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Abstract. A new condenser capacity CapM
p (E,G) is introduced as an

alternative to the classical Dirichlet capacity in a metric measure space
X. For p > 1 it coincides with the Mp–modulus of the curve family
Γ(E,G) joining ∂G to an arbitrary set E ⊂ G and for p = 1 it lies
between AM1(Γ(E,G)) and M1(Γ(E,G)). Moreover, the CapM

p (E,G)–
capacity has good measure theoretic regularity properties with respect to
the set E. The CapM

p (E,G)–capacity uses Lipschitz functions and their
upper gradients. The doubling property of the measure µ and Poincaré
inequalities in X are not needed.
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1. Introduction

The Dirichlet p–capacity capp(E,G) of a condenser (E,G), developed
by G. Choquet, is the most commonly used capacity in analysis. The
modulus of a curve family offers an alternative approach to capacity. In
a metric measure space X curve families play a more central role than
in Rn since the Fubini theorem is not available in X. For example, in
X the modulus method is used to construct so called Newtonian spaces
which have many properties common to the first order Sobolev spaces
in Rn. The constructions require that the metric space X is so called
good metric space, i.e. the measure µ in X is doubling and X supports a
Poincaré inequality in addition to various topological properties, see [2],
[7] and [13].

The purpose of this paper is to introduce an alternative acapacity, the
CapMp –capacity, which is directly connected to the Mp–modulus for p > 1
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and uses neither the doubling property nor the Poincaré inequalities. For
p = 1 the CapMp –capacity lies between the AM1– and M1–modulus.

The CapMp –capacity, p > 1, offers a more straightforward approach to
the classical Dirichlet capacity capp and their equivalence is considered
in Section 4.

2. Mp– and AMp–modulus

Let (X, d) be a metric space equipped by a Borel regular measure µ
which is finite on compact sets. We also assume that X is proper, i.e.
bounded closed sets are compact. From this it follows that X is complete.

A continuous mapping γ : [a, b] → X is called a curve. We say that a
curve γ is a path if it has a finite and non–zero total length; in this case
we parametrize γ by its arclength. The locus of γ is defined as γ([0, ℓ])
and denoted by ⟨γ⟩ and the length of γ by ℓ(γ).

Let Γ be a family of paths in X. A non–negative Borel function ρ is
M–admissible, or simply admissible, for Γ if∫

γ
ρ ds ≥ 1

for every γ ∈ Γ. For p ≥ 1 the Mp–modulus of Γ is defined as

Mp(Γ) = inf

∫
X
ρp dµ

where the infimum is taken over all admissible functions ρ.
A sequence of non–negative Borel functions ρi, i = 1, 2, ... , is AM–

admissible, or simply admissible, for Γ if

lim inf
i→∞

∫
γ
ρi ds ≥ 1 (2.1)

for every γ ∈ Γ. The approximation modulus Γ is defined as

AMp(Γ) = inf
(ρi)

{
lim inf
i→∞

∫
X
ρpi dµ

}
(2.2)

where the infimum is taken over all AM–admissible sequences (ρi) for Γ.
Since the space X is proper, instead of admissible Borel functions it is

possible to use lower semicontinuous non–negative functions as admissible
for the Mp– and AMp–modulus, see e.g. [5, Proposition 7.14].

For the following lemma, we refer to [8], [12] and [9] for the properties
of the AMp–modulus and to [2], [6] and [1] for those of the Mp-modulus,
p ≥ 1.
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Lemma 2.1. The AMp– and Mp–modulus are outer measures in the set
of all paths in X, i.e.
(a) AMp(∅) = 0
(b) Γ1 ⊂ Γ2 =⇒ AMp(Γ1) ≤ AMp(Γ2).
(c) Γ =

∪∞
j=1 Γj =⇒ AMp(Γ) ≤

∑∞
i=j AMp(Γj).

(d) AM1(Γ) ≤M1(Γ) and AMp(Γ) =Mp(Γ), p > 1, for every path fam-
ily Γ.
The properties (a)–(c) also hold for the Mp–modulus.

We employ following notation for path families associated with an
arbitrary set E ⊂ X and an open bounded set G ⊃ E:

Γ(E,G) = Γ(E) ∩ Γ(X \G) and Γ(E) = {γ : γ meets E}.

3. CapM
p –capacity

In this section we assume that X is a proper metric space with a Borel
regular measure µ and introduce a new capacity for the condenser (E,G)
where E is an arbitrary subset of a bounded open set G in X. Since a
metric space usually has plenty of Lipschitz functions but need not con-
tain many curves such a capacity is not possible without an assumption
that guarantees plenitude of curves and we use the quasiconvexity prop-
erty of X, i.e. there is c < ∞ such that for all x, y ∈ X, x ̸= y, there
exists a path γ joining x to y whose length satisfies ℓ(γ) ≤ c d(x, y). Note
that we do not need the quasiconvexity property for G but for X.

A complete doubling p–Poincaré space X is quasiconvex, see [2, Chap-
ter 4], but the converse is not true as simple examples show.

We mostly work with Lipschitz functions in X. For such a function
u a non-negative Borel function g is an upper gradient of u in X if for
every path γ in X

|u(γ(ℓ))− u(γ(0))| ≤
∫
γ
g ds,

see [2, Chapters 1–2] for the properties of functions and their upper gra-
dients. The lower pointwise dilatation

|∇u(x)| = lim inf
r→0

sup
y∈B(x,r)

|u(y)− u(x)|
r

is an upper gradient of u, see [2, Proposition 1.14]. In Rn, |∇u(x)| is a
unique minimal upper gradient for a Lipschitz function u, see [2, Exam-
ples A1].
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Let G be a fixed bounded open set in X and E an arbitrary subset
G. An increasing sequence (ui) of non–negative Lipschitz functions in X
is called admissible, (ui) ∈ Ad(E,G), for the condenser (E,G) if ui = 0
in X \G and

lim inf
i→∞

ui(x) ≥ 1

for x ∈ E For p ≥ 1 we define

CapMp (E,G) = inf
{
lim inf
i→∞

∫
G
gpi dµ : (ui) ∈ Ad(E,G) and

gi is an upper gradient of ui

}
.

It is obvious that the CapMp –capacity is monotone, i.e.

E1 ⊂ E2 ⊂ G =⇒ CapMp (E1, G) ≤ CapMp (E2, G). (3.1)

In the rest of this section we assume that X is proper and quasiconvex
and G ⊂ X is a bounded open set.

Theorem 3.1. If E is an arbitrary subset of G, then for p ≥ 1

AMp(Γ(E,G)) ≤ CapMp (E,G) ≤Mp(Γ(E;G)). (3.2)

For p > 1 the above inequalities are equalities and, in particular,

CapMp (E,G) =Mp(Γ(E;G)). (3.3)

Proof. The first inequality ≤ in (3.2) is classical. For completeness we
recall the proof. Let (ui) be an Ad(E,G)–admissible sequence and gi
an upper gradient of ui. Now (gi) is an AM–admissible sequence for
Γ(E,G) because for each path γ ∈ Γ(E,G) with γ(ℓ) ∈ E

lim inf
i→∞

∫
γ
gi ds ≥ lim inf

i→∞
ui(γ(ℓ)) ≥ 1.

Hence

AMp(Γ(E,G)) ≤ lim inf
i→∞

∫
G
gpi dµ

and since this holds for all sequences (ui) ∈ Ad(E,G) and all upper
gradients gi of ui, the left side of (3.2) follows.

For the second inequality in (3.2) we use a modification of the method
in [2, Lemmata 5.25 and 5.26]. Let ρ̃ be a lower semicontinuous M–
admissible function for Γ(E,G). We may assume that ρ̃ = 0 in X \ G
and ∫

G
ρ̃p dµ <∞.
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Let τ > 0 and set ρ = ρ̃ + τ in X. Now ρ is lower semicontinuous in
X and since X is proper there is an increasing sequence of continuous
functions ρi : X → [0,∞) such that

lim
i→∞

ρi(x) = ρ(x)

for every x ∈ X. We may assume that ρi ≥ τ in X.

For each i define

ui(x) = inf
{∫

γ
ρi ds : γ joins X \G to x

}
for x ∈ G and ui(x) = 0 for x ∈ X \ G. Note that each path γ which
meets X \G and x ∈ G has a subpath meeting X \G at γ(0) only. Hence
in the definition of ui(x), x ∈ G, we can consider only paths γ which lie
in G except at γ(0). The sequence (ui) is increasing and we show that
each ui is an Ci c–Lipschitz function where Ci = sup{ρi(x) : x ∈ X}
and c is the quasigeodesic constant of X. Consider first the case where
x, y ∈ G. By symmetry we may assume ui(y) ≥ ui(x). Let ε > 0 and
choose a path γxy joining x to y with ℓ(γxy) ≤ c d(x, y). By the definition
of ui(x) there is a path γx from X \G to x such that

ui(x) >

∫
γx

ρi ds− ε.

Joining the paths γx and γxy together we obtain a path γ from X \G to
y and now

ui(y)− ui(x) ≤
∫
γ
ρi ds−

∫
γx

ρi ds+ ε ≤
∫
γxy

ρi ds+ ε ≤ Ci c d(x, y) + ε

and letting ε → 0 we obtain the required Lipschitz bound for ui. If
x ∈ X \G and y ∈ G, then ui(x) = 0 and choosing γxy as before we have

ui(y)− ui(x) = ui(y) ≤
∫
γxy

ρi ds ≤ Ci c d(x, y).

For y, x ∈ X \G the inequality is trivial.

The function ρi is an upper gradient of ui. If γ is a path joining y and
x which lie in G, then by symmetry we can assume that ui(y) ≥ ui(x)
and for ε > 0 we can choose a path γx joining X \G to x such that

ui(x) >

∫
γx

ρi ds− ε
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and joining the paths γx and γ together we obtain the path γ̃ joining
X \G to y. Thus

ui(y)− ui(x) ≤
∫
γ̃
ρi ds−

∫
γx

ρi ds+ ε =

∫
γ
ρi ds+ ε

and letting ε → 0 we obtain the required inequality. If y ∈ X \ G and
x ∈ G and γ is a path joining y to x, then

ui(y)− ui(x) = ui(y) ≤
∫
γ
ρi ds.

The case x, y ∈ X \G is again trivial.
Next let ε > 0 and

Eε =
{
x ∈ E : lim

i→∞
ui(x) < 1− ε

}
.

Fix x ∈ Eε. Then there is a sequence of paths γi from X \ G to x such
that for each i

1− ε > ui(x) ≥
∫
γi

ρi ds− 2−i ε. (3.4)

Now for j ≥ i

ui(x) ≤ uj(x) ≤
∫
γj

ρj ds.

Let
L = lim inf

i→∞
ℓ(γi)

and reparameterize the paths γi as γ̃i(t) = γi(tℓ(γi)), t ∈ [0, 1]. Since we
may assume that each γi meets X \G at γi(0) only,

ℓ(γi) ≤
∫
γi

ρi
τ
ds ≤ 1− ε

τ
<

1

τ

and so the curves γ̃i are ℓ(γi)–Lipschitz and uniformly 1/τ–Lipschitz and
thus an equicontinuous family of mappings from [0, 1] to the compact
space G. By the Ascoli theorem there is a subsequence of (γ̃i), denoted
again by (γ̃i), which converges uniformly to a 1/τ–Lipschitz curve γ̃ :
[0, 1] → G. Clearly γ̃(0) ∈ X \G and γ̃(1) = x and by the continuity of
ρj in G

lim
i→∞

ρj(γ̃i(t)) = ρj(γ̃(t))

for each j and t ∈ [0, 1].
Next let γ be the reparametrization of γ̃ by arch length and note that

ℓ(γ) ≤ lim inf
i→∞

ℓ(γi) = L.
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Denote by
si(t) = ℓ(γ̃i|[0, t]), t ∈ [0, 1]

the length function of γ̃i and by

s(t) = ℓ(γ̃|[0, t]), t ∈ [0, 1]

the length function of γ̃. Now s
′
i(t) = ℓ(γi) for t ∈ (0, 1) and at the point

t0 ∈ (0, 1) of the differentiability of s we have for t0 < t1 ≤ 1

s(t1)− s(t0)

t1 − t0
=
ℓ(γ̃|[t0, t1])
t1 − t0

≤ lim inf
i→∞

ℓ(γ̃i|[t0, t1])
t1 − t0

=
1

t1 − t0
lim inf
i→∞

∫ t1

t0

s
′
i(t) dt = lim inf

i→∞

ℓ(γi)(t1 − t0)

t1 − t0
= L

and hence s
′
(t) ≤ L for a.e. t ∈ [0, 1]. For j ≥ i we have∫

γ̃j

ρj ds ≥
∫
γ̃j

ρi ds =

∫ 1

0
ρi(γ̃j(t))s

′
j(t) dt = ℓ(γj)

∫ 1

0
ρi(γ̃j(t)) dt. (3.5)

Note that the function s is absolutely continuous because γ̃ is a Lipschitz
curve. Now (3.4), (3.5) and the continuity of ρi yield for each i

1− ε ≥ lim inf
j→∞

∫
γ̃j

ρj ds ≥ L

∫ 1

0
ρi(γ̃(t)) dt

≥
∫ 1

0
ρi(γ̃(t))s

′
(t) dt =

∫
γ
ρi ds.

This leads to contradiction since by the Lebesgue increasing convergence
theorem for every path γ ∈ Γ(E,G)

lim
i→∞

∫
γ
ρi ds =

∫
γ
ρ ds ≥

∫
γ
ρ̃ ds ≥ 1

and thus
lim
i→∞

ui(x) ≥ 1− ε

for each x ∈ E.
Now (ui/(1 − ε)) is an admissible sequence for CapMp (E,G) and by

the Lebesgue bounded convergence theorem

CapMp (E,G) ≤ lim inf
i→∞

∫
G

( ρi
1− ε

)p
dµ =

∫
G

( ρ̃+ τ

1− ε

)p
dµ

and since ρ̃ is an arbitrary M–admissible function for Γ(E,G) letting
ε→ 0 and τ → 0 we complete the proof for the right inequality of (3.2).

Because AMp(Γ(E,G)) = Mp(Γ(E,G)) for p > 1, the equality case
in (3.2) is clear.
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Lemma 3.1. If E ⊂ G is an arbitrary set and p ≥ 1, then there is a
Borel set E′ ⊃ E such that

CapMp (E′, G) = CapMp (E,G).

Proof. If CapMp (E,G) = ∞ we can choose E′ = G and then the mono-

tonicity of CapMp implies

CapMp (G,G) ≥ CapMp (E,G) = ∞.

Suppose that CapMp (E,G) < ∞ and for each j ∈ N choose an Ad(E,G)

admissible sequence (uji ) such that

CapMp (E,G) ≥ lim inf
i→∞

∫
G
(gji )

p dµ− 1/j (3.6)

where gji is an upper gradient of uji .
Now the set

F j =
{
x ∈ G : lim inf

i→∞
uji (x) ≥ 1

}
is a Borel set and F j ⊃ E. The set E′ = ∩jF

j is a Borel set and
contains E and thus Capp(E

′, G) ≥ Capp(E,G). Using (3.6) we obtain
the converse inequality

Capp(E
′, G) ≤ lim inf

j→∞
lim inf
i→∞

∫
G
(gji )

p dµ

≤ lim inf
j→∞

(CapMp (E,G) + 1/j) = CapMp (E,G).

From Theorem 3.1 and Lemma 3.1 we obtain:

Corollary 3.1. If p > 1 then for each set E ⊂ G there is a Borel set
E′ ⊃ E such that Mp(Γ(E,G)) =Mp(Γ(E

′, G)).

Since for p > 1, CapMp (E,G) = Mp(Γ(E,G)) for all sets E ⊂ G, the
CapMp (E,G)–capacity inherits all the properties of the Mp–modulus in
a quasiconvex space X. For the properties of the Choquet capacity see
Section 4.

Theorem 3.2. The CapMp –capacity, p > 1, has the following properties:

(a) CapMp is subadditive. i.e. if Ei ⊂ G, i = 1, 2, ... , then

CapMp (
∪
i

Ei, G) ≤
∑
i

CapMp (Ei, G).
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(b) If K1 ⊃ K2 ⊃ ... are compact sets in G, then

lim
i→∞

CapMp (Ki, G) = CapMp (
∩
i

Ki, G).

(c) CapMp is a Choquet capacity, i.e. for a Suslin set E ⊂ G,

CapMp (E,G) = sup
{
CapMp (K,G) : K ⊂ E compact

}
.

Proof. The subadditivity of the Mp–modulus is well known, see Lemma
2.1, and hence Theorem 3.1 implies (a). For (b) let K = ∩iKi and note
that by the monotonicity

lim
i→∞

CapMp (Ki, G) ≥ CapMp (K,G).

For the reverse inequality let ε > 0 and choose a sequence (ui)∈Ad(K,G)
such that

CapMp (K,G) ≥ lim inf
i→∞

∫
G
gpi dµ− ε. (3.7)

The function u = limi ui is lower semicontinuous in G as a limit of an
increasing sequence of continuous functions ui. Thus the set U = {x ∈
G : u(x) > 1 − ε} is open and contains K. Now there is i0 such that
Ki ⊂ U for i ≥ i0 and thus (ui/(1− ε)) ∈ Ad(Ki, G] for i ≥ i0. By (3.7)

lim
i→∞

CapMp (Ki, G) ≤ lim inf
i→∞

∫
G

( gi
1− ε

)p
dµ ≤

CapMp (K,G) + ε

(1− ε)p

and letting ε→ 0 we obtain (b).
The map E 7→ CapMp (E,G) is monotone and satisfies (a) and (b).

Hence by the Choquet capacitibility theorem, see [4], it satisfies (c).

4. Dirichlet capacity

In this section we compare the CapMp –capacity to the classical Dirich-
let capacity capp and we first recall its definition and basic properties
due to G. Choquet. Originally this capacity used C∞

0 -functions in Rn

and their gradients but the upper gradients for Lipschitz functions work
as well in a metric measure space X, see [2, Section 6.3].

We again assume that X is a proper quasigeodesic space and G ⊂ X
is a fixed bounded open set.

Let K be a compact subset of G and AdC(K,G) the family of all
Lipschitz functions such that u ≥ 1 in K and u = 0 in X \G. Define
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capp(K,G) = inf
{∫

G
gp dµ : u ∈ AdC(K,G),

g an upper gradient of u
}
,

Obviously the infimum does not change if restricted to test functions
satisfying 0 ≤ u ≤ 1. The condition that a test function u ∈ AdC(K,G)
satisfies u = 0 in X \ G can be replaced, due to the continuity of u, by
the requirement that u has compact support in G.

If U ⊂ G is open, then we set

capp(U,G) = sup{capp(K,G) : K ⊂ U compact}

and for an arbitrary set E ⊂ G

capp(E,G) = inf{capp(U,G) : U open, E ⊂ U ⊂ G}.

Now there are two definitions for capp(E,G) when E is compact but since
the competitors are continuous the both definitions give the same value.

The capp–capacity, p ≥ 1, has the following properties:
(i) monotonicity: E1 ⊂ E2 =⇒ cap(E1, G) ≤ capp(E2, G).
(ii) subadditivity: E1 ⊂ E2 ⊂ ... =⇒ limi capp(Ei, G) = capp(

∪
iEi).

(iii) K1 ⊃ K2 ⊃ ... compact =⇒ limi capp(Ki, G) = capp(
∩

iKi, G).
By the Choquet capacibility theorem for all Suslin sets E ⊂ G

capp(E,G) = sup
{
capp(K,G) : K ⊂ E compact

}
.

For the Choquet theory see [4] and [3] and for the Dirichlet capacity in
X, [2, Section 6.3].

We frequently use the following lemma:

Lemma 4.1. For p ≥ 1 and K ⊂ G compact the equality

capp(K,G) =Mp(Γ(K,G)) = AMp(Γ(K,G)) = CapMp (K,G) (4.1)

holds.

Proof. For p = 1 by [11, Lemma 3.3]

cap1(K,G) =M1(Γ(K,G)) = AM1(Γ(K,G))

and thus by Theorem 3.1 equality holds in (4.1). For p > 1, (4.1) is well
known, see e.g. [2, Chapter 5]. and [1]. Note that for p > 1, Mp(Γ) =
AMp(Γ) for every path family Γ in X, see [11, Lemma 3.3].
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Lemma 4.2. If E ⊂ G is an arbitrary set and p ≥ 1, then

CapMp (E,G) ≥ capp(E,G). (4.2)

Proof. Choose a Borel set E′ ⊃ E such that CapMp (E,G) = CapMp (E′, G)
and now by Lemma 4.1 and the Choquet capacibility theorem

CapMp (E,G) = CapMp (E′, G) ≥ sup
{K⊂E′ compact}

CapMp (K,G)

= sup
{K⊂E′ compact}

capp(K,G) = capp(E
′, G) ≥ capp(E,G).

Lemma 4.3. Suppose that E is an arbitrary subset of G. For p > 1

AMp(Γ(E,G)) =Mp(Γ(E,G)) ≤ capp(E,G) (4.3)

and for p = 1
AM1(Γ(E,G)) ≤ cap1(E,G). (4.4)

Proof. The first equality in (4.3) is due to the fact that AMp = Mp for
p > 1. For the inequality in (4.3) let U ⊂ G be an open set with U ⊃ E
and choose compact sets K1 ⊂ K2 ⊂ ... ⊂ U such that ∪iKi = U . Now
Γ(Ki, G) ⊂ Γ(Ki+1, G) and∪

i

Γ(Ki, G) = Γ(U,G)

and since p > 1 we have Mp(Γ(U,G)) = limi→∞Mp(Γ(Ki, G)), see [1],
and then from (4.1) it follows

Mp(Γ(U,G)) = lim
i→∞

Mp(Γ(Ki, G)) = lim
i→∞

capp(Ki, G) = capp(U,G).

Since this holds for all open sets U ⊃ E

Mp(Γ(E,G)) ≤ inf
G⊃U⊃E

Mp(Γ(U,G))

= inf
G⊃U⊃E

capp(Γ(U,G)) = capp(E,G).

For (4.4) we can proceed as above but now by [8, Lemma 3.11] we
have

cap1(U,G) = lim
i→∞

cap1(Ki, G) = lim
i→∞

M1(Γ(Ki, G)) ≥ AM1(Γ(U,G))

and hence for every open set U ⊃ E

cap1(U,G) ≥ AM1(Γ(U,G)) ≥ AM1(Γ(E,G)).



O. Martio 207

The following summarizes the situation for Suslin sets for p = 1.

Lemma 4.4. If E ⊂ G is a Suslin set, then

cap1(E,G) = AM1(Γ(E,G)) ≤ CapM1 (E,G) ≤M1(Γ(E,G)). (4.5)

Proof. To prove the first equality in (4.5) it suffices to show, by (4.4),
that

cap1(E,G) ≤ AM1(Γ(E,G)). (4.6)

Since E is a Suslin set, the Choquet capacibility theorem yields

cap1(E,G) = sup
{
cap1(K,G) : K ⊂ E compact

}
and for each compact set K ⊂ E

cap1(K,G) = AM1(Γ(K,G)) ≤ AM1(Γ(E,G))

and (4.6) follows. The rest follows from Theorem 3.1 and Lemma 4.2.

The following theorem summarizes the situation for p > 1 and p = 1,
respectively.

Theorem 4.1. If X is a proper quasigeodesic metric space, G ⊂ X a
bounded open set and E ⊂ G an arbitrary set, then for p > 1

AMp(Γ(E,G)) = capp(E,G) = CapMp (E,G) =Mp(Γ(E,G)) (4.7)

and for p = 1

AM1(Γ(E,G)) ≤ cap1(E,G) ≤ CapM1 (E,G) ≤M1(Γ(E,G)). (4.8)

Proof. Since AMp(Γ(E,G)) =Mp(Γ(E,G)) for p > 1 the proof for (4.7)
follows from Theorem 3.1, Lemmata 4.2 and 4.3. The inequalities in
(4.8) follow from Theorem 3.1, (4.4) and (4.2).
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