r(x) is defined by equality (10).

Indeed, since (o) = 2" pooP~ !, the function ®'(0)/® (o) = pooP~?

" (0)® -1
is non-decreasing on [o(, +00) and W =1+ Zpo’p’ i e (7)
holds and @& satisfies the condition of Theorem 2. Clearly,

e?@P pop(x)P~1 =z, 1. e. @) = W. Therefore, ®(p(z)) =
eQ%(I)p — # and
pop(x)P!
2(w(p(o) = @ (o) - LA )~ (o) - L)

= exp{o (w00~ s ) } e {ovter (1- s )|

— e {opta) (1 Lo 0ot ™)) |

=exp {op(z)’ — (1+0(1))}
_1to() s
e pop(xp

! +:(1) exp {op(2)P}

xr — +00.

In z

1/p
But ¢(z) = (1 +0(1)) <Q> . Therefore,

(14+0(1))z
epol/PIn®P=/p 4

O(V(p(2))) =

oo 1p(P=1)/p
as ¥ — +oo and the condition [ 5
x

zo

T n F(x)dx < 400 implies
(30). Since now the conditions

/ap_le_go In I(o)do < +00

o

e0 dx

and < 400 are equivalent to conditions (28) and
o Tew o @)

(31) respectively, Corollary 1 is proved. O

Choosing p = 1, from Corollary 1 we obtain the following statement.
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®In F
Corollary 2. Let F eV, [ 1 ()

zo

dx < 400 and f has reqular varia-

o0
tion in regard to F. In order that [ e=%" In I(0)do < +o0, it is necessary
o
and in the case, when the function v(x) := —(In f(x))" is continuous and
o0

increasing to +00 on [xg, +00), it is sufficient that [ f(x)%/*dx < +ooc.

o

4. Belonging of Laplace-Stieltjes-type integrals to
a generalized convergence a(-class

As above, let F' € V, the function g is positive, increasing and con-
tinuous on [0, 400), and positive on [0, 4+00) function f is such that the
Laplace—Stietjes-type integral

/f g(rx)dF (x) (37)
0

exists for every r € [0, +00). If g(z) = e® then I(r) = I(r). The growth
of function I with respect to g1 investigated in [16].

We assume that g(z) = Z gr2¥ is an entire transcendental func-
tion and g > 0 for all £ > O and suppose that xyp > 1 is such that
f f(x ) > ¢ > 0. Then

/f g(rx)dF(z) > g(r)e. (38)

On the other hand, since function g is transcendental and g > 0 for
all k£ > 0 then the function In My(r) = In g(r) is logarithmically convex
and, thus,

~dln g(r)
Fg('l") = W /( +OO, r — +OO
Therefore, for 7 > 0 and » > 1 we have

(1+7)rz

In g((1 4+ 7)zr) —In g(rz) = / Ly(t)dIn t

rT

>Tg(ra)In(1+7) >Ty(x)In(1+7)
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and, thus, if uz(r) = max{f(x)g(rz) : > 0} is the maximum of inte-
grand, In F(z) < ¢qI'y(x) and In (1 + 7) > ¢ then

i g(rz)
O/f (1+7 m“)mdF(m)

[e.9]

o

< 1 < 1 ln1+7'dF

() [ 2Esdr (@) < (1) [ (@)
0 0

= ur((1+7)7) <T1 +1n(1+7) / F(z)e To@ ln(HT)dl“g(x))
0

[e.9]

< (14 7)r) (T1 +1In (1+7) / efg@’(““““)@clrg(x))

0
< Tops((1 +7)r), (39)

where T; = const > 0. Also we have
pp(r) = max {f(x) > grar)t x> O}
k=0

< Zmax{f(x):vk x> O}gkrk =G(r):= Zuj(k)gkrk, (40)

oln z

where py(o) = max{f(z)e : x > 0} is maximum of integrand of
oo

= [ f(x)e" M *dF (x).
0
Now we can prove the following theorem.

Theorem 3. Let a be a concave function on [xg, +00) and a(e®) € L,
B be positive continuously differentiable increasing to +o0o on [xg, +00)
function such that

O<h§(x§(/g§)—l)1n:c§fl<+oo, x> x, (41)

1
(In ) dx < 4+o00. Suppose that In F(x) = O(I'y(z) as z — +o0,

adf

MJ(k)gk
okt Dornt S 400 as k — oo and
9] +oo
> alh) ~ k= )3 ((aeps 1) 7H14) < e, ) = x et
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Then integral (37) belongs to the generalized convergence af-class if and
only if the function g belongs to the generalized convergence af3-class.

a(ln I(r
Proof. From (38) it follows that if f ;(rg))
70

dr < +oo then

Fotn g,

7 /6( )
0
On lhe (6] her hand from ( ) and (40) lt fOHOWS 'ha, I(T) < TgG((l—i—

7)r) and, therefore, f hl(I; ))dr < oo, if f W

[e.e]
Putting r = e in the power series G(r) = > Gir*, G = us(k)gr, we
k=0

dr < 4oo0.

obtain the Dirichlet series D(0) = G(e”) = 3. Gre*. Then

k=0
a(ln G(r)) a(ln D(0))
gwdr < 4o if and only 1f5£7

B =e 7 ince UB/(U) =0 M— Tom it fol-
B(o) = e ?B(e7). S 50) ( B(e) 1>,f (41) it fol

‘75(((7)) < H < 4o00. Easy to show that if ?) 0(1)

as £ — 400 then g € L°. Thus, f € L% Finally, if f /3( ) dr < 400
0 x

then [ g(—g)do < +o00. Thus, the functions of a and 3 (instead of 3)
00 g
satisfy the conditions of the theorem A.

do < 400, where

lowsthat 0 < h <

(In D
Since Ag — k and Gy /Grs1 /* +00, by Theorem A | 20 D(@))

s Bl

+o0 if and only if

i ) — o _1))51( 1nék)<+oo, Bl(x)zyw/;éz)- (43)

k=1

Since
+oo d +oo &t
= o
B1(z) = / ——— = [ ——= = [i(e"),
W= ) e ) s~
conditions (42) and (43) are equivalent. Theorem 3 is proved. O

In conclusion, we show that if, for example,

In f(z) < —a~t ( ) Inz, x>, (44)

1
Bl (z)
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then condition (42) can be replaced by the condition

) +oc0
k) — ah— D) () < o0, uta) = [ 27
> (ak) = alk D (") < oo i) = [ 505 (@)

T

%0 (1
Indeed, if [ mdr < 400 then
o B(r)

[ a(in g(t))
1> / iz aln g(r)m(r)

for all sufficiently large values of r, from whence In g(r) < a~1(1/B1(r)).
Therefore, by Cauchy inequality for all k we have

lngkglng(r)—klnrga_1< >—klnr, >

1
Bi(r)
Choosing 7 = 8 (1/a(k)) we obtain In g, < k — kB, ' (1/a(k)), i. e.

1

1 1

On the other hand, (44) implies

In pyj(o) =max{ln f(z)+olnxz: z >0}

1
<max{max{1n fl@)+olnaz: O<x>:c0}7max{—ocl <B ( )> Inz+olnx: x>x0}}
1 (z

= max {max(O(o) max { (7 - ™ (5;))) s oz by 4o,

(47)
If v;(0) is central point of the maximum of integrand of J(o) then,
1
since In (o) — 400 as o0 — +oo, from (47) we get

o—al <M> > 0,1 e vy(0) < By <a(la)> for ¢ > o,

because the function 3; is decreasing. Therefore, using (15), we obtain

Ingy(o) < (1+0(1)) /0:51‘1 (Ojt)) dt < (1+ o(1))oB; " <a(10)> , 0 — +00.

(48)



M. M. SHEREMETA, O. M. MULYAVA 277

Since By () =B1(e%), we have B, | (t)=In B7L(t), i.e. By (t)/B7 () —
0 as t | 0. Therefore, in view of (46) and (48)

In oy (k) _ KBy (1/a(k)
In(1/gx) = kB 1 alk) — k

— 0,k —>

and, thus,
1ln . = 1hﬂ 1 <1— In MJ(k)) = L+o(1) In i, k — o0
k- grpa(k) ko gk In (1/gx) k 9k

From hence it follows that

b1 ((owna) ) =7, (L) <5, (Fn 1)

= (1+0(1))3, (;ln glk> =(1+0(1))5 (914;_1/k> . k — oo,

because (as in the proof of Theorem 3) 3 € LY and, thus, 8, ((140(1))z) =
(1 + 0(1))B,(x) as # — +oo. Therefore, conditions (42) and (45) are
equivalent provided (44) holds.
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