

Український математичний вiсник Том 18 (2021), № 2, 196 – 208 https://doi.org/10.37069/1810-3200-2021-18-2-4

An alternative capacity in metric measure spaces

Olli Martio

Dedicated to Vladimir Gutlyanskii on his 80*th birthday*

Abstract. A new condenser capacity $\mathrm{Cap}_{\mathbf{P}}^{\mathbf{M}}(E,G)$ is introduced as an alternative to the classical Dirichlet capacity in a metric measure space *X*. For $p > 1$ it coincides with the M_p –modulus of the curve family $\Gamma(E, G)$ joining ∂G to an arbitrary set $E \subset G$ and for $p = 1$ it lies between $AM_1(\Gamma(E, G))$ and $M_1(\Gamma(E, G))$. Moreover, the Cap^M_p (E, G) – capacity has good measure theoretic regularity properties with respect to the set *E*. The $\text{Cap}_{\mathcal{P}}^{\mathcal{M}}(E, G)$ -capacity uses Lipschitz functions and their upper gradients. The doubling property of the measure μ and Poincaré inequalities in *X* are not needed.

2010 MSC. 31C15, 31B15.

Key words and phrases. Capacity, *M*– and *AM*–modulus.

1. Introduction

The Dirichlet *p*-capacity $\text{cap}_p(E, G)$ of a condenser (E, G) , developed by G. Choquet, is the most commonly used capacity in analysis. The modulus of a curve family offers an alternative approach to capacity. In a metric measure space *X* curve families play a more central role than in \mathbb{R}^n since the Fubini theorem is not available in *X*. For example, in *X* the modulus method is used to construct so called Newtonian spaces which have many properties common to the first order Sobolev spaces in \mathbb{R}^n . The constructions require that the metric space X is so called good metric space, i.e. the measure μ in X is doubling and X supports a Poincaré inequality in addition to various topological properties, see $[2]$, [7] and [13].

The purpose of this paper is to introduce an alternative acapacity, the $\text{Cap}_{p}^{\text{M}}$ -capacity, which is directly connected to the M_{p} -modulus for $p > 1$

Received 12.06.2021

and uses neither the doubling property nor the Poincaré inequalities. For $p = 1$ the Cap_p^M-capacity lies between the AM_1 - and M_1 -modulus.

The Cap^M-capacity, $p > 1$, offers a more straightforward approach to the classical Dirichlet capacity cap_p and their equivalence is considered in Section 4.

2. M_p and AM_p modulus

Let (X, d) be a metric space equipped by a Borel regular measure μ which is finite on compact sets. We also assume that *X* is proper, i.e. bounded closed sets are compact. From this it follows that *X* is complete.

A continuous mapping $\gamma: [a, b] \to X$ is called a *curve*. We say that a curve γ is a *path* if it has a finite and non–zero total length; in this case we parametrize γ by its arclength. The *locus* of γ is defined as $\gamma([0,\ell])$ and denoted by $\langle \gamma \rangle$ and the length of γ by $\ell(\gamma)$.

Let Γ be a family of paths in *X*. A non–negative Borel function ρ is *M*–*admissible*, or simply admissible, for Γ if

$$
\int_{\gamma} \rho \, ds \ge 1
$$

for every $\gamma \in \Gamma$. For $p \geq 1$ the M_p –*modulus* of Γ is defined as

$$
M_p(\Gamma) = \inf \int_X \rho^p \, d\mu
$$

where the infimum is taken over all admissible functions *ρ*.

A sequence of non-negative Borel functions ρ_i , $i = 1, 2, ...,$ is AM *admissible*, or simply admissible, for Γ if

$$
\liminf_{i \to \infty} \int_{\gamma} \rho_i \, ds \ge 1 \tag{2.1}
$$

for every $\gamma \in \Gamma$. The *approximation modulus* Γ is defined as

$$
AM_p(\Gamma) = \inf_{(\rho_i)} \left\{ \liminf_{i \to \infty} \int_X \rho_i^p \, d\mu \right\} \tag{2.2}
$$

where the infimum is taken over all AM –admissible sequences (ρ_i) for Γ .

Since the space *X* is proper, instead of admissible Borel functions it is possible to use lower semicontinuous non–negative functions as admissible for the M_p – and AM_p –modulus, see e.g. [5, Proposition 7.14].

For the following lemma, we refer to [8], [12] and [9] for the properties of the AM_p –modulus and to [2], [6] and [1] for those of the M_p -modulus, $p \geq 1$.

Lemma 2.1. *The* AM_p – and M_p –modulus are outer measures in the set *of all paths in X, i.e.* $(a) AM_p(\emptyset) = 0$ (h) $\Gamma_1 \subset \Gamma_2 \implies AM_p(\Gamma_1) \leq AM_p(\Gamma_2)$. $f(c)$ $\Gamma = \bigcup_{j=1}^{\infty} \Gamma_j \implies AM_p(\Gamma) \leq \sum_{i=j}^{\infty} AM_p(\Gamma_j).$ (d) $AM_1(\Gamma) \leq M_1(\Gamma)$ *and* $AM_p(\Gamma) = M_p(\Gamma)$ *,* $p > 1$ *, for every path family* Γ*. The properties (a)–(c) also hold for the* M_p –modulus.

We employ following notation for path families associated with an arbitrary set $E \subset X$ and an open bounded set $G \supset E$:

$$
\Gamma(E, G) = \Gamma(E) \cap \Gamma(X \setminus G) \text{ and } \Gamma(E) = \{ \gamma : \gamma \text{ meets } E \}.
$$

3. Cap^M-capacity

In this section we assume that *X* is a proper metric space with a Borel regular measure μ and introduce a new capacity for the condenser (E, G) where *E* is an arbitrary subset of a bounded open set *G* in *X*. Since a metric space usually has plenty of Lipschitz functions but need not contain many curves such a capacity is not possible without an assumption that guarantees plenitude of curves and we use the quasiconvexity property of *X*, i.e. there is $c < \infty$ such that for all $x, y \in X$, $x \neq y$, there exists a path γ joining x to y whose length satisfies $\ell(\gamma) \leq c d(x, y)$. Note that we do not need the quasiconvexity property for *G* but for *X*.

A complete doubling p –Poincaré space X is quasiconvex, see [2, Chapter 4], but the converse is not true as simple examples show.

We mostly work with Lipschitz functions in *X*. For such a function *u* a non-negative Borel function *g* is an upper gradient of *u* in *X* if for every path γ in X

$$
|u(\gamma(\ell)) - u(\gamma(0))| \le \int_{\gamma} g ds,
$$

see [2, Chapters 1–2] for the properties of functions and their upper gradients. The lower pointwise dilatation

$$
|\nabla u(x)| = \liminf_{r \to 0} \sup_{y \in B(x,r)} \frac{|u(y) - u(x)|}{r}
$$

is an upper gradient of *u*, see [2, Proposition 1.14]. In \mathbb{R}^n , $|\nabla u(x)|$ is a unique minimal upper gradient for a Lipschitz function *u*, see [2, Examples A1].

Let *G* be a fixed bounded open set in *X* and *E* an arbitrary subset *G*. An increasing sequence (*ui*) of non–negative Lipschitz functions in *X* is called *admissible*, $(u_i) \in Ad(E, G)$, for the condenser (E, G) if $u_i = 0$ in $X \setminus G$ and

$$
\liminf_{i \to \infty} u_i(x) \ge 1
$$

for $x \in E$ For $p \geq 1$ we define

$$
Cap_p^M(E, G) = \inf \Big\{ \liminf_{i \to \infty} \int_G g_i^p d\mu : (u_i) \in Ad(E, G) \text{ and}
$$

$$
g_i \text{ is an upper gradient of } u_i \Big\}.
$$

It is obvious that the Cap_p^M -capacity is monotone, i.e.

$$
E_1 \subset E_2 \subset G \Longrightarrow \mathrm{Cap}_p^{\mathrm{M}}(E_1, G) \le \mathrm{Cap}_p^{\mathrm{M}}(E_2, G). \tag{3.1}
$$

In the rest of this section we assume that *X* is proper and quasiconvex and $G \subset X$ is a bounded open set.

Theorem 3.1. *If E is an arbitrary subset of G, then for* $p \ge 1$

$$
AM_p(\Gamma(E, G)) \leq \text{Cap}_p^{\text{M}}(E, G) \leq M_p(\Gamma(E; G)).\tag{3.2}
$$

For $p > 1$ *the above inequalities are equalities and, in particular,*

$$
Cap_p^M(E, G) = M_p(\Gamma(E; G)).
$$
\n(3.3)

Proof. The first inequality \leq in (3.2) is classical. For completeness we recall the proof. Let (u_i) be an $Ad(E, G)$ –admissible sequence and g_i an upper gradient of u_i . Now (g_i) is an AM -admissible sequence for $\Gamma(E, G)$ because for each path $\gamma \in \Gamma(E, G)$ with $\gamma(\ell) \in E$

$$
\liminf_{i \to \infty} \int_{\gamma} g_i ds \ge \liminf_{i \to \infty} u_i(\gamma(\ell)) \ge 1.
$$

Hence

$$
AM_p(\Gamma(E, G)) \le \liminf_{i \to \infty} \int_G g_i^p d\mu
$$

and since this holds for all sequences $(u_i) \in Ad(E, G)$ and all upper gradients g_i of u_i , the left side of (3.2) follows.

For the second inequality in (3.2) we use a modification of the method in [2, Lemmata 5.25 and 5.26]. Let $\tilde{\rho}$ be a lower semicontinuous *M*admissible function for $\Gamma(E, G)$. We may assume that $\tilde{\rho} = 0$ in $X \setminus G$ and

$$
\int_G \tilde{\rho}^p \, d\mu < \infty.
$$

Let $\tau > 0$ and set $\rho = \tilde{\rho} + \tau$ in X. Now ρ is lower semicontinuous in *X* and since *X* is proper there is an increasing sequence of continuous functions $\rho_i: X \to [0, \infty)$ such that

$$
\lim_{i \to \infty} \rho_i(x) = \rho(x)
$$

for every $x \in X$. We may assume that $\rho_i \geq \tau$ in X.

For each *i* define

$$
u_i(x) = \inf \big\{ \int_{\gamma} \rho_i \, ds : \, \gamma \text{ joins } X \setminus G \text{ to } x \big\}
$$

for $x \in G$ and $u_i(x) = 0$ for $x \in X \setminus G$. Note that each path γ which meets $X \setminus G$ and $x \in G$ has a subpath meeting $X \setminus G$ at $\gamma(0)$ only. Hence in the definition of $u_i(x)$, $x \in G$, we can consider only paths γ which lie in *G* except at $\gamma(0)$. The sequence (u_i) is increasing and we show that each *u_i* is an C_i *c*–Lipschitz function where $C_i = \sup\{\rho_i(x) : x \in X\}$ and *c* is the quasigeodesic constant of X. Consider first the case where $x, y \in G$. By symmetry we may assume $u_i(y) \geq u_i(x)$. Let $\varepsilon > 0$ and choose a path γ_{xy} joining *x* to *y* with $\ell(\gamma_{xy}) \leq c d(x, y)$. By the definition of $u_i(x)$ there is a path γ_x from $X \setminus G$ to *x* such that

$$
u_i(x) > \int_{\gamma_x} \rho_i \, ds - \varepsilon.
$$

Joining the paths γ_x and γ_{xy} together we obtain a path γ from $X \setminus G$ to *y* and now

$$
u_i(y) - u_i(x) \le \int_{\gamma} \rho_i \, ds - \int_{\gamma_x} \rho_i \, ds + \varepsilon \le \int_{\gamma_{xy}} \rho_i \, ds + \varepsilon \le C_i c \, d(x, y) + \varepsilon
$$

and letting $\varepsilon \to 0$ we obtain the required Lipschitz bound for u_i . If $x \in X \setminus G$ and $y \in G$, then $u_i(x) = 0$ and choosing γ_{xy} as before we have

$$
u_i(y) - u_i(x) = u_i(y) \le \int_{\gamma_{xy}} \rho_i ds \le C_i c d(x, y).
$$

For $y, x \in X \setminus G$ the inequality is trivial.

The function ρ_i is an upper gradient of u_i . If γ is a path joining *y* and *x* which lie in *G*, then by symmetry we can assume that $u_i(y) \geq u_i(x)$ and for $\varepsilon > 0$ we can choose a path γ_x joining $X \setminus G$ to *x* such that

$$
u_i(x) > \int_{\gamma_x} \rho_i \, ds - \varepsilon
$$

and joining the paths γ_x and γ together we obtain the path $\tilde{\gamma}$ joining $X \setminus G$ to *y*. Thus

$$
u_i(y) - u_i(x) \le \int_{\tilde{\gamma}} \rho_i \, ds - \int_{\gamma_x} \rho_i \, ds + \varepsilon = \int_{\gamma} \rho_i \, ds + \varepsilon
$$

and letting $\varepsilon \to 0$ we obtain the required inequality. If $y \in X \setminus G$ and $x \in G$ and γ is a path joining *y* to *x*, then

$$
u_i(y) - u_i(x) = u_i(y) \le \int_{\gamma} \rho_i ds.
$$

The case $x, y \in X \setminus G$ is again trivial.

Next let $\varepsilon > 0$ and

$$
E_{\varepsilon} = \{ x \in E : \lim_{i \to \infty} u_i(x) < 1 - \varepsilon \}.
$$

Fix $x \in E_{\varepsilon}$. Then there is a sequence of paths γ_i from $X \setminus G$ to x such that for each *i*

$$
1 - \varepsilon > u_i(x) \ge \int_{\gamma_i} \rho_i \, ds - 2^{-i} \varepsilon. \tag{3.4}
$$

Now for $j \geq i$

$$
u_i(x) \le u_j(x) \le \int_{\gamma_j} \rho_j ds.
$$

Let

$$
L = \liminf_{i \to \infty} \ell(\gamma_i)
$$

and reparameterize the paths γ_i as $\tilde{\gamma_i}(t) = \gamma_i(t\ell(\gamma_i))$, $t \in [0,1]$. Since we may assume that each γ_i meets $X \setminus G$ at $\gamma_i(0)$ only,

$$
\ell(\gamma_i) \le \int_{\gamma_i} \frac{\rho_i}{\tau} ds \le \frac{1-\varepsilon}{\tau} < \frac{1}{\tau}
$$

and so the curves $\tilde{\gamma}_i$ are $\ell(\gamma_i)$ –Lipschitz and uniformly $1/\tau$ –Lipschitz and thus an equicontinuous family of mappings from [0*,* 1] to the compact space *G*. By the Ascoli theorem there is a subsequence of $(\tilde{\gamma}_i)$, denoted again by $({\tilde{\gamma}}_i)$, which converges uniformly to a 1/ τ –Lipschitz curve $\tilde{\gamma}$: $[0,1] \rightarrow \overline{G}$. Clearly $\tilde{\gamma}(0) \in X \setminus G$ and $\tilde{\gamma}(1) = x$ and by the continuity of ρ_j in *G*

$$
\lim_{i \to \infty} \rho_j(\tilde{\gamma}_i(t)) = \rho_j(\tilde{\gamma}(t))
$$

for each *j* and $t \in [0, 1]$.

Next let γ be the reparametrization of $\tilde{\gamma}$ by arch length and note that

$$
\ell(\gamma) \leq \liminf_{i \to \infty} \ell(\gamma_i) = L.
$$

Denote by

$$
s_i(t) = \ell(\tilde{\gamma}_i|[0, t]), \, t \in [0, 1]
$$

the length function of $\tilde{\gamma}_i$ and by

$$
s(t) = \ell(\tilde{\gamma}|[0,t]), \, t \in [0,1]
$$

the length function of $\tilde{\gamma}$. Now $s'_i(t) = \ell(\gamma_i)$ for $t \in (0,1)$ and at the point $t_0 \in (0,1)$ of the differentiability of *s* we have for $t_0 < t_1 \leq 1$

$$
\frac{s(t_1) - s(t_0)}{t_1 - t_0} = \frac{\ell(\tilde{\gamma} | [t_0, t_1])}{t_1 - t_0} \le \liminf_{i \to \infty} \frac{\ell(\tilde{\gamma}_i | [t_0, t_1])}{t_1 - t_0}
$$

$$
= \frac{1}{t_1 - t_0} \liminf_{i \to \infty} \int_{t_0}^{t_1} s_i'(t) dt = \liminf_{i \to \infty} \frac{\ell(\gamma_i)(t_1 - t_0)}{t_1 - t_0} = L
$$

and hence $s'(t) \leq L$ for a.e. $t \in [0,1]$. For $j \geq i$ we have

$$
\int_{\tilde{\gamma}_j} \rho_j ds \ge \int_{\tilde{\gamma}_j} \rho_i ds = \int_0^1 \rho_i(\tilde{\gamma}_j(t)) s_j'(t) dt = \ell(\gamma_j) \int_0^1 \rho_i(\tilde{\gamma}_j(t)) dt. \tag{3.5}
$$

Note that the function *s* is absolutely continuous because $\tilde{\gamma}$ is a Lipschitz curve. Now (3.4) , (3.5) and the continuity of ρ_i yield for each *i*

$$
1 - \varepsilon \ge \liminf_{j \to \infty} \int_{\tilde{\gamma}_j} \rho_j ds \ge L \int_0^1 \rho_i(\tilde{\gamma}(t)) dt
$$

$$
\ge \int_0^1 \rho_i(\tilde{\gamma}(t))s'(t) dt = \int_{\gamma} \rho_i ds.
$$

This leads to contradiction since by the Lebesgue increasing convergence theorem for every path $\gamma \in \Gamma(E, G)$

$$
\lim_{i \to \infty} \int_{\gamma} \rho_i \, ds = \int_{\gamma} \rho \, ds \ge \int_{\gamma} \tilde{\rho} \, ds \ge 1
$$

and thus

$$
\lim_{i \to \infty} u_i(x) \ge 1 - \varepsilon
$$

for each $x \in E$.

Now $(u_i/(1-\varepsilon))$ is an admissible sequence for $\text{Cap}_p^M(E, G)$ and by the Lebesgue bounded convergence theorem

$$
\mathrm{Cap}_p^\mathcal{M}(E,G) \le \liminf_{i \to \infty} \int_G \left(\frac{\rho_i}{1-\varepsilon}\right)^p d\mu = \int_G \left(\frac{\tilde{\rho} + \tau}{1-\varepsilon}\right)^p d\mu
$$

and since $\tilde{\rho}$ is an arbitrary *M*–admissible function for $\Gamma(E, G)$ letting $\varepsilon \to 0$ and $\tau \to 0$ we complete the proof for the right inequality of (3.2).

Because $AM_p(\Gamma(E, G)) = M_p(\Gamma(E, G))$ for $p > 1$, the equality case in (3.2) is clear. \Box **Lemma 3.1.** *If* $E \subset G$ *is an arbitrary set and* $p \geq 1$ *, then there is a Borel set* $E' \supset E$ *such that*

$$
Cap_p^M(E', G) = Cap_p^M(E, G).
$$

Proof. If $\text{Cap}_p^M(E, G) = \infty$ we can choose $E' = G$ and then the monotonicity of $\mathrm{Cap}^\mathrm{M}_\mathrm{p}$ implies

$$
Cap_p^M(G, G) \ge Cap_p^M(E, G) = \infty.
$$

Suppose that $\text{Cap}_p^M(E, G) < \infty$ and for each $j \in \mathbb{N}$ choose an $Ad(E, G)$ admissible sequence (u_i^j) $\binom{J}{i}$ such that

$$
Cap_p^M(E, G) \ge \liminf_{i \to \infty} \int_G (g_i^j)^p d\mu - 1/j \tag{3.6}
$$

where g_i^j i ^{*i*}
is an upper gradient of u_i^j *i* .

Now the set

$$
F^j = \left\{ x \in G : \liminf_{i \to \infty} u_i^j(x) \ge 1 \right\}
$$

is a Borel set and $F^j \supset E$. The set $E' = \bigcap_j F^j$ is a Borel set and contains E and thus $Cap_p(E', G) \geq Cap_p(E, G)$. Using (3.6) we obtain the converse inequality

$$
Cap_p(E', G) \le \liminf_{j \to \infty} \liminf_{i \to \infty} \int_G (g_i^j)^p d\mu
$$

$$
\le \liminf_{j \to \infty} (\text{Cap}_p^M(E, G) + 1/j) = \text{Cap}_p^M(E, G).
$$

From Theorem 3.1 and Lemma 3.1 we obtain:

Corollary 3.1. *If* $p > 1$ *then for each set* $E \subset G$ *there is a Borel set* $E' \supset E$ *such that* $M_p(\Gamma(E, G)) = M_p(\Gamma(E', G)).$

Since for $p > 1$, $\text{Cap}_p^{\text{M}}(E, G) = M_p(\Gamma(E, G))$ for all sets $E \subset G$, the Cap_p^M(*E*, *G*)–capacity inherits all the properties of the M_p –modulus in a quasiconvex space *X*. For the properties of the Choquet capacity see Section 4.

Theorem 3.2. *The* Cap_p^M-capacity, $p > 1$, has the following properties: (a) Cap_p^M is subadditive. i.e. if $E_i \subset G$, $i = 1, 2, ...,$ then

$$
Cap_p^M(\bigcup_i E_i, G) \le \sum_i Cap_p^M(E_i, G).
$$

(b) If K_1 ⊃ K_2 ⊃ \ldots *are compact sets in G, then*

$$
\lim_{i \to \infty} \mathrm{Cap}_{\mathrm{p}}^{\mathrm{M}}(K_i, G) = \mathrm{Cap}_{\mathrm{p}}^{\mathrm{M}}(\bigcap_i K_i, G).
$$

 $f(c)$ Cap_p^M is a Choquet capacity, i.e. for a Suslin set $E \subset G$,

$$
\operatorname{Cap}_p^{\mathcal{M}}(E,G) = \sup \big\{\operatorname{Cap}_p^{\mathcal{M}}(K,G): \, K \subset E \text{ compact}\big\}.
$$

Proof. The subadditivity of the M_p –modulus is well known, see Lemma 2.1, and hence Theorem 3.1 implies (a). For (b) let $K = \bigcap_i K_i$ and note that by the monotonicity

$$
\lim_{i \to \infty} \operatorname{Cap}_p^M(K_i, G) \ge \operatorname{Cap}_p^M(K, G).
$$

For the reverse inequality let $\varepsilon > 0$ and choose a sequence $(u_i) \in Ad(K, G)$ such that

$$
Cap_p^M(K, G) \ge \liminf_{i \to \infty} \int_G g_i^p d\mu - \varepsilon. \tag{3.7}
$$

The function $u = \lim_i u_i$ is lower semicontinuous in *G* as a limit of an increasing sequence of continuous functions u_i . Thus the set $U = \{x \in$ $G: u(x) > 1 - \varepsilon$ is open and contains *K*. Now there is i_0 such that $K_i \subset U$ for $i \geq i_0$ and thus $(u_i/(1-\varepsilon)) \in Ad(K_i, G]$ for $i \geq i_0$. By (3.7)

$$
\lim_{i \to \infty} \text{Cap}_p^M(K_i, G) \le \liminf_{i \to \infty} \int_G \left(\frac{g_i}{1 - \varepsilon}\right)^p d\mu \le \frac{\text{Cap}_p^M(K, G) + \varepsilon}{(1 - \varepsilon)^p}
$$

and letting $\varepsilon \to 0$ we obtain (b).

The map $E \mapsto \text{Cap}_p^M(E, G)$ is monotone and satisfies (a) and (b). Hence by the Choquet capacitibility theorem, see [4], it satisfies (c). \Box

4. Dirichlet capacity

In this section we compare the $\mathrm{Cap}^{\mathrm{M}}_p$ -capacity to the classical Dirichlet capacity cap_{p} and we first recall its definition and basic properties due to G. Choquet. Originally this capacity used C_0^{∞} -functions in \mathbb{R}^n and their gradients but the upper gradients for Lipschitz functions work as well in a metric measure space *X*, see [2, Section 6.3].

We again assume that *X* is a proper quasigeodesic space and $G \subset X$ is a fixed bounded open set.

Let *K* be a compact subset of *G* and $Ad_C(K, G)$ the family of all Lipschitz functions such that $u \geq 1$ in *K* and $u = 0$ in $X \setminus G$. Define

$$
\text{cap}_p(K, G) = \inf \Big\{ \int_G g^p \, d\mu : \, u \in Ad_C(K, G),
$$

g an upper gradient of *u* \Big\},

Obviously the infimum does not change if restricted to test functions satisfying $0 \le u \le 1$. The condition that a test function $u \in Ad_C(K, G)$ satisfies $u = 0$ in $X \setminus G$ can be replaced, due to the continuity of *u*, by the requirement that *u* has compact support in *G*.

If $U \subset G$ is open, then we set

$$
cap_p(U, G) = sup\{cap_p(K, G) : K \subset U \text{ compact}\}
$$

and for an arbitrary set $E \subset G$

$$
cap_p(E, G) = \inf \{ cap_p(U, G) : U \text{ open}, E \subset U \subset G \}.
$$

Now there are two definitions for $\text{cap}_{p}(E, G)$ when *E* is compact but since the competitors are continuous the both definitions give the same value.

The cap_p–capacity, $p \geq 1$, has the following properties: (i) monotonicity: $E_1 \subset E_2 \Longrightarrow \text{cap}(E_1, G) \leq \text{cap}_p(E_2, G)$. (ii) subadditivity: $E_1 \subset E_2 \subset \ldots \Longrightarrow \lim_i \operatorname{cap}_p(E_i, G) = \operatorname{cap}_p(\bigcup_i E_i).$ (iii) $K_1 \supset K_2 \supset \dots$ compact $\implies \lim_i \operatorname{cap}_p(K_i, G) = \operatorname{cap}_p(\bigcap_i K_i, G)$. By the Choquet capacibility theorem for all Suslin sets $E \subset G$

$$
cap_p(E, G) = \sup \{ cap_p(K, G) : K \subset E \text{ compact} \}.
$$

For the Choquet theory see [4] and [3] and for the Dirichlet capacity in *X*, [2, Section 6.3].

We frequently use the following lemma:

Lemma 4.1. *For* $p \ge 1$ *and* $K ⊂ G$ *compact the equality*

$$
cap_p(K, G) = M_p(\Gamma(K, G)) = AM_p(\Gamma(K, G)) = Cap_p^M(K, G)
$$
 (4.1)

holds.

Proof. For *p* = 1 by [11, Lemma 3.3]

$$
cap_1(K,G) = M_1(\Gamma(K,G)) = AM_1(\Gamma(K,G))
$$

and thus by Theorem 3.1 equality holds in (4.1) . For $p > 1$, (4.1) is well known, see e.g. [2, Chapter 5]. and [1]. Note that for $p > 1$, $M_p(\Gamma) =$ $AM_p(\Gamma)$ for every path family Γ in *X*, see [11, Lemma 3.3]. \Box **Lemma 4.2.** *If* $E \subset G$ *is an arbitrary set and* $p \geq 1$ *, then*

$$
Cap_p^{\mathcal{M}}(E,G) \ge cap_p(E,G). \tag{4.2}
$$

Proof. Choose a Borel set $E' \supset E$ such that $\text{Cap}_{p}^{M}(E, G) = \text{Cap}_{p}^{M}(E', G)$ and now by Lemma 4.1 and the Choquet capacibility theorem

$$
Cap_p^M(E, G) = Cap_p^M(E', G) \ge \sup_{\{K \subset E' \text{ compact}\}} Cap_p^M(K, G)
$$

=
$$
sup_{\{K \subset E' \text{ compact}\}} cap_p(K, G) = cap_p(E', G) \ge cap_p(E, G).
$$

Lemma 4.3. *Suppose that* E *is an arbitrary subset of* G *. For* $p > 1$

$$
AM_p(\Gamma(E, G)) = M_p(\Gamma(E, G)) \le \text{cap}_p(E, G)
$$
\n(4.3)

and for $p = 1$

$$
AM_1(\Gamma(E, G)) \le \text{cap}_1(E, G). \tag{4.4}
$$

Proof. The first equality in (4.3) is due to the fact that $AM_p = M_p$ for *p* > 1. For the inequality in (4.3) let $U \subset G$ be an open set with $U \supset E$ and choose compact sets $K_1 \subset K_2 \subset \ldots \subset U$ such that $\cup_i K_i = U$. Now $\Gamma(K_i, G) \subset \Gamma(K_{i+1}, G)$ and

$$
\bigcup_i \Gamma(K_i, G) = \Gamma(U, G)
$$

and since $p > 1$ we have $M_p(\Gamma(U, G)) = \lim_{i \to \infty} M_p(\Gamma(K_i, G))$, see [1], and then from (4.1) it follows

$$
M_p(\Gamma(U, G)) = \lim_{i \to \infty} M_p(\Gamma(K_i, G)) = \lim_{i \to \infty} \text{cap}_p(K_i, G) = \text{cap}_p(U, G).
$$

Since this holds for all open sets $U \supset E$

$$
M_p(\Gamma(E, G)) \le \inf_{G \supset U \supset E} M_p(\Gamma(U, G))
$$

=
$$
\inf_{G \supset U \supset E} \operatorname{cap}_p(\Gamma(U, G)) = \operatorname{cap}_p(E, G).
$$

For (4.4) we can proceed as above but now by [8, Lemma 3.11] we have

$$
cap_1(U, G) = \lim_{i \to \infty} cap_1(K_i, G) = \lim_{i \to \infty} M_1(\Gamma(K_i, G)) \ge AM_1(\Gamma(U, G))
$$

and hence for every open set $U \supset E$

$$
cap_1(U, G) \ge AM_1(\Gamma(U, G)) \ge AM_1(\Gamma(E, G)).
$$

 \Box

 \Box

The following summarizes the situation for Suslin sets for $p = 1$.

Lemma 4.4. *If* $E \subset G$ *is a Suslin set, then*

$$
cap_1(E, G) = AM_1(\Gamma(E, G)) \le Cap_1^M(E, G) \le M_1(\Gamma(E, G)). \tag{4.5}
$$

Proof. To prove the first equality in (4.5) it suffices to show, by (4.4) , that

$$
cap1(E, G) \le AM1(\Gamma(E, G)).
$$
\n(4.6)

Since *E* is a Suslin set, the Choquet capacibility theorem yields

$$
cap_1(E, G) = \sup \{ cap_1(K, G) : K \subset E \text{ compact} \}
$$

and for each compact set $K \subset E$

$$
cap_1(K,G) = AM_1(\Gamma(K,G)) \le AM_1(\Gamma(E,G))
$$

and (4.6) follows. The rest follows from Theorem 3.1 and Lemma 4.2. \Box

The following theorem summarizes the situation for $p > 1$ and $p = 1$, respectively.

Theorem 4.1. If X is a proper quasigeodesic metric space, $G \subset X$ a *bounded open set and* $E \subset G$ *an arbitrary set, then for* $p > 1$

$$
AM_p(\Gamma(E, G)) = \operatorname{cap}_p(E, G) = \operatorname{Cap}_p^{\mathcal{M}}(E, G) = M_p(\Gamma(E, G)) \tag{4.7}
$$

and for $p = 1$

$$
AM_1(\Gamma(E, G)) \le \text{cap}_1(E, G) \le \text{Cap}_1^{\text{M}}(E, G) \le M_1(\Gamma(E, G)). \tag{4.8}
$$

Proof. Since $AM_p(\Gamma(E, G)) = M_p(\Gamma(E, G))$ for $p > 1$ the proof for (4.7) follows from Theorem 3.1, Lemmata 4.2 and 4.3. The inequalities in (4.8) follow from Theorem 3.1, (4.4) and (4.2). \Box

References

- [1] Ambrosio, L., Di Marino, S., Savaré, G. (2015). On the duality between p-modulus and probability measures. *J. Eur. Math. Soc., 17*, 1817–1853.
- [2] Björn, A., Björn, J. (2011). *Nonlinear potential theory on metric spaces*. EMS Tracts Math., vol. 17. European Mathematical Society (EMS), Zurich.
- [3] Brelot, M. (1967). *Lectures on potential theory*. Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy, second edition, revised and enlarged with the help of S. Ramaswamy, Tata Institute of Fundamental Research Lectures on Mathematics, N 19 Tata Institute of Fundamental Research, Bombay.
- [4] Choquet, G. (1953–54). Theory of capacities. *Ann. Inst. Fourier, 5*, 131–295.
- [5] Folland, G.B. (1999). *Real analysis*. 2nd ed., Wiley, New York.
- [6] Fuglede, B. (1957). Extremal length and functional completion. *Acta Math., 98*, 171–219.
- [7] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J. (2015). *Sobolev spaces on metric measure spaces*. Cambridge University Press.
- [8] Honzlová–Exnerová, V., Kalenda, O., Malý, J., Martio, O. Plans on measures and *AM*–modulus. *J. Funct. Anal.*, preprint arXiv 1904.04527 (to appear).
- [9] Honzlová–Exnerová, V., Malý, J., Martio, O. (2017). Modulus in Banach function spaces. *Ark. Mat., 55* (1), 105–130.
- [10] Honzlová–Exnerová, V., Malý, J., Martio, O. (2018). Functions of bounded variation and the AM -modulus in \mathbb{R}^n . *Nonlinear Anal.*, 177, 553-571.
- [11] Honzlov´a–Exnerov´a, V., Kalenda, O., Mal´y, J., Martio, O. *AM*–modulus and Hausdorff measure of codimension one in metric measure spaces. *Math. Nachr.* (to appear).
- [12] Martio, O. (2016). Functions of bounded variation and curves in metric measure spaces. *Adv. Calc. Var., 9* (4), 305–322.
- [13] Shanmugalingam, N. (2000). Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. *Rev. Mat. Iberoam., 16*, 243–279.

CONTACT INFORMATION

Olli Martio Department of Mathematics and Statistics, FI-00014 University of Helsinki, Finland *E-Mail:* olli.martio@helsinki.fi