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Abstract. We study the connection between η-quasisymmetric homo-
morphisms and K-quasiconformal mappings on n-dimensional smooth
connected Riemannian manifolds. The main results of our research are
presented in Theorems 2.6 and 2.7. Several conditions to the boundary
behavior of η-quasisymmetric homomorphisms between two arbitrary
domains with weakly flat boundaries and compact closures, QED and
uniform domains on the Riemannian manifolds are also obtained in view
of the above relations. In addition, the quasiballs, c-locally connected
domains and the corresponding results are also considered.
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1. Introduction

The modern aspects of Geometric Function Theory related to qua-
sisymmetric and quasiconformal mappings have been studied by many
mathematicians from several points of view. It is known that such kind
of mappings have interesting applications to the Ahlfors regular Loewner
spaces, to the problems of Riemannian surfaces (Ahlfors), to the modulus
of Riemannian surfaces (Teichmüller), to the classification of simply con-
nected Riemannian surfaces (Volkovyskii), etc. In this paper we restrict
ourselves to studying of Riemannian manifolds.
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The Riemannian manifolds theory. A Riemannian manifold
(M, g) is defined as a smooth n-dimensional connected manifold (n ≥
2) endowed with a Riemannian metric, i.e., a scalar product on each
tangent space TpM, which depends smoothly on the base point p. Let
x = (x1, . . . , xn) be local coordinates. A Riemannian metric is a positive
definite symmetric tensor field g = gij(x) defined on the local coordi-
nates and obeying the transition rule gij(x) = hkl(f(x))

∂fk

∂xi
∂f l

∂xj , where,
as usual, k, l = 1, . . . , n are the so-called dummy indices over which the
summation is performed. In what follows, the gij(x) are assumed to be
smooth. Note that detgij > 0, because gij is positive definite.

Let now [a, b] be a closed interval in R and let γ : [a, b] → M
be a piecewise smooth curve. The length of γ in local coordinates
(x1(γ(t)), ..., xn(γ(t))) is defined by

L(γ) :=

b∫
a

√
gij(x(γ(t))) ẋi(t)ẋj(t) dt,

where ẋi(t) := d
dt(x

i(γ(t))). The length is invariant under reparametriza-
tion (see, e.g., in [15]).

The geodesic distance d(p1, p2) between points p1 and p2 is the infi-
mum of the lengths of piecewise smooth curves joining p1 and p2 in M.
This distance function satisfies the usual axioms of metric space.

The volume element on M is determined by the invariant form in local
coordinates

dvg =
√
detgij dx

1...dxn.

It is invariant on M (see [15]). Note that gij(x) are defined only in a
coordinate chart, where we may write g = Σi,jgijdx

i ⊗ dxj .

For our purposes, the following fundamental facts are important (see,
e.g., Lemma 5.10 and Corollary 6.11 in [17]). For any point p of a Rieman-
nian manifold M, there exist its neighborhoods U and the corresponding
local coordinates in these neighborhoods, for which the geodesic spheres
centered at the indicated point are associated with Euclidean spheres
of the same radii centered at the origin of coordinates and a bundle of
geodesic curves originating from this point is associated with a bundle of
beams originating from the origin of coordinates. It is customary to call
these neighborhoods and coordinates normal.

From now on, D andD′ are domains in smooth connected Riemannian
manifolds (M, g) and (M′, g′) with geodesic distances d and d′, respec-
tively.
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Fix x ∈ M. Let expx : TxM → M be a diffeomorphism of a neighbor-
hood V of the origin in TxM and expx(V ) = U, where U is a neighbor-
hood of x on M. The map expx is called the exponential map. It has the
following properties:

(i) For each Y ∈ TxM, the geodesic γY is given by expx(Y ) := γY (1),
where γY denotes the unique geodesic from x with Y = dγ

dt (0);
(ii) expx is C∞ on TxM \ {0};
(iii) The differential of expx at the origin is the identity, cf. [17].
If Br(0) is such that Br(0) ⊂ V, we call expxBr(0) = Br(x) = B(x, r)

the normal ball (or geodesic ball) with center p and radius r.

The next important for us result can be found in [5, p. 189].

Theorem 1.1. A connected Riemannian manifold is a metric space with
the metric d(p, q) equals the infimum of the lengths of piecewise smooth
curves from p to q. Its metric space topology and manifold topology agree.

The following concept is extremely useful, since it allows us to extend
local Euclidean constructions of a manifold to global ones.

A partition of unity. A partition of unity, subordinated to the
cover {Ui}i∈I of a manifold M, is a collection φi : M → R of C∞ functions
(where I is an arbitrary index set, not assumed countable) such that

(i) 0 ≤ φi(x) ≤ 1 for any point x of M;
(ii) the collection of supports {suppφi}i∈I is locally finite, i.e. for any

x ∈ M there is a neighborhood which intersects with a finite number of
sets of this collection;

(iii)
∑

i φi ≡ 1 for any point x of M;
(iv) {suppφi} ⊂ {Ui} for all i.

Recall also that a topological space is paracompact if every open cover
has an open locally finite refinement (cf. [26]).

The next proposition is known (see [21, Corollary 1 on p. 979]).

Proposition 1.2. Every metric space is paracompact.

Formulate also the next result from [26, p. 9].

Lemma 1.3. Let X be a topological space which is locally compact (each
point has at least one compact neighborhood), Hausdorff, and second
countable (manifolds, for example). Then X is paracompact. In fact,
each open cover has a countable, locally finite refinement consisting of
open sets with compact closures.

The space (X, d, µ) is called α-regular by Ahlfors with α > 1, if there
exists a constant C ≥ 1 such that

C−1rα ≤ µ(B(x0, r)) ≤ Crα
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for all balls B(x0, r) = {x ∈ X : d(x0, x) < r} which have radius r <
diamX and are centered at the point x0 ∈ X. Is is known that the α-
regular spaces have a Hausdorff dimension α (see, e.g., [11, p. 61]). The
space (X, d, µ) is called regular by Ahlfors, if it is α-regular by Ahlfors
for some α ∈ (1,∞).

Recall now the statement, whose proof is given in [1].

Lemma 1.4. The Hausdorff dimension of domains on smooth Rieman-
nian manifolds (M, g) with respect to a geodesic distance coincides with
the topological dimension n. In addition, any smooth Riemannian man-
ifolds are locally n-regular by Ahlfors.

2. Quasisymmetric homeomorphisms and quasiconformal
mappings

The notion of quasisymmetry was introduced by L. V. Ahlfors and
A. Beurling. They studied the questions on continuation of homeomor-
phisms f : R1 → R1 to quasiconformal mappings of the upper half-plane
onto itself (see, e.g., [23, p. 128]). Their studies gave the necessary and
sufficient condition imposed on a function. This condition was used, in
turn, by J. A. Kelingos for the determination of quasisymmetric functions.
Then H. Renggli dealt with the theory of quasisymmetric mappings in the
two-dimensional case and considered mappings satisfying the condition
of boundedness of distortions of triangles. O. Lehto and K. I. Virta-
nen considered quasisymmetries for increasing embeddings f : △ → R1,
where △ ⊂ R1 is an interval, such that for some constant H, the in-
equality |f(a) − f(x)| ≤ H|f(b) − f(x)| with |a − x| ≤ |b − x| holds.
Later, the Finnish mathematicians P. Tukia and J. Väisälä noticed that
the definition given by H. Renggli can be extended to the case of general
metric spaces, which allowed them to assign the class of η-quasisymmetric
mappings. Some needed references can be found in [3].

Definition 2.1. Let η : [0,∞) → [0,∞) be a homeomorphism. A home-
omorphism f : D → D′ is called η-quasisymmetric (abbr., η-QS homeo-
morphism) if the inequality

d′(f(x), f(y))

d′(f(x), f(z))
≤ η

(
d(x, y)

d(x, z)

)
(2.1)

holds for any triple x, y, z ∈ D, x ̸= z, compare, for example, with [23].

Recall now the definition of quasiconformality following [16].
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Figure 1.

Given a homeomorphism f from a metric space X to a metric space
Y, then for x ∈ X and r > 0 set

Lf (x, r) := sup{d′(f(x), f(y)) : d(x, y) ≤ r},

lf (x, r) := inf{d′(f(x), f(y)) : d(x, y) ≥ r}

and
Hf (x, r) :=

Lf (x, r)

lf (x, r)
, (2.2)

see the Figure 1.

Definition 2.2. A homeomorphism f : X → Y is quasiconformal if
there exists a constant K <∞ such that

Hf (x) := lim sup
r→0

Hf (x, r) ≤ K (2.3)

for all x ∈ X. We then say that f is K-quasiconformal (abbr., K-qc
homeomorphism), cf. [12].

For the reader convenience, formulate now some auxiliary results.

Theorem 2.3. [22, p. 527] Let X and Y be locally compact, connected,
α-regular metric spaces (α > 1) and let f : X → Y be an η-quasisym-
metric homeomorphism. There exists a constant C depending only on η,
α and the regularity constants of X and Y so that

1

C
Mα(Γ) ≤Mα(f(Γ)) ≤ CMα(Γ)

for all curve families Γ in X.
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Here Mα(Γ) denotes the α-modulus of the curve family Γ (the formal
definition see in Section 3).

Lemma 2.4. [16, p. 101] Suppose that n ≥ 2, that G and G′ are open
sets in Rn and that f : G → G′ is a homeomorphism. If f is locally
η-QS, then f is K-qc with K = η(1)n−1. If f is K-qc and B(x, ar) ⊂ G
for some a > 1, then f | B(x, r) is η-QS with η depending only on K
and a.

Theorem 2.5. [11, p. 92] A homeomorphism f : D → D′ between do-
mains in Rn, n ≥ 2, is K-qc if and only if there is η such that f is η-QS
in each ball B

(
x, 12dist(x, ∂D)

)
for x ∈ D. The statement is quantitative

involving K, η, and the dimension n.

The following theorem gives us the connection between η-quasisym-
metric homeomorphisms andK-quasiconformal mappings on Riemannian
manifolds.

Theorem 2.6. Let D and D′ be domains in smooth connected Rieman-
nian manifolds (M, g) and (M′, g′) with geodesic distances d and d′, re-
spectively. Then the following statements hold.

(i) If a homeomorphism f : D → D
′
is an η-QS, then f is a K-qc map-

ping.

(ii) If a homeomorphism f : D → D
′
is a K-qc mapping, then f is a

locally η-QS homeomorphism in D.

Proof. (i) Let D and D
′
be two arbitrary domains in M and M′

, re-
spectively, and let f : D → D

′
be an η-QS homeomorphism. Since the

Riemannian manifolds are connected and locally n-regular by Ahlfors,
see Lemma 1.4, we use Theorem 1.1 and move to metric spaces. Then,
using Theorem 2.3, we claim that f is a K-qc mapping in D.

(ii) Consider further M as paracompact, in view of Theorem 1.1 and
Proposition 1.2. Choose an open atlas {Ui}i∈I in M. It is well known
that each open atlas {Ui}i∈I inM has a countable locally finite refinement
(atlas) {Vk}, 1 ≤ k ≤ N, in M (see Lemma 1.3). Let {φk} be a partition
of unity subordinated to this atlas such that {suppφk} ⊂ {Vk}, by virtue
of the paracompactness of M (see, e.g., Prop. 3.4.4 in [6]). Since f is a K-
quasiconformal mapping on D, f is a locally K-quasiconformal mapping
on any chart Vk1 , . . . , Vkl . Note that the number of charts Vk1 , ..., Vkl ,
1 ≤ l ≤ N, is finite, since the atlas is a locally finite cover. Choose
an arbitrary normal neighborhood U(x0) ⊂ D whose closure U(x0) is
compact, where U(x0) = expx0

W and W ⊂ Tx0M, then U(x0) intersects
only finitely many Vk1 , . . . , Vkl , by virtue of the locally finiteness of {Vk}.
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Note that f is a K-quasiconformal mapping in any ball B(x0, 2r) ⊂
U(x0), r = λ d(x, ∂D), 0 < λ < 1/2. Then, by Lemma 2.4 (for a = 2),
we see that f is an η-QS homeomorphism, with η depending only on
K, in the ball B(x0, r) (cf. Theorem 2.5). We obtain that f is a locally
η-QS homeomorphism in D.

Note that such approach can be successfully extended to wider classes
of mappings in both metric terms [9] and modulur ones [10].

Let f : D → D′ be a homeomorphism. Define the volume derivative

µ′f (x) := lim
r→0

Hn(f(B(x, r)))

Hn(B(x, r))
, (2.4)

which exists almost everywhere in D, belongs to L1
loc(D) and∫

E
µ′f (x)dH

n(x) ≤ Hn(f(E)) (2.5)

for each measurable set E ⊂ D (see, e.g., (7.7) in [12]).
Set

Lf (x) := lim sup
r→0

Lf (x, r)

r
. (2.6)

Taking into account Lemma 4.4 from [16], we claim that

Theorem 2.7. Let D and D′ be domains in smooth connected Rieman-
nian manifolds (M, g) and (M′, g′) with geodesic distances d and d′, re-
spectively, and let a homeomorphism f : D → D′ be K-quasiconformal
in any geodesic ball B(x0, r) ⊂ U(x0) with r = λ d(x0, ∂D), 0 < λ < 1.
Then f is K-quasiconformal in D, the function Lf is Borel measurable,
Lf ∈ Ln

loc(D), and the inequality

C−2µ′f (x) ≤ [Lf (x)]
n ≤ C2[Hf (x)]

nµ′f (x) (2.7)

holds for almost every x ∈ D.

Proof. It is well known that every connected Riemannian manifold M is
a metric space (see Theorem 1.1). Using now Proposition 1.2, we claim
that M is paracompact, that guarantees us the existence of a partition of
unity (see, e.g., [6, Prop. 3.4.4]). Moreover, every open cover {Ui}i∈I in
M has a countable, locally finite refinement {Vk}, 1 ≤ k ≤ N, in M (see
Lemma 1.3). Denote the coordinates on each chart by xαi , α = 1, . . . , n.

Let now {φk} be a partition of unity, which subordinate to this at-
las, {suppφk} ⊂ {Vk}. Using this partition we glue the charts of at-
las {Vk}, 1 ≤ k ≤ N, in M. In view of the local finiteness of the at-
las, consider the finite number of the maps Vkl , 1 ≤ l ≤ N. Let now
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U(x0) = expx0(W ), W ⊂ Tx0M,U ⊂ D, be an arbitrary normal neigh-
borhood, whose closure U(x0) is compact. Thus, in view of the local
finiteness of the atlas {Vk}, this neighborhood U(x0) intersects only with
finite number of Vk1 , . . . , Vkl , 1 ≤ l ≤ N. Let B(x0, r) ⊂ U(x0) with
r = λ d(x0, ∂D), 0 < λ < 1 is an arbitrary geodesic ball, then f
is K-quasiconformal in B(x0, r). This means that for any xk ∈ {Vk},
k = 1, . . . , N, lim sup

r→0
Hf (xk, r) ≤ K < ∞, under passing from chart to

chart, and

Hf (x, r) =

{ ∑N
k=1Hf (xk, r) · φk(x) for x ∈ {Vk},

0 otherwise.
(2.8)

Clearly, in the normal neighborhood U(x0) we can rewrite equality
(2.8) as Hf (x, r) =

∑l
p=1Hf (xkp , r) · φkp .

Since 0 ≤ φk ≤ 1 and
∑N

k=1 φk = 1, there exists an index j such that
φj(x) > 0 and Hf (x, r) ≥ Hf (xj , r) · φj , i.e., without loss of generality,
one concludes thatHf (x, r) = c·Hf (xj , r)·φj , where c > 0 is an arbitrary
constant. Letting to lim sup as r → 0 in both sides, we obtain that
f : D → D′ is a K-quasiconformal mapping on D.

Prove now that the function Lf (see (2.6)) is Borel measurable and
the inequality (2.7) holds for almost every x ∈ D. The Borel measurabil-
ity of Lf follows from the fact that we can present a compact subset E
of D as

E =
∪
i

Ai = {x ∈ E : Lf (x) < t},

where t > 0 and the sets

Ai =

{
x ∈ E : d′(f(x), f(y)) ≤

(
t− 1

i

)
d(x, y)

}
are closed by continuity of f for all 0 < d(x, y) < d(E,∂D)

i and y ∈ E.

Let 0 < r < d(x, ∂D). Then, by Lemma 1.4,

Hn(f(B(x, r)))

Hn(B(x, r))
≤
CLn

f (x, r)

C−1rn
= C2

(
Lf (x, r)

r

)n

,

i.e.,

C−2H
n(f(B(x, r)))

Hn(B(x, r))
≤
(
Lf (x, r)

r

)n

. (2.9)

In view of (2.2) and Lemma 1.4, we have now
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(
Lf (x, r)

r

)n

=

(
Lf (x, r)

lf (x, r)

)n( lf (x, r)
r

)n

≤ C2

(
Lf (x, r)

lf (x, r)

)n Hn(f(B(x, r)))

Hn(B(x, r))

= C2Hn
f (x, r)

Hn(f(B(x, r)))

Hn(B(x, r))
. (2.10)

Hence, taking into account the inequalities (2.9) and (2.10), the claim
inequality (2.7) follows by letting r to zero (cf., e.g., [16, Lemma 4.4]).

It remains to prove that Lf ∈ Ln
loc(D). Recall that if a homeomor-

phism f : D → D
′
is a K-qc mapping, then f is a locally η-QS home-

omorphism in D (see above Theorem 2.6). Thus, [Lf (x)]
n ≤ Cηµ

′
f (x)

holds for any geodesic ball B(x0, r) ⊂ D (see (7.10) in [12]). Recall also
that the Hausdorff measure Hn(f(E)) <∞ for any continuous mapping
f (see, [7, subsection 2.2.2] with Theorem 1.1). Thus, in light of the
above and by inequality (2.5),

∫
E

[Lf (x)]
n dHn ≤ Cη

∫
E

µf (x) dH
n ≤ CηH

n(f(E)) <∞,

and Lf ∈ Ln
loc(D).

Remark 2.8. [16, Rem. 3.1] If a homeomorphism f is η-quasisymmet-
ric, then

Hf (x, r) ≤ η(1). (2.11)

Corollary 2.9. Let D and D′ be domains in smooth connected Rie-
mannian manifolds (M, g) and (M′, g′) with geodesic distances d and d′,
respectively, and let a homeomorphism f : D → D′ be K-quasiconformal
in any geodesic ball B(x0, r) ⊂ U(x0) with r = λ d(x0, ∂D), 0 < λ < 1.
Let also η : [0,∞) → [0,∞) be a homeomorphism. Then the inequality

C−2µ′f (x) ≤ [Lf (x)]
n ≤ C2µ′f (x)[η(1)]

n (2.12)

holds for almost every x ∈ B(x0, r).

Proof. Since a homeomorphism f is K-quasiconformal in any geodesic
ball B(x0, r) ⊂ U(x0) with r = λ d(x0, ∂D), 0 < λ < 1, then, by
Theorem 2.7, f is K-quasiconformal in D, and, by Theorem 2.6, f is
a locally η-QS homeomorphism in D. Taking into account Remark 2.8,
inequality (2.7) and formula (2.3), we obtain the inequality (2.12).
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Corollary 2.10. Let D and D′ be domains in smooth connected Rie-
mannian manifolds (M, g) and (M′, g′) with geodesic distances d and d′,
respectively, and let a homeomorphism f : D → D′ be an η-QS mapping.
Then (2.12) holds for almost every x ∈ D.

Proof. Since a homeomorphism f is an η-QS mapping, then, by Theo-
rem 2.6, f is a K-qc mapping. Thus, to obtain the desired inequality, we
can apply now Theorem 2.7 and Remark 2.8.

3. Boundary behavior of η-quasisymmetric
homeomorphisms between Riemannian manifolds

In connection with a problem on quasiconformal extension, F. W. Geh-
ring and O. Martio introduced in 1985 a class of space domains for which
the quasiconformality of mappings is equivalent to the quasi-Möbius prop-
erty (see [8]). It is so-called quasiextremal distance domains, briefly QED
domains. This concepts is based on the modulus of a path family. So,
they proved that a c-uniform domain is c1-QED with c1 = c1(c, n). Re-
call that Martio and Sarvas introduced the class of uniform domains in
1979. In particular, any uniform domain is contained in an A-QED class
with some A depending only on n and the parameters of uniformity. For a
planar simply connected domain, the properties of QED and uniformity
are equivalent to the condition that ∂D is a quasicircle. An interesting
investigation of the structure of A-QED domains was developed by S.
Yang. He gave a complete description of 1-QED and 2-QED domains
in Rn. In particular, a Jordan domain in Rn is 2-QED if and only if it
is a ball. Moreover, many other characterizations of uniform domains
have been established. Uniform domains can be understood as a class
of domains developed in the context of generalizing Riemann Mapping
Theorem for quasiconformal mappings in Rn with n ≥ 3, a question that
still remains open. This class of domains has numerous geometric and
function theoretic properties that make it useful for many fields of the
modern Mathematical Analysis (see, for example, [23]).

Recently, the boundary behavior of mappings in metric spaces and on
Riemannian manifolds is studied by many specialists in Function Theory.
Some interesting research directions see, for example, in links from papers
[1–4,13,14] and [20].

Recall now some necessary definitions.

Let Γ = {γ} be a family of some curves on an n–dimension Rieman-
nian manifold (M, g). We say that a measurable by Borel nonnegative
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function ρ : M → [0,∞] is admissible for Γ, if∫
γ

ρ ds ≥ 1

for every locally rectifiable curve γ ∈ Γ. Here ds corresponds to the
natural parameter of the arc lengths on a curve γ, calculated with respect
to the geodesic distance d.

The modulus of a family of curves Γ is defined by

M(Γ) := inf
ρ ∈ adm Γ

∫
M

ρndvg.

For the sets A,B and C on the manifold (M, g) by the symbol
∆(A,B;C) we define the set of all curves γ : [a, b] → M, which join
A and B in C, i.e. γ(a) ∈ A, γ(b) ∈ B and γ(t) ∈ C for all t ∈ (a, b).

The following definitions can be found in [18].
We say that the boundary of the domain D is weakly flat at the point

x0 ∈ ∂D, if for every number P > 0 and every neighborhood U of x0
there is its neighborhood V ⊂ U, such that

M(∆(E,F ;D)) ≥ P

for every continua E and F in D, crossing ∂U and ∂V.
The boundary of the domain D is weakly flat, if the corresponding

property takes place at every point of the boundary.
We also say that the domain D is uniform, if there are the constants

a and b such that every pair of points x1 and x2 in D can be joined by
a rectifiable curve γ in D with l(γ) ≤ a d(x1, x2), min(s, l(γ) − s) ≤
b dist(γ(s), ∂D), where γ is parameterized by the length s.

The domain D is locally connected at a point x0 ∈ ∂D, if for every
neighborhood U of x0 there is its neighborhood V ⊆ U, such that V ∩D
is connected (see, e.g., [18]).

Recall (see, e.g., [23]) that a set D in Rn is c-locally connected, if
there exists a constant c ∈ (1,∞) with the following property. For each
x0 ∈ Rn and r > 0,
(i) points in D ∩Bn(x0, r) can be joined in D ∩Bn(x0, cr) and
(ii) points in D \Bn(x0, r) can be joined in D \Bn(x0, r/c).

In particular, if D is c-locally connected and f : Rn → Rn is K-
quasiconformal, then f(D) is c′-locally connected, where c′ depends only
on n, c, and K (see [18, p. 52]).
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Following [23], we say that a domain D is of quasiextremal distance,
abbr. QED domain (or, more precisely, A-QED domain), if

M(∆(E,F ;M)) ≤ A ·M(∆(E,F ;D))

for some A ∈ [1;∞) and any continua E and F in D.

Combining Theorem 2.6 with the boundary behavior theorems on
quasiconformal mappings (see, e.g., [19, 25]), and using the Lemma 1.4,
we obtain the following results.

Theorem 3.1. Suppose that D is A-QED and D′ is c′-locally connected.
If f : D → D

′
is an η-QS homeomorphism, then f has a homeomorphic

extension to D.

Corollary 3.2. If D and D′ are A-QED domains and f : D → D
′
is

an η-QS homeomorphism, then f has a homeomorphic extension to D.

The following result can be found in [4, Prop. 3].

Proposition 3.3. Let a domain D be uniform at some point x0 ∈ ∂D.
Then D is an A-QED domain at the point x0 for some A ∈ [1,∞).

Combining Proposition 3.3 with Theorem 3.1 and Corollary 3.2 we
obtain the following results.

Theorem 3.4. Suppose that D is a uniform domain and D′ is c′-locally
connected. If f : D → D

′
is an η-QS homeomorphism, then f has a

homeomorphic extension to D.

Corollary 3.5. If D and D′ are uniform domains and f : D → D
′
is

an η-QS homeomorphism, then f has a homeomorphic extension to D.

Similarly [23], we say that a domain D is a K-quasiball if D is the
image of the unit ball Bn by some K-quasiconformal mapping f : M →
M′.

Two-dimensional quasiballs are called quasidisks, and they play an
important role in several fields. For a simply connected proper subdo-
main of R2, the properties of the K-quasidisk, c-uniform and A-QED are
quantitatively equivalent.

Following the diagram in [23, p. 122], we have

Proposition 3.6. Let D be a K-quasiball domain at some point x0 ∈
∂D. Then D is an uniform domain at the point x0.
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Theorem 3.7. Suppose that D is a K-quasiball domain and D′ is c′-
locally connected. If f : D → D

′
is an η-QS homeomorphism, then f

has a homeomorphic extension to D.

Corollary 3.8. If D and D′ are K-quasiball domains and f : D → D
′

is an η-QS homeomorphism, then f has a homeomorphic extension to
D.

The following results can be found in [4].

Proposition 3.9. [4, Cor. 1] Uniform and QED domains on Rieman-
nian manifolds M have weakly flat boundaries.

Proposition 3.10. [4, Cor. 2] Uniform and QED domains on Rieman-
nian manifolds M are locally connected on the boundary.

Combining Propositions 3.9 and 3.10 with Theorem 2.6, we obtain
the following results.

Theorem 3.11. If f : D → D′ is an η-QS homeomorphism, ∂D is
weakly flat, D′ is locally connected on the boundary and D′ is compact,
then f admits a continuous extension f : D → D′.

Theorem 3.12. If f : D → D
′
is an η-QS homeomorphism, and D and

D′ have weakly flat boundaries and compact closures, then f admits a
homeomorphic extension f : D → D′.
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