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1. Introduction, classes of functions and statement of
main results

Recently the author presented in [13] a new approach to solving the
classical coefficient problems on various classes of holomorphic functions,
not necessarily univalent. This approach involves the deep analytic and
geometric features of Teichmüller spaces, especially the Bers isomorphism
theorem for Teichmüller spaces of punctured Riemann surfaces.

Estimating holomorphic functionals depending on the Taylor coeffi-
cients of univalent holomorphic functions is important in various geomet-
ric and physical applications of complex analysis.

In the present paper, we provide new applications of this approach
and extend the results of [13] to more general classes of functions.

1.1. We start with the general collection Ŝ(1) of univalent functions on
the unit disk D = {|z| < 1} which is the completion in the topology of
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locally uniform convergence on D of the set of univalent functions

w(z) = a1z + a2z
2 + . . . with |a1| = 1,

having quasiconformal extensions across the unit circle S1 = ∂D to the
whole sphere Ĉ = C ∪ {∞}, which satisfy w(1) = 1.

Equivalently, this collection is a disjunct union

Ŝ(1) =
∪

−π≤θ<π

Sθ(1),

where Sθ(1) consists of univalent functions w(z) = eiθz+ a2z
2+ . . . with

quasiconformal extensions to Ĉ satisfying w(1) = 1 (also completed in the
indicated weak topology). In the general case (for the limit functions of
sequences of functions with qusiconformal extension) the equality w(1) =
1 must be understand in terms of the Carathéodory prime ends.

This family is closely related to the canonical class S of univalent
functions w(z) on D normalized by w(0) = 0, w′(0) = 1. Every w ∈ S
has its representative ŵ in Ŝ(1) (not necessarily unique) obtained by pre
and post compositions of w with rotations z 7→ eiαz about the origin,
related by

wτ,θ(z) = e−iθw(eiτz) with τ = arg z0, (1)

where z0 is a point for which w(z0) = eiθ is a common point of the unit
circle and the boundary of domain w(D).

This implies, in particular, that the functions conformal in the closed
disk D are dense in each class Sθ(1). Such a dense subset is formed, for
example, by the images of the homotopy functions [f ]r(z) = 1

rf(rz) with
real r ∈ (0, 1) combined with rotations (1).

As is shown by Lemma 1 below, any function w(z) from Ŝ(1) is holo-
morphic in the disk D (has there no pole). Their Schwarzian deriva-
tives

Sw(z) =

(
w′′(z)

w′(z)

)′
− 1

2

(
w′′(z)

w′(z)

)2

, z ∈ D,

belong to the complex Banach space B of hyperbolically bounded holo-
morphic functions φ (more precisely, of holomorphic quadratic differen-
tials φ(z)dz2 on D with the norm

∥φ∥B = sup
D
λ−2
D (z)|φ(z)|,

where λD(z) = 1/(1 − |z|2). Accordingly, λD(z)|dz| is the hyperbolic
metric on D of Gaussian curvature −4. This space B is dual to the space
A(D) of integrable holomorphic functions on D with L1 norm.
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Every φ ∈ B is the Schwarzian derivative Sw of a locally univalent
function f(z) in the disk D determined (up to a Möbius map of the sphere
Ĉ) from the nonlinear differential equation

(w′′/w′)′ − (w′′/w′)2/2 = φ,

or equivalently, as the ratio w = η2/η1 of two linearly independent solu-
tions of the linear equation 2η′′ + φη = 0 in D.

The derivatives Sw of quasiconformally extendable functions w from
any class Sθ(1) fill in the space B a path-wise bounded domain modelling
the universal Teichmüller space T. We identify the space T with this
domain. This allows one to consider the Taylor coefficients of functions
w and of their Schwarzians as holomorphic functions on the space T.

1.2. Let X be a rotationally invariant subclass of Ŝ(1) obtained by
completion in the topology of locally uniform convergence in D of its
dense subset X 0 of quasiconformally extendable functions. The rotational
invariance means that X contains any its function w with all its pre and
post rotations about the origin.

Assume also that this class satisfies the following two conditions:
(a) openness, which means that the corresponding collection of the

Schwarzians Sw of w ∈ X 0 determines in the space T a complex Banach
submanifold (of finite or infinite dimension), which we denote by XT;

(b) variational stability, which means that for any quasiconformal
deformation h of a functions w ∈ X 0 with Beltrami coefficients µh sup-
ported in the complementary domain of w(D) the composition h ◦ w|D
also belongs to X 0.

In fact, we shall use only a special type of such quasiconformal defor-
mations.

We associate with such a class X the quantity

a2(X ) = max{|a2(w)| : w ∈ X} (2)

and the set of rotations

RX = {w0,τ,θ(z) = e−iθw0(e
iτz)}, (3)

where w0 is one of the maximizing functions for a2 on X , i.e., with
|a2(w0)| = a2(X ).

Consider on X the rotationally invariant functionals

J(w) = J(am1 , . . . , ams) : X → C, (4)

which are polynomials of a distinguished set of coefficients of functions
w ∈ X .
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For such classes of univalent functions and functionals, we have the
following general theorem, which completely describes the extremal func-
tions of these functionals.

Theorem 1. Any rotationally invariant polynomial functional (4), whose
zero set ZJ = {w ∈ Ŝ : J(w) = 0} is separated from the set (3), is
maximized on the class X only by functions w0,τ,θ ∈ RX .

In other words, any extremal function w0 of any homogeneous (ro-
tationally invariant) coefficient functional J on a rotationally invariant
and variationally stable class X must be simultaneously maximal for the
second coefficient a2 on this class, unless J(w0) = 0.

All assumptions of this theorem on the class X and the functional J
are essential and cannot be omitted. This will be illustrated on examples
in the last section.

1.3. The following two classes of univalent functions are of special inter-
est.

First, let X be the canonical class S of univalent functions w(z) =

z +
∞∑
2
anz

n on D with w(0) = 0, w′(0) = 1. The classical result for this

class states |a2| ≤ 2, with equality only for the Koebe function

κ0(z) =
z

(1− z)2
= z +

∞∑
2

nzn (5)

mapping the unit disk onto the complement of the ray {w = −t : 1/4 ≤
t ≤ ∞}, and for the rotations κθ(z) = e−iθκ0(e

iθz) of this function.
In this case, Theorem 1 implies an alternate and direct proof of de

Branges theorem solving the Bieberbach conjecture that |an| ≤ n for all
f ∈ S (see [3, 8, 13]), and moreover, Theorem 1 yields that the Koebe
function (5) is extremal for all coefficient functionals of type (4).

The second case concerns the collections X (Γ) of univalent functions
w(z) on D compatible with the hyperbolic Fuchsian groups Γ acting on
D. This means that the maps

wγ = w ◦ γ ◦ w−1, γ ∈ Γ,

are the Moebius transformations of the sphere Ĉ, and the group Γ′ =
wΓw−1 is a discrete subgroup the Moebius group Mob(Ĉ).

As a consequence of Theorem 1, one obtains for such collections the
following result.
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Theorem 2. (i) For every Fuchsian group Γ and any homogeneous poly-
nomial functional (4) on X (Γ) ⊂ T satisfying the assumptions of Theo-
rem 1, any its maximizing function w0(z) must simultaneously maximize
the second coefficient a2(w) on this class.

The rotations connecting the extremal functions of the functional (4)
correspond to conjugation of both groups Γ and w0Γw

−1
0 by elements of

Mob(Ĉ).

This theorem opens ways to investigations of extremal problems for
quasiconformal deformations of Fuchsian groups.

One of the interesting open questions here is, for which groups Γ
and extremals w0, the group w0Γw

−1
0 is a totally degenerated functional

group, i.e., such that its set of discontinuity Ω(w0Γw
−1
0 ) is a simply con-

nected domain (dense in Ĉ).

1.4. As was mentioned above, the proof of Theorem 1 involves the deep
results of Teichmüller space theory. The functional J is lifted from X
to the the corresponding submanifold XT in the Teichmüller space T1 of
the punctured disk D∗ = {0 < |z| < 1}. This space is biholomorphically
equivalent to the Bers fiber space F(T) over the universal Teichmüller
space T = Teich(D) (see [2]). This generates a holomorphic functional
J (φ, t) on the image of XT in F(T) covering J , with the same range
domain as the initial finctional J . Here φ = Sw ∈ X are the Schwarzian
derivatives of the initial univalent functions, while the second variable t
runs over the fiber domain wφ(D) defined by φ .

A crucial step in the proof is to maximize |J (φ, t)| over φ by a fixed
t.

2. A glimpse to Teichmüller spaces

We briefly recall some needed results from Teichmüller space theory
in order to prove our theorems; the details can be found, for example,
in [2, 5, 16].

2.1. The universal Teichmüller space T = Teich(D) is the space
of quasisymmetric homeomorphisms of the unit circle S1 factorized by
Möbius maps; all Teichmüller spaces have their isometric copies in T.

The canonical complex Banach structure on T is defined by factor-
ization of the ball of the Beltrami coefficients (or complex dilatations)

Belt(D)1 = {µ ∈ L∞(C) : µ|D∗ = 0, ∥µ∥ < 1}

vanishing on the complementary disk D∗ = {z ∈ Ĉ : |z| > 1}.
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The coefficients µ1, µ2 ∈ Belt(D)1 are called equivalent if the corre-
sponding quasiconformal maps wµ1 , wµ2 (solutions to the Beltrami equa-
tion ∂zw = µ∂zw with µ = µ1, µ2) coincide on the unit circle S1 = ∂D∗

(hence, on D∗). Such µ and the corresponding maps wµ are called T-
equivalent. The equivalence classes [wµ]T are in one-to-one correspon-
dence with the Schwarzian derivatives Swµ(z), z ∈ D∗, which belong to
the space B = B(D∗) of hyperbolically bounded holomorphic functions
on the disk D∗ with norm

∥φ∥B = sup
D∗

(|z|2 − 1)2|φ(z)|.

Note that φ(z) = O(|z|−4) as z → ∞.
This space is dual to the Bergman space A1(D∗), a subspace of L1(D∗)

formed by integrable holomorphic functions (quadratic differentials
φ(z)dz2 on D), since every linear functional l(φ) on A1(D) is represented
in the form

l(φ) = ⟨ψ,φ⟩D∗ =

∫∫
D∗

(|z|2 − 1)2ψ(z)φ(z)dxdy

with a uniquely determined ψ ∈ B(D∗).
The Schwarzians Swµ(z) with µ ∈ Belt(D)1 range over a bounded

domain in the space B = B(D∗). This domain models the space T. It
lies in the ball {∥φ∥B < 6} and contains the ball {∥φ∥B < 2}. In this
model, the Teichmüller spaces of all hyperbolic Riemann surfaces are
contained in T as its complex submanifolds.

The factorizing projection

ϕT(µ) = Swµ : Belt(D)1 → T

is a holomorphic map from L∞(D) to B. This map is a split submersion,
which means that ϕT has local holomorphic sections (see, e.g., [4, 5]).

Both equations Sw = φ and ∂zw = µ∂zw (on D∗ and D, respectively)
determine their solutions up to a Möbius transformation of Ĉ. So ap-
propriate normalization of solution wµ(z) (for example, fixing the points
1, i,−1 or other three points on the unit circle), provides uniqueness of
solution of either equation, and moreover, then the values wµ(z0) at any
point z0 ∈ C \ {1, i,−1} and the Taylor coefficients b1, b2, . . . of wµ ∈ Σθ

depend holomorphically on µ ∈ Belt(D)1 and on Swµ ∈ T. Later we shall
use another normalization which also insures the needed uniqueness and
holomorphy.

2.2. The points of Teichmüller space T1 = Teich(D∗) of the punctured
disk D∗ = {0 < |z| < 1} are the classes [µ]T1 of T1-equivalent Beltrami
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coefficients µ ∈ Belt(D)1 so that the corresponding quasiconformal auto-
morphisms wµ of the unit disk coincide on both boundary components
(unit circle S1 = {|z| = 1} and the puncture z = 0) and are homotopic on
D\{0}. This space can be endowed with a canonical complex structure of
a complex Banach manifold and embedded into T using uniformization.

Namely, the disk D∗ is conformally equivalent to the factor D/Γ, where
Γ is a cyclic parabolic Fuchsian group acting discontinuously on D and
D∗. The functions µ ∈ L∞(D) are lifted to D as the Beltrami (−1, 1)-
measurable forms µ̃dz/dz in D with respect to Γ, i.e., via (µ̃ ◦ γ)γ′/γ′ =
µ̃, γ ∈ Γ, forming the Banach space L∞(D,Γ).

We extend these µ̃ by zero to D∗ and consider the unit ball Belt(D,Γ)1
of L∞(D,Γ). Then the corresponding Schwarzians Swµ̃|D∗ belong to T.
Moreover, T1 is canonically isomorphic to the subspace T(Γ) = T∩B(Γ),
where B(Γ) consists of elements φ ∈ B satisfying (φ ◦ γ)(γ′)2 = φ in D∗

for all γ ∈ Γ.
Due to the Bers isomorphism theorem, the space T1 is biholomorphi-

cally isomorphic to the Bers fiber space

F(T) = {(ϕT(µ), z) ∈ T× C : µ ∈ Belt(D)1, z ∈ wµ(D)}

over the universal space T with holomorphic projection π(ψ, z) = ψ
(see [2]).

This fiber space is a bounded hyperbolic domain in B × C and rep-
resents the collection of domains Dµ = wµ(D) as a holomorphic family
over the space T. For every z ∈ D, its orbit wµ(z) in T1 is a holomorphic
curve over T.

The indicated isomorphism between T1 and F(T) is induced by the
inclusion map j : D∗ ↪→ D forgetting the puncture at the origin via

µ 7→ (Swµ1 , wµ1(0)) with µ1 = j∗µ := (µ ◦ j0)j′0/j
′
0, (6)

where j0 is the lift of j to D.
By Koebe’s one-quarter theorem, for any univalent function W (z) =

z+b0+b1z
−1+. . . in D∗, the boundary of domain W (D∗) is located in the

disk {|w−b0| ≤ 2}. If W (z) ̸= 0 in D∗, its inversion w(z) = z+a2z
2+ . . .

is univalent in D, and b0 = −a2 satisfies |b0| ≤ 2. Using the maps W
with quasiconformal extensions, one gets by the Bers theorem that the
indicated domains Dµ are filled by the admissible values of Wµ(0); all
these domains are located in the disk {|W | ≤ 4}.

In the line with our goals, we slightly modified the Bers construction,
applying quasiconformal maps Fµ of D∗ admitting conformal extension
to D∗ (and accordingly using the Beltrami coefficients µ supported in the
disk) (cf. [10]). These changes are not essential and do not affect the
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underlying features of the Bers isomorphism (giving the same space up
to a biholomorphic isomorphism).

The Bers theorem is valid for Teichmüller spaces T(X0 \ {x0}) of
all punctured hyperbolic Riemann surfaces X0 \ {x0} and implies that
T(X0 \ {x0}) is biholomorphically isomorphic to the Bers fiber space
F(T(X0)) over T(X0).

Note also that every Teichmüller space T(X) is a complete metric
space with intrinsic Teichmüller metric τT(·, ·) defined by quasiconformal
maps. By the Royden–Gardiner theorem, this metric is equal the hyper-
bolic Kobayashi metric dT(·, ·) determined by the complex structure on
this space (see, e.g., [4,5,18]). In other words, the Kobayashi–Teichmüller
metric is the maximal invariant metric on T(X).

3. Underlying lemma

We start with the following lemma, which ensures the existence of
univalent functions in the disk with quasiconformal extension satisfying
the prescribed normalization of classes Sθ(1) and some other conditions.
It concerns the solutions of the Beltrami equation ∂zw = µ(z)∂zw on C
with coefficients µ supported in the disk D∗, i.e., from the ball

Belt(D∗)1 = {µ ∈ L∞(C) : µ|D = 0, ∥µ∥ < 1}

(and hence the solutions of the corresponding Schwarzian equation
Sw(z) = φ in D with given φ ∈ B).

Lemma 1. For any µ ∈ Belt(D∗)1 and any θ ∈ [0, 2π), there exists a
unique homeomorphic solution w = wµ(z) of the equation ∂zw = µ(z)∂zw
on Ĉ such that

w(0) = 0, w′(0) = eiθ, w(1) = 1. (7)

This solution is holomorphic on the unit disk D, and hence, w(z0) = ∞
at some point z0 with |z0| ≥ 1 (so w(z) does not have a pole in D).

Proof. Let us first consider the coefficients µ vanishing in a broader disk
Dr = {|z| < r}, r > 1, so that wµ is conformal on Dr c D, and assume
that µ ̸= 0 (the origin of Belt(D∗)1).

Fix a ∈ (1, r) close to 1 and θ ∈ [0, 2π]; then 1/a ∈ D.
The generalized Riemann mapping theorem for the Beltrami equation

∂zw = µ(z)∂zw on Ĉ implies a homeomorphic solution ŵ to this equation
satisfying

ŵ(−1/a) = −1/a, ŵ′(−1/a) = eiθ , ŵ(∞) = ∞. (8)
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Its composition with the Möbius map

γa(z) = (1− az)/(z − a)

preserving either from disks D and D∗ has the Beltrami coefficient

γa,∗µ := µŵ◦γa(z) = µ ◦ γa(z)γ′a(z)/γ′a(z)

and also is conformal in the disk Dr and holomorphic in D.
Since, by the classical Schwarz lemma, for any holomorphic map g :

D → D and any point z0 ∈ D,

|g′(z0)| ≤ (1− |g(z0)|2)/(1− |z0|2)

with equality only for appropriate Möbius automorphism of D, the above
normalization (8) and the assumption on µ yield that for any map ŵ(z)
the image ŵ(D) does not cover D, and thus either ŵ(D) is a proper
subdomain of D or it also contains the points z with |z| > 1 outer for D.

Passing if needed to suitable rotated map e−iαŵ(eiαz), one obtains
that this domain ŵ(D) does not contain simultaneously both distin-
guished points a and 1/a (at least sufficiently close to 1).

Now consider the map

wa,a(z) = γ−1
a ◦ ŵ ◦ γa(z),

having the same Beltrami coefficient γa,∗µ. Since

γa(∞) = −a, γa(a) = ∞, γa(0) = −1/a, γa(1/a) = 0

(and accordingly, γ−1
a (∞) = a, γ−1

a (−a) = ∞, γ−1
a (0) = 1/a,

γ−1
a (−1/a) = 0), the map wa,a satisfies

wa,a(0) = 0, w′
a,a(0) = ŵ′(−1/a) = eiθ, wa,a(a) = γ−1

a ◦ w ◦ γa(a) = a.
(9)

If one starts with Beltrami coefficient γ−1
a,∗µ, taking its map w normal-

ized by (7), then the final map wa,a has the initial Beltrami coefficient µ
and satisfies (8) for all a ∈ (1, r) sufficiently close to 1.

In view of our assumptions on ŵ, the point ŵ−1(a) cannot lie in the
unit disk D; therefore the function wa,a is holomorphic in this disk.

Now we investigate the limit process as a → 1. Any from the con-
structed maps wa,a is represented as a composition of a fixed solution ŵ
to the equation ∂zw = µ(z)∂zw subject to (8) and some Möbius maps
γ̂a. The first two conditions in (9) imply that the restrictions of these
γ̂a to ŵ(Dr) form a (sequentially) compact set of γ̂a in the topology of
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convergence in the spherical metric on Ĉ. Letting a → 1, one obtains
in the limit the map γ̂1(z) = lim

a→1
γ̂a(z), which also is a non-degenerate

(nonconstant) Möbius map. Accordingly,

lim
a→1

wa,a(z) = γ̂1 ◦ ŵ(z) =: ŵ1(z),

and this map satisfies (9) with a = 1, which is equivalent to (7).
Note that the relations (9) do not depend on r and that the normal-

ization (8) also is valid for the inverse rotation eiαŵ1(e
−iαz) of the limit

function.
This implies the assertion of Lemma 1 for all Beltrami coefficients

µ ̸= 0 supported in the disk D∗
r = {|z| > r} with r > 1.

To extend the obtained result to arbitrary µ ∈ Belt(D∗)1 (µ ̸= 0), we
pass to coefficients µr(z) = µ(z) for |z| > r and extended by zero to Dr.
The compactness properties of the k-quasiconformal families (i.e., with
∥µ∥∞ ≤ k < 1) imply the convergence of maps wµr(z) normalized by (7)
to wµ(z) as r → 1 in the spherical metric on Ĉ (and hence everywhere on
Ĉ).

The remained case µ(z) ≡ 0 omitted above follows in the limit as
µ→ 0 (or even µ(z) → 0 almost everywhere in D∗). Then the map w(z)
satisfying (7) must be an elliptic fractional linear transformation with
fixed points 0 and 1; hence,

w − 1

w
= eiθ

z − 1

z
,

which implies

w =
e−iθz

(e−iθ − 1)z + 1
. (10)

The simple direct calculations yield that w(z0) = ∞ only at a point z0
with |z0| ≥ 1 (which also follows from the above). The proof of Lemma 1
is completed. 2

This lemma plays an important role in our further considerations. We
shall consider the univalent function w(z) in the disk D normalized by
(7) and their rotations (1) with τ, θ ∈ [0, 2π]; all these rotations also are
holomorphic univalent in this disk, so wτ,θ(z0) = ∞ only at some point
z0 ∈ D∗.

4. Proof of Theorem 1

We accomplish the proof of this theorem in four stages.
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Step 1. Lifting the functional J(f) onto the universal Teich-
müller space. The prescribed normalizing conditions w(0) = 0, w′(0) =
eiθ, w(1) = 1 are compatible with existence and uniqueness of the corre-
sponding conformal and quasiconformal maps and the Teichmüller space
theory, ensure holomorphy of their Taylor coefficients, etc. Actually we
deal with the classical model of Teichmüller spaces via domains in the
Banach spaces of Schwarzian dervatives Sw in D (or in the disk D∗) of
univalent holomorphic functions normalized either by fixing three bound-
ary points on the unit circle S1 or via w(0) = 0, w′(0) = 1, w(z0) = z0,
where z0 on S1. (Often the disk is replaced by the half-plane.)

Modelling the universal Teichmüller space T by the Schwarzians Sw =
φ of functions w(z) from Sθ(1), we have that its base point φ = 0 corre-
sponds to the function (10) (which equals the identity map for θ = 0).

It is more convenient technically to deal with univalent functions in
the complementary disk D∗. In view of Lemma 1, we can model the space
T using the inverted functions W (z) = 1/w(1/z) for w ∈ Ŝ(1).

These functions form the corresponding classes Σθ(1) of nonvanishing
univalent functions on the disk D∗ with expansions

W (z) = e−iθz + b0 + b1z
−1 + b2z

−2 + . . . , W (1) = 1,

and Σ̂(1) =
∪

θ Σθ(1).
Simple computations yield that the coefficients an of f ∈ Sθ(1) and

the corresponding coefficients bj of W (z) = 1/f(1/z) ∈ Σθ(1) are related
by

b0 + e2iθa2 = 0, bn +
n∑

j=1

ϵn,jbn−jaj+1 + ϵn+2,0an+2 = 0, n = 1, 2, ... ,

where ϵn,j are the entire powers of eiθ. This successively implies the
representations of an by bj via

an = (−1)n−1ϵn−1,0b
n−1
0 − (−1)n−1(n− 2)ϵ1,n−3b1b

n−3
0

+ lower terms with respect to b0. (11)

This transforms the initial functional (4) into a coefficient functional
J̃(W ) on Σθ(1) depending on the corresponding coefficients bj .

Note that the coefficients αn of Schwarzians Sw(z) =
∑∞

0 αnz
n are

represented as polynomials of n+ 2 initial coefficients of w ∈ Sθ(1) and,
in view of (11), as polynomials of n + 1 initial coefficients of the corre-
sponding W ∈ Σθ(1), provided that θ is given and fixed and the number
eiθ is considered to be a constant (vice versa, the coefficients an and



S. L. Krushkal 171

bj are uniquely determined by αn by solving the Schwarzian differential
equation Sw = φ or from the equation SW = φ(1/z)z−4 and (11).

We will deal with our polynomial functionals J(w) and J̃(W ) only on
a fixed class Sθ(1) or Σθ(1).

Holomorphic dependence of normalized quasiconformal maps on com-
plex parameters (first established by Ahlfors and Bers in [1] for maps with
three fixed points on Ĉ) is an underlying fact for the Teichmüller space
theory and for many other applications.

Another somewhat equivalent proof of holomorphy involves the vari-
ational technique for quasiconformal maps. For the maps w from Sθ(1),
this holomorphy is a consequence of the following lemma from [9], Ch. 5,
combined with appropriate Möbius maps.

Lemma 2. Let w(z) be a quasiconformal map of the plane Ĉ with Bel-
trami coefficient µ(z) which satisfies ∥µ∥∞ < ε0 < 1 and vanishes in
the disk {|z| < r}. Suppose that w(0) = 0, w′(0) = 1, and w(1) = 1.
Then, for sufficiently small ε0 and for |z| ≤ R < r0(ε0, r) we have the
variational formula

w(z) = z − z2(z − 1)

π

∫∫
|ζ|>r

µ(ζ)dξdη

ζ2(ζ − 1)(ζ − z)
+ Ωµ(z),

where ζ = ξ + iη; max|z|≤R |Ωµ(z) ≤ C(ε0, r, R)∥µ∥2∞; r0(ε0, r) is a well
defined function of ε0 and r such that limε0→0 r0(ε0, r) = ∞, and the
constant C(ε0, r, R) depends only on ε0, r and R.

Step 2. Lifting to covering space T1 and estimating the re-
stricted plurisubharmonic functional. Our next step is to lift both
polynomial functionals J(w) and Ĵ(W ) onto the Teichmüller space T1

which covers T.
Letting

Ĵ(µ) = J̃(Wµ), (12)

we lift these functionals from the sets Sθ(1) and Σθ(1) onto the ball
Belt(D)1. Then, under the indicated T1-equivalence, i.e., by the quotient
map

ϕT1 : Belt(D)1 → T1, µ→ [µ]T1 ,

the functional J̃(Wµ) is pushed down to a bounded holomorphic func-
tional J on the space T1 with the same range domain.

Equivalently, one can apply the quotient map Belt(D)1 → T (i.e., T-
equivalence) and compose the descended functional on T with the natural
holomorphic map ι1 : T1 → T generated by the inclusion D∗ ↪→ D
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forgetting the puncture. Note that since the coefficients b0, b1, . . . of
Wµ ∈ Σθ are uniquely determined by its Schwarzian SWµ , the values of
J in the points X1, X2 ∈ T1 with ι1(X1) = ι1(X2) are equal.

Now, using the Bers isomorphism theorem, we regard the points of
the space T1 as the pairs XWµ = (SWµ ,Wµ(0)), where µ ∈ Belt(D)1
obey T1-equivalence (hence, also T-equivalence). Denote (for simplicity
of notations) the composition of J with biholomorphism T1

∼= F(T)
again by J . In view of (5) and (13), it is presented on the fiber space
F(T) by

J (XWµ) = J (SWµ , t), t =Wµ(0). (13)

This yields a logarithmically plurisubharmonic functional |J (SWµ , t)| on
F(T).

We have to estimate a smaller plurisubharmonic functional arising
after restriction of J (SWµ , t) to SW ∈ XT, i.e., the restriction of func-
tional (13) onto the corresponding set of pairs (SWµ ,W µ(0)) consisting
of SWµ ∈ XT and of the values Wµ(0) filling some subdomain DX ,θ.

Since our functionals are polynomials, they are defined for all SW ∈ T
and t from some domain Dθ containing DX ,θ. We define on Dθ the
function

uθ(t) = sup
Wµ

|J (SWµ , t)|, (14)

where the supremum is taken over all SWµ ∈ T admissible for a given
t =Wµ(0) ∈ Dθ.

The following basic lemma from [13] provides that this function in-
herits subharmonicity of J .

Lemma 3. The function uθ(t) is subharmonic in the domain Dθ.

The proof of this lemma in [13] is complicated. It involves a weak
approximation of the underlying space T (and simultaneously of the space
T1) by finite dimensional Teichmüller spaces of the punctured spheres in
the topology of locally uniform convergence on C and using the increasing
unions of the quotient spaces

Ts =
s∪

j=1

Σ̂0
θj
/ ∼ =

s∪
j=1

{(SWθj
,Wµ

θ (0))} ≃ T1 ∪ · · · ∪T1, (15)

where θj run over a dense subset Θ ⊂ [−π, π], the equivalence relation ∼
means T1-equivalence on a dense subset Σ̂0(1) in the union Σ̂(1) formed
by univalent functions Wθj (z) = e−iθjz + b0 + b1z

−2 + . . . on D∗ with
quasiconformal extension to Ĉ satisfying Wθj (1) = 1, and

Wµ
θ (0) := (Wµ1

θ1
(0), . . . ,Wµs

θs
(0)).
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The Beltrami coefficients µj ∈ Belt(D)1 are chosen here independently.
The corresponding collection

β = (β1, . . . , βs)

of the Bers isomorphisms

βj : {(SWθj
,W

µj

θj
(0))} → F(T)

determines a holomorphic surjection of the space Ts onto F(T). The
function (14) is determined by

u(t) = sup
Θ
uθs(t),

where uθs is obtained by maximization of type (14) over Ts.
Since, by assumption, the image XT of the class X in T is a complex

manifold, the restriction of the function |J (SWµ , t)| to this manifold and
to corresponding values of t = Wµ(0) also is plurisubharmonic. The
arguments from [13] are straightforwardly extended to this restriction,
giving in a similar way, that also the corresponding maximal function

uθ(t) = sup
Wµ

|J (SWµ , t)|

is subharmonic on the domain DX ,θ.

Step 3. Range domain of Wµ(0). The next step in maximization
of the function uθ (and thereby of the functional J ) is to establish the
value domain of Wµ(0) for Wµ running over XT. This requires the cor-
responding covering estimate.

Let G be a domain in a complex Banach space X = {x} and χ
be a holomorphic map from G into the universal Teichmüller space T
modeled as a bounded subdomain of B. Consider in the unit disk the
corresponding Schwarz differential equations Sw(z) = χ(x) and pick their
holomorphic univalent solutions w(z) in D satisfying w(0) = 0, w′(0) = 1
(hence w(z) = z +

∑∞
2 anz

n). Put

|a02| = sup{|a2| : Sw ∈ χ(G)}, (16)

and let w0(z) = z + a02z
2 + . . . be one of the maximizing functions.

Lemma 4. (a) For every indicated solution w(z) = z+a2z
2+ . . . of the

Schwarz differential equation, the image domain w(D) covers entirely the
disk D1/(2|a02|) = {|w| < 1/(2|a02|)}.
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The radius value 1/(2|a02|) is sharp for this collection of functions,
and the circle {|w| = 1/(2|a02|) contains points not belonging to w(D) if
and only if |a2| = |a02| (i.e., when w is one of the maximizing functions).

(b) The inverted functions

W (ζ) = 1/w(1/ζ) = ζ − a02 + b1ζ
−1 + b2ζ

−2 + . . .

map the disk D∗ onto a domain whose boundary is entirely contained in
the disk {|W + a02| ≤ |a02|}.

The proof follows the classical lines of Koebe’s 1/4 theorem (cf. [6]).
(a) Suppose that the point w = c does not belong to the image of D

under the map w(z) defined above. Then c ̸= 0, and the function

w1(z) = cw(z)/(c− w(z)) = z + (a2 + 1/c)z2 + . . .

also belongs to this class, and hence by (16), |a2 + 1/c| ≤ |a02|, which
implies

|c| ≥ 1/(2|a02|).

The equality holds only when

|a2 + 1/c| = |1/c| − |a2| = |a02| and |a2| = |a02|.

(b) If a point ζ = c does not belong to the image W (D∗), then the
function

W1(z) = 1/[W (1/z)− c] = z + (c+ a2)z
2 + . . .

is holomorphic and univalent in the disk D, and therefore, |c+a2| ≤ |a02|.
The lemma follows.

This lemma implies that the boundary of the range domain of Wµ(0)
is contained in the disk

D2|a02| = {W : |W | < 2|a02|} (17)

and the boundary of this domain touches from inside the circle {|W | =
2|a02|} at the points corresponding to extremal functions maximizing |a2|
on the closure of the manifold XT.

Step 4. Finishing the proof. To complete the proof of the theorem, we
have to apply some special variations of univalent functions with quasi-
conformal extension given by the following lemma, which is a special case
of more general results from [9]. Here we essentially use the variational
stability of X .
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Lemma 5. Let D be a simply connected domain on the Riemann sphere
Ĉ. Assume that there are a set E of positive two-dimensional Lebesgue
measure and a finite number of points z1, z2, ..., zm distinguished in D.
Let α1, α2, ..., αm be non-negative integers assigned to z1, z2, ..., zm, re-
spectively, so that αj = 0 if zj ∈ E.

Then, for a sufficiently small ε0 > 0 and ε ∈ (0, ε0), and for any given
collection of numbers wsj , s = 0, 1, ..., αj , j = 1, 2, ...,m which satisfy the
conditions w0j ∈ D,

|w0j − zj | ≤ ε, |w1j − 1| ≤ ε, |wsj | ≤ ε (s = 0, 1, . . . aj , j = 1, ...,m),

there exists a quasiconformal automorphism h of D which is conformal
on D \ E and satisfies

h(s)(zj) = wsj for all s = 0, 1, ..., αj , j = 1, ...,m.

Moreover, the Beltrami coefficient µh(z) = ∂z̄h/∂zh of h on E satisfies
∥µh∥∞ ≤ Mε. The constants ε0 and M depend only upon the sets D,E
and the vectors (z1, ..., zm) and (α1, ..., αm).

If the boundary ∂D is Jordan or is C l+α-smooth, where 0 < α < 1
and l ≥ 1, we can also take zj ∈ ∂D with αj = 0 or αj ≤ l, respectively.

We apply this lemma to quasiconformally extendable functions from
X , which are dense in this subclass (in topology of locally uniform con-
vergence on D).

Let w0 be an extremal of a given functional J on X . Pass to the
function

w0r(z) =
1

r
w0(rz) = reiθz + r2a02z

2 + . . .

with r close to 1, and to its image w̃0r in Ŝ(1), using the corresponding
rotations of type (1). This image is univalent and holomorphic on the
closed disk D and satisfy also the third normalization condition w(1) = 1.

Varying appropriately the coefficients a2, am1 , . . . , ams of w̃0r by Lem-
ma 5 with quasiconformal variation h conformal on w̃0r(D), one derives
that the maximal function

u(t) = sup
θ
uθ(t) = sup

{
|J (SWµ , t)| : S(Wµ) ∈

∪
s

Ts
}

(18)

(where uθ and Ts are determined by (14) and (15)) must be positive on
any circle {|t| = r < 2|a02|}, and hence on the whole disk (17). This
function also is subharmonic and circularly invariant on this disk.

Therefore, the maximal value of the function (18), which coincides
with max |J(w)| on Ŝ(1), is attained on the boundary circle {|t| = 2|a02|}
and equals u(2|a0|). This is equivalent to assertion of Theorem 1.
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5. Additional remarks and counterexamples

1. As was already mentioned above, the assumptions of Theorem 1 on
classes of functions and on functionals are essential and cannot be omit-
ted. We illustrate this on two examples.

Example 1. Consider the class Sq(∞) of univalent functions w(z) =

z + a2z
2 + . . . in D with q-quasiconformal extensions to Ĉ (q < 1), with

fixed point at infinity.
As is well known, the maximizing function for a2 in Sq(∞) is

w1,t(z) = z/(1− tz)2, |t| = q,

and |a2| ≤ 2q. But for any n > 2 and for all q ≤ 1/(n2 + 1), the sharp
estimate for the functional Jn(w) = an on f ∈ Sq(∞) is given by

|an| ≤ 2q/(n− 1),

and the equality is attained only on the functions

wn−1,t(z) = w1,t(z
n−1)1/(n−1) = z +

2t

n− 1
zn + . . .

with |t| = q (see, e.g., [12]).
The reason is that this class satisfies the assumption (a), but is not

variationally stable, because the generic variations of Lemma 5 provide
q′-quasiconformal maps with q′ > q.

All this is in accordance with the well known fact that in any class
of univalent functions with q-quasiconformal extension, no function can
be simultaneously extremal for different holomorphic functionals unless
these functionals have equal 1-jets at the origin; in particular, this holds
for functionals Jn(f) = an For details and related results we refer, for
example, to [7, 11,12,14,15,19].

The underlying feature, which causes this fact, is that for q < 1 these
functionals Jn determine the extremal disks for the Carathéodory metric
on the universal Teichmüller space T.

Example 2. The class S(M) formed by bounded functions f(z) =
z+a2z

2+ · · · ∈ S with |f(z)| < M in D (M > 1) also is not variationally
stable, because the variations given by Lemma 5 (with the sets E of qua-
siconformality located outside of the disk DM = {|z| < M |}) generically
increase the sup norm of varied functions.

Thus Theorem 1 cannot be applied also to this class. Note that this
is in accordance with the fact that the known coefficient estimates for
S(M) (see, e.g. [17]) are of completely different nature then Theorem 1.
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2. The extension of Theorem 1 to functions compatible with Fuchsian
groups given by Theorem 2 requires a generalization of Lemma 5 to qua-
siconformal deformations of Fuchsian groups. This generalization (and
even to appropriate Kleinian groups with admissible in some sense col-
lections of non-invariant components) is given in [9].
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metric Function Theory, Vol. 2 (R. Kühnau, ed.). Elsevier Science, Amsterdam,
2005, pp. 165–241.

[12] Krushkal, S.L. (2017). Complex geodesics and variational calculus for univalent
functions. Contemp. Mathematics, 699, 175–197.

[13] Krushkal, S.L. (2020). Teichmüller spaces and coefficient problems for univa-
lent holomorphic functions. Analysis and Mathematical Physics, 10 (4).
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