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Abstract. The paper deals with constructing an asymptotic one-
phase soliton-like solution to the Benjamin–Bona–Mahony equation with
variable coefficients and a strong singularity making use of the non-linear
WKB technique. The influence of the small-parameter value on the
structure and the qualitative properties of the asymptotic solution, as
well as the accuracy with which the solution satisfies the considerable
equation, have been analyzed. It was demonstrated that due to the
strong singularity, it is possible to write explicitly not only the main
term of the asymptotics but at least its first-order term.
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1. Introduction

The paper deals with the Benjamin–Bona–Mahony equation (shortly,
the BBM equation) with variable coefficients

a(x, t, ε)ut + b(x, t, ε)ux + c(x, t, ε)uux = ε2nuxxt, (1.1)

that is a generalization of the BBM equation [1–4] of the following form

ut + ux + uux − uxxt = 0. (1.2)

Equation (1.2) describes the propagation of long waves with small ampli-
tude on the liquid surface and is called the regularized Korteweg-de Vries
equation [5, 6].

Received 14.02.2021

ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України



V. Samoilenko, Yu. Samoilenko 227

The coefficients a(x, t, ε), b(x, t, ε), c(x, t, ε) of equation (1.1) are in-
finitely differentiable quantities of the variables (x, t) ∈ R× [0;T ], as well
as a small parameter ε, and can be represented as asymptotic (according
to Poincaré) series

a(x, t, ε) ∼
∞∑
k=0

εkak(x, t),

b(x, t, ε) ∼
∞∑
k=0

εkbk(x, t),

c(x, t, ε) ∼
∞∑
k=0

εkck(x, t). (1.3)

The major coefficients of series (1.3) are assumed to satisfy the condition
a0(x, t) b0(x, t) c0(x, t) ̸= 0 for all (x, t) ∈ R× [0;T ].

The paper deals with equation (1.1) when the natural number n in the
power exponent of singularity exceeds unity, i.e. the case of strong singu-
larity is considered. The aim of the paper is to construct an asymptotic
one-phase soliton-like solution to equation (1.1) and analyze the influence
of the power exponent in the singularity on the qualitative properties of
the asymptotic solution, as well as the structure of the algorithm for its
construction.

In this paper, it was established that the power exponent of small
parameter in (1.1) affects the structure of equations for terms in the
asymptotic expansion, the algorithm of its construction, and the accuracy
with which the found approximate solution satisfies the original equation.
This is demonstrated in detail below. Here, we only note that due to
the strong singularity in (1.1), the differential equations for the regular
and singular parts of the asymptotic expansion change, which leads to
some new qualitative properties of the singular part of the asymptotics.
In particular, the consequence of such changes in the structure of the
mentioned differential equations is a possibility to explicitly determine
not only the main term of the singular part of the asymptotics but at
least the first-order term.

In addition, the strong singularity effect also appears in the defini-
tion of the function that determines the so-called discontinuity curve for
the asymptotic one-phase soliton-like solution, since the orthogonality
condition is used not only through the main term, as is in the case n = 1.

In the paper, we used the nonlinear WKB technique [7–9] and an
approach for constructing the asymptotic one-phase soliton-like solution
with variable coefficients in form (1.1) with n = 1, for which asymp-
totic one-phase soliton-like solutions [10] and asymptotic soliton-like Σ-
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solutions [11] were constructed, and the Cauchy problem [12] for equation
(1.1) was considered.

2. Preliminary notes and definitions

Recall some notations and definitions.
By S = S(R), let us denote a space of quickly decreasing functions,

i.e. functions that are infinitely differentiable on the set R and for which
the condition

sup
x∈R

∣∣∣∣xm d n

dx n
u(x)

∣∣∣∣ < +∞

is fulfilled for any integers m,n ≥ 0 .
By G1 = G1(R× [0;T ]×R), let us denote a linear space of infinitely

differentiable functions f = f(x, t, τ), (x, t, τ) ∈ R× [0;T ]×R for which
the following conditions are fulfilled [6, 8]:

10) the relationship

lim
τ→+∞

τn
∂ p

∂xp
∂ q

∂ tq
∂ r

∂τ r
f(x, t, τ) = 0, (x, t) ∈ K, (2.1)

is true for any non-negative integers n, p, q, r uniformly with respect to
(x, t) on any compact set K ⊂ R× [0;T ];

20) there exists an infinitely differentiable function f−(x, t) such that
the equality

lim
τ→−∞

τn
∂ p

∂ xp
∂ q

∂ tq
∂ r

∂ τ r
(
f(x, t, τ)− f−(x, t)

)
= 0, (x, t) ∈ K,

is true.
Let G0

1 = G0
1(R × [0;T ] × R) ⊂ G1 be a space of functions f =

f(x, t, τ) ∈ G1, (x, t, τ) ∈ R× [0;T ]×R, such that the condition

lim
τ→−∞

f(x, t, τ) = 0

is fulfilled uniformly with respect to the variables (x, t) on any compact
K ⊂ R× [0;T ].

Below, we apply the concept of the asymptotic one-phase soliton-like
solution of equation (1.1). It is based on the following definition.

Definition [6, 8]. A function u = u(x, t, ε), where ε is a small pa-
rameter, is called the asymptotic one-phase soliton-like solution if, for
any N ≥ 0, it can be written as the asymptotic series

u(x, t, ε) =
N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] +O(εN+1), τ =
x− φ(t)

εn
, (2.2)
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where φ(t) ∈ C∞([0;T ]) is a scalar real function; the coefficients uj(x, t),
j = 0, N, are infinitely differentiable (at the points t = 0 and t = T , the
left and right derivatives, respectivly, are considered), and V0(x, t, τ) ∈
G0

1, Vj(x, t, τ) ∈ G1, j = 1 , N .
The value x − φ(t) is called the phase of the one-phase soliton-like

function u(x, t, ε), and the set Γ = {(x, t) : x = φ(t), t ∈ [0;T ]} is called
the discontinuity curve of the function.

3. General scheme for constructing asymptotic one-phase
soliton-like solutions

Let us move on constructing asymptotic one-phase soliton-like solu-
tions of equation (1.1). The solution is searched [10] as an asymptotic
series (2.2) for which we use the following notation:

u(x, t, ε) = YN (x, t, τ, ε) +O(εN+1), (3.1)

where
YN (x, t, τ, ε) = UN (x, t, ε) + VN (x, t, τ, ε),

UN (x, t, ε) =
N∑
j=0

εjuj(x, t), VN (x, t, τ, ε) =
N∑
j=0

εjVj(x, t, τ).

For asymptotic series (2.2), it is necessary to define the coefficients of
the regular part UN (x, t, ε) and the singular part VN (x, t, τ, ε). Equations
for the regular and singular parts are found from (1.1) in accordance with
property (2.1). The functions uj(x, t), j = 0 , N , should only be smooth,
but the functions Vj(x, t, τ), j = 0 , N , must belong to some functional
spaces.

Using the property V0(x, t, τ) ∈ G0
1, Vj(x, t, τ) ∈ G1 j = 1 , N , and

substituting series (2.2) into equation (1.1), we obtain the partial differ-
ential equations: first for the regular part UN (x, t, ε) and then for the
singular part VN (x, t, τ, ε) of the asymptotics. Separating these relations,
we find equations for the coefficients of asymptotic series (2.2). In partic-
ular, the coefficients of the regular part uj(x, t), j = 0, N , are determined
from the system

a0(x, t)
∂u0
∂t

+ b0(x, t)
∂u0
∂x

+ c0(x, t)u0
∂u0
∂x

= 0, (3.2)

a0(x, t)
∂uj
∂t

+ b0(x, t)
∂uj
∂x

+ c0(x, t)

(
uj
∂u0
∂x

+ u0
∂uj
∂x

)
= fj(x, t, u0, u1, . . . , uj−1), j = 1, N, (3.3)
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where the functions fj(x, t, u0, u1, . . . , uj−1), j = 1, N , are calculated
recursively.

It should be remarked that the solutions of equations (3.2), (3.3) can
be found by means of the method of characteristics [13]. Therefore in
further we assume that the regular part is known.

Regarding the finding of the terms of the singular part, we note that
this problem is much more complicated than the problem of determin-
ing the terms of the regular part, and it is solved in several steps [14].
This is implemented as follows: first, the terms of the singular part of
the asymptotics are determined on the discontinuity curve Γ, which is
considered a priori known. Then, from the orthogonality condition [15],
a differential equation is found for the function φ = φ(t), which defines
the discontinuity curve. Finally, the main term V0(x, t, τ) is constructed
explicitly, and the prolongation of the functions Vj(x, t, τ), j = 1, N , from
the discontinuity curve Γ to some its neighborhood is carried out in such
a way that the terms of the singular part of the constructed solution be-
long to the space G1. Due to the last condition, the constructed solution
is a certain deformation of the soliton solution of the BBM equation with
constant coefficients.

4. The main term of asymptotic solution

The general form of the main term of the regular part of asymptotics
(2.2) can be implicitly determined via an arbitrary function of a complete
system of first integrals of quasilinear differential equations that look like

dt

a0(x, t)
=

dx

b0(x, t) + u0c0(x, t)
=
du0
0
.

Since the regular part of asymptotics (2.2) plays only the role of back-
ground function, we will focus attention on defining the terms composing
its singular part, especially since the qualitative properties of the asymp-
totic one-phase soliton-like solutions, which are some deformations of
soliton solutions, reveal themselves owing just to the main term in the
singular part of asymptotics (2.2). Preliminarily, it should be noted that
although the function φ = φ(t) is used to determine the terms in the sin-
gular part of asymptotics (2.2), starting from the main one, this function
does not affect the accuracy [10] with which the main term of asymptotics
(2.2), i.e. the sum of the main terms in the regular and singular parts,
satisfies (1.1).

The function v0(t, τ) = V0(x, t, τ)
∣∣
x=φ(t)

is found as a solution of the
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following differential equation:

φ′(t)
∂3v0
∂τ3

+
(
b0(φ, t)− a0(φ, t)φ

′(t) + c0(φ, t)u0(φ, t)
) ∂v0
∂τ

+c0(φ, t) v0
∂v0
∂τ

= 0. (4.1)

Equation (4.1) is derived from the relationship for the singular part
VN (x, t, τ) taking into account the asymptotic series with respect to a
small parameter for the coefficients of equation (1.1) in the neighborhood
of the discontinuity curve Γ.

The solution of equation (4.1) in the space G 0
1 is written in the form

v0(t, τ) =
3A(φ, t)

c0(φ, t)
cosh−2

(
1

2

√
A(φ, t)

φ ′(t)
(τ + C0(t))

)
, (4.2)

where we use the notation A(φ, t) = φ ′a0(φ, t)−b0(φ, t)−c0(φ, t)u0(φ, t),
φ = φ(t), and C0(t) is a constant of integration (t is a parameter). Here,
we suppose that the condition

φ ′A(φ, t) > 0 (4.3)

is satisfied.
Taking into account the property V0(x, t, τ) ∈ G 0

1 , the main term of
asymptotic expansion (2.2) can be written by the formula V0(x, t, τ) =
v0(t, τ). The following statement establishes the accuracy with which the
function V0(x, t, τ) satisfies equation (1.1).

Theorem 4.1. Let the following conditions take place:

10) the functions a0(x, t), b0(x, t), c0(x, t) ∈ C∞(R× [0;T ]), and the
inequality a0(x, t) b0(x, t) c0(x, t) ̸= 0, (x, t) ∈ R× [0;T ] holds;

20) the function φ(t) ∈ C∞([0;T ]) satisfies inequality (4.3).
Then the function

Y0(x, t, ε) = u0(x, t) + V0(x, t, τ), (4.4)

where u0(x, t) is a solution of equation (3.2), and the function V0(x, t, τ)=
v0(t, τ) is defined by formula (4.2), is a main term of the one-phase
soliton-like solution to equation (1.1) and satisfies the equation with an
accuracy O

(
ε−(n−1)

)
on the set R× [0;T ].

Moreover, function (4.4) satisfies equation (1.1) with an accuracy
O (ε) as τ → ±∞.
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The statement of theorem 4.1 follows from the construction algorithm
and is similar to the proof of Theorem 1 in [10]. Therefore, we do not
present the proof here.

Remark 4.1. For n > 1, the accuracy with which function (4.4) satisfies
equation (1.1) on the set R× [0;T ] decreases with the increasing number
n, while the accuracy with which function (4.4) satisfies equation (1.1)
as τ → ±∞ does not depend on the number n, i.e. the accuracy remains
unchanged. For n = 1, theorem 4.1 is a particular case of Theorem 1
in [10].

Remark 4.2. Formula (4.2) actually determines only the form (struc-
ture) of the main term in the singular part of asymptotics (2.2), since
the function contains an arbitrary function φ = φ(t) which has to belong
to the space C (1) ([0;T ]) and satisfy condition (4.3). It follows from the
proof of theorem 4.1.

5. Higher terms of asymptotic expansion

Let us proceed to the determination of the main term of the asymp-
totic soliton-like solution (2.2) of equation (1.1) using the procedure men-
tioned on p. 3. For this purpose, we write down the equations for higher
terms of the singular part of the asymptotics on the discontinuity curve.

The functions vj = vj(t, τ) = Vj(x, t, τ)
∣∣
x=φ(t)

, j = 1, N , satisfy the
following differential equations:

φ′(t)
∂3vj
∂τ3

+
(
b0(φ, t)− a0(φ, t)φ

′(t) + c0(φ, t)u0(φ, t)
) ∂vj
∂τ

+c0(φ, t)
∂

∂τ
(v0vj) = Fj(t, τ), (5.1)

where the functions

Fj(t, τ) = Fj(t, V0(x, t, τ), . . . , Vj−1(x, t, τ), u0(x, t), . . . , uj(x, t))
∣∣
x=φ(t)

are determined after finding u0(x, t), u1(x, t), . . ., uj(x, t), V0(x, t, τ),
V1(x, t, τ), . . ., Vj−1(x, t, τ), j = 1, N , recursively.

Let us find the conditions for the existence of solutions to equations
(5.1) in the space G1 and obtain theorems for the justification of found
asymptotics. We will also study the influence of the power exponent n in
equation (1.1)) on the kind of the equations for the singular part of the
asymptotics. For this purpose, we write down the functions F1(t, τ) and
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F2(t, τ) in equations (5.1) for n = 2, 3, . . . in the explicit form. For these
n-values, we have

F1(t, τ) =
(
φ′a1(φ, t)− b1(φ, t)− c0(φ, t)u1(φ, t)

−c1(φ, t) (u0(φ, t) + v0))
∂v0
∂τ

. (5.2)

It is easy to see that the function F1(t, τ) for the case n = 2, 3, . . .
has a simpler form than in the case n = 1 (see formula (18) in [10]
for comparison), while in the case n = 1, the function F2(t, τ) has a
cumbersome form. For n = 2, the function is somewhat simplified and is
represented by the formula

F2(t, τ) = −a0(φ, t)
∂v0
∂t

(5.3)

+

(
φ′a0x(φ, t)− b0x(φ, t)−

∂

∂x
(c0(φ, t)u0(φ, t))

)
τ
∂v0
∂τ

+(−b2(φ, t)− c2(φ, t)u0(φ, t)− c1(φ, t)u1(φ, t)− c0(φ, t)u2(φ, t))
∂v0
∂τ

+
(
φ′a1(φ, t)− b1(φ, t)− c1(φ, t)u0(φ, t)− c0(φ, t)(u1(φ, t) + v1)

) ∂v1
∂τ

− (τc0x(φ, t) + c2(φ, t)) v0
∂v0
∂τ

− c1(φ, t)
∂

∂τ
(v0v1)

−c0(φ, t)u0x(φ, t)v0 −
∂3v0
∂τ2∂t

.

In the case n > 2, the function is greatly simplified, being represented by
the formula

F2(t, τ) = − (b2(φ, t) + c2(φ, t)u0(φ, t) + c1(φ, t)u1(φ, t) (5.4)

+c0(φ, t)u2(φ, t) + c2(φ, t)v0)
∂v0
∂τ

− c1(φ, t)
∂

∂τ
(v0v1)

+
(
φ′a1(φ, t)− b1(φ, t)− c1(φ, t)u0(φ, t)− c0(φ, t) (u1(φ, t) + v1)

) ∂v1
∂τ

.

Thus, an increase in the singularity power exponent in equation (1.1)
leads to a certain simplification of the equations for the first terms in the
singular part of the asymptotics.
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5.1. Orthogonality condition

Let us now consider the conditions under which equations (5.1) have
solutions in the space G1. In this case, it becomes possible to obtain an
asymptotic solution to equation (1.1), which is close (in a certain sense) to
the soliton solution. In [10,15], the following properties were established:

1) under the conditions Fj(t, τ) ∈ G 0
1 , j = 1, N , there exists a solution

to equation (5.1) in the space G1 if and only if the orthogonality condition

+∞∫
−∞

Fj(t, τ)v0(t, τ)dτ = 0, j = 1, N, (5.5)

is fulfilled;
2) then the solution looks like

vj(t, τ) = νj(t)ηj(t, τ) + ψj(t, τ), (5.6)

where we use the notation

νj(t) = (−a0(φ, t)φ′(t) + b0(φ, t) + c0(φ, t)u0(φ, t))
−1 lim

τ→−∞
Φj(t, τ);

the function ηj(t, τ) ∈ G1 satisfies the condition

lim
τ→−∞

ηj(t, τ) = 1;

ψj(t, τ) is a function from the space G0
1; cj(t), j = 1, N , are integration

constants;

Φj(t, τ) =

τ∫
−∞

Fj(t, ξ)dξ + Ej(t); (5.7)

Ej(t), j = 1, N, are integration constants (t is a parameter) which are
chosen according to the condition

lim
τ→+∞

Φj(t, τ) = 0, j = 1, N.

Under conditions Fj(t, τ) ∈ G0
1, j = 1, N, and the orthogonality

condition (5.5), the functions vj(t, τ), j = 1, N, belong to the space G0
1

if and only if the relation [12]

lim
τ→−∞

Φj(t, τ) = 0, j = 1, N, (5.8)

is true. In (5.6), the coefficients νj(t) are equal to zero.
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The orthogonality condition (5.5) should be checked at each stage of
determination of the next term in the singular part of the asymptotics.
This condition is also used to derive the differential equation for the
function φ = φ(t).

Formula (5.2) implies the property F1(t, τ) ∈ G0
1. So, the orthogo-

nality condition (5.5) is true for j = 1 and therefore equation (5.1) for
v1(t, τ) has a solution in the space G1. In the particular case, when

a(x, t, ε) = a(x, t), b(x, t, ε) = b(x, t), c(x, t, ε) = c(x, t), (5.9)

the function F1(t, τ) has a simple form,

F1(t, τ) = −c0(φ(t), t)u1(φ(t), t)v0τ (t, τ).

As a consequence, in this case, we come to the following statement.

Lemma 5.1. If the coefficients of equation (1.1) satisfies condition (5.9),
the inequality a(x, t) b(x, t) c(x, t) ̸= 0 holds for all (x, t) ∈ R× [0;T ], and
the background function U1(x, t, ε) = 0, then, for all (x, t) ∈ R × [0;T ],
the function V0(x, t, τ) = v0(t, τ), where v0(t, τ) is written by formula
(4.2), satisfies equation (1.1) with an accuracy O

(
ε−(n−2)

)
.

The proof of this statement is performed in a standard way and es-
sentially uses the property that the function v1(t, τ) = 0 satisfies the
corresponding equation of system (5.1) because F1(t, τ) = 0.

The meaning of this lemma is that under sufficiently general con-
ditions, the accuracy of the constructed main term in the asymptotic
soliton-like solution can be higher than that established in Theorem 4.1.

Consider the next terms in the singular part of the asymptotics on
the curve Γ. The general solution of each inhomogeneous equation in
(5.1) can be found recursively, for example, by the method of arbitrary
constant variation. The solution is written by the formula [10]

vj(t, τ) =

 τ∫
τ0

Φj(t, ξ)v0τ (t, ξ) dξ + cj1(t)

 v0τ (t, τ)

τ∫
τ0

v−2
0τ (t, ξ) dξ

(5.10)

−

 τ∫
τ0

Φj(t, ξ)v0τ (t, ξ)

ξ∫
τ0

v−2
0τ (t, η) dη dξ + cj2(t)

 v0τ (t, τ),

where cj1(t), cj2(t), j = 1, N, are constants of integration.
Due to the simple expression for F1(t, τ) in (5.2), the function v1(t, τ)

can be explicitly found for any n. Preliminarily, it should be noted that
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the orthogonality condition (5.5) for the function F1(t, τ) is satisfied for
all sufficiently smooth functions φ = φ(t).

By means of direct integration, from formula (5.7) for Φ1(t, τ), we
have

Φ1(t, τ) =
[
φ′(t)a1(φ, t)− b1(φ, t)− c0(φ, t)u1(φ, t)− c1(φ, t)u0(φ, t)

]
×

×v0(t, τ)−
1

2
c1(φ, t)v

2
0(t, τ), φ = φ(t).

From the property v0(t, τ) ∈ G0
1, it follows that the function Φ1(t, τ)

satisfies condition (5.8) for all smooth functions φ = φ(t), and thus the
function v1(t, τ), as a solution to equation (5.1), belongs to the space G0

1.
This function can be written explicitly. Really, from (5.10), we have

v1(t, τ) =

(
D1

4α2
− D2

α2

)
cosh−2(αt) (5.11)

−
(
D1

4α
+
D2

3α
cosh−6(αt)

)
τ cosh−3(ατ) sinh(ατ),

where
D1 = 3

A(φ, t)

c0(φ, t)

[
φ ′(t)a1(φ, t)− b1(φ, t)

−c0(φ, t)u1(φ, t)− c1(φ, t)u1(φ, t)] ,

D2 = −9

2

A2(φ, t)c1(φ, t)

c20(φ, t)
, α =

1

2

√
A(φ, t)

φ ′(t)
, φ = φ(t),

i.e. the function v1(t, τ) is quickly decreasing with respect to the variable
τ .

Analogously, from (5.10), one can explicitly find the function v2(t, τ),
as well as the other functions, but the corresponding formulas are cum-
bersome.

The fulfillment of conditions (5.5) and (5.8) for j = 2, 3, . . ., depends
on the value of the singularity power exponent n in equation (1.1). For
n > 2, using formula (5.4), it is easy to make sure that due to the prop-
erties v0(t, τ), v1(t, τ) ∈ G0

1, the corresponding function Φ2(t, τ) satisfies
condition (5.8) for all smooth functions φ = φ(t). Therefore, the function
v2(t, τ), as a solution to equation (5.1), is an element of the space G0

1 and
can be found according to (5.10).

On the contrary, for n = 2, the function Φ2(t, τ) of form (5.7), (5.3)
may not satisfy condition (5.5) for all smooth functions φ = φ(t) in the
general case. Thus, the condition can be used to find the differential equa-
tion for the function φ = φ(t). In particular, under these circumstances,
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in the case n = 2, from the orthogonality condition (5.8) for j = 2, it is
possible to derive a differential equation for the function φ = φ(t) in the
following form[

A1(φ, t)φ
′ 2(t) +A2(φ, t)φ

′(t) +A3(φ, t)
]
φ ′′(t) +A4(φ, t)φ

′ 4(t)

+A5(φ, t)φ
′3(t) +A6(φ, t)φ

′ 2(t) +A7(φ, t)φ
′(t) = 0, (5.12)

where the coefficients Ak(φ, t), k = 1, 7, are written as follows:

A1 = 24 a20 c0, A2 = −8 a0 c0 α, A3 = − c0 α
2,

A4 = −40 c0x a
2
0 + 30a0 a0x c0,

A5 =
[
60c0x α+ 20a0t c0 − 24a0 c0t − 30c0 αx + 20c20 u0x

]
a0 − 15a0x c0 α,

A6 = −20a0 c0 αt −5a0t c0α+15c0 ααx+28a0 c0t α−20c20u0x α−20c0x α
2,

A7 = 5 c0 ααt − 20 c0t α
2.

Here, α = b0 + c0u0, a0 = a0(φ, t), b0 = b0(φ, t), c0 = c0(φ, t), and
u0 = u0(φ, t).

Regarding the solution of the nonlinear equation (5.12), we note the
following:

1) the Cauchy problem for equation (5.12) has a (local) solution un-
der sufficiently general conditions for the functions a0(x, t), b0(x, t), and
c0(x, t) [10];

2) the interval of existence of the solution to equation (5.12) depends
on the main coefficients of problem (1.1) and the main term in the regu-
lar part of asymptotics (2.2), as well as on the initial conditions for the
function φ = φ(t);

3) in effect, this interval defines a value set of the variables (x, t) for
which the constructed asymptotic solution exists. If the coefficients of
equation (1.1) are determined for all its arguments, of considerable inter-
est is the case when the nonlinear equation (5.12) has a global solution,
i.e. a solution defined for all t ∈ R. An example of such a solution
was constructed in [16] for the Korteweg-de Vries equation with variable
coefficients and a singular perturbation of the first order.

We also note that for n > 2, since the orthogonality condition (5.5)
at j = 2 is satisfied for all smooth functions, then, in order to find the
differential equation for the function x = φ(t), it is necessary to analyze
the orthogonality conditions for the equations for the next terms in the
singular part of the asymptotics, i.e. for j > 2. This can be done quite
easily in the case of certain coefficients of equation (1.1).
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5.2. Prolongation of functions vj(t, τ) from the discontinuity
curve

Now we will find the functions Vj(x, t, τ), j = 1, N , using the prolon-
gation of vj(t, τ), j = 1, N , from the curve Γ into some its neighborhood.
Above, according to the property v0(t, τ) ∈ G0

1, the prolongation of the
function v0(t, τ) is defined by means of the formula V0(x, t, τ) = v0(t, τ).
Similarly, if vj(t, τ) ∈ G0

1, then put Vj(x, t, τ) = vj(t, τ). In partic-
ular, the function V1(x, t, τ) for all n ≥ 2 is defined by the formula
V1(x, t, τ) = v1(t, τ).

Note that in the case vj(t, τ) ∈ G0
1, j = 1, N, i.e. if the functions

Fj(t, τ), j = 1, N, satisfy condition (5.8), then the asymptotic solution
to equation (1.1) is written as

YN (x, t, ε) =

N∑
j=0

εj [uj(x, t) + vj(t, τ)] . (5.13)

Theorem 5.1. Let n = 2 and the following conditions be fulfilled:

10) the functions ak(x, t), bk(x, t), ck(x, t) ∈ C∞(R × [0;T ]), k =
0, N , and the inequality a0(x, t) b0(x, t) c0(x, t) ̸= 0, (x, t) ∈ R× [0;T ], is
satisfied;

20) equation (5.12) has a solution φ(t) ∈ C∞([0;T ]), for which in-
equality (4.3) is true;

30) the function Fj(t, τ) ∈ G0
1, j = 2, N, and conditions (5.5), (5.8)

hold.

Then the asymptotic one-phase soliton-like solution to equation (1.1)
is written as (5.13) and satisfies equation (1.1) with an accuracy O(εN−1)
on the set R × [0;T ]. Moreover, for τ → ±∞, function (5.13) satisfies
equation (1.1) with an accuracy O(εN+1), N ∈ N.

For the case n > 2, the following statement is true.

Theorem 5.2. Let n > 2 and the following conditions be fulfilled:

10) the condition 10 of theorem 5.1 takes place;

20) the function φ(t) ∈ C∞([0;T ]) and satisfies inequality (4.3);

30) the functions Fj(t, τ) ∈ G0
1, j = 2, N, and conditions (5.5), (5.8)

are true.

Then the asymptotic one-phase soliton-like solution to equation (1.1)
is written as (5.13) and the function satisfies equation (1.1) with an
accuracy O(εN−n+1) on the set R × [0;T ]. Moreover, for τ → ±∞,
function (5.13) satisfies equation (1.1) with an accuracy O(εN+1), N ∈
N.
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The proofs of theorems 5.1 and 5.2 are carried out in the standard
way and are similar to the proof of Theorem 1 from [10] to the accuracy
with which the constructed asymptotic solution satisfies equation (1.1).
If the property vj(t, τ) ∈ G0

1 is not fulfilled, then taking into account
formula (5.6), the prolongation of the functions vj(t, τ) from the curve Γ
into some its neighborhood is realized by the form

Vj(x, t, τ) = u−j (x, t)η(t, τ) + ψj(t, τ), (5.14)

where u−j (x, t) is a solution of the Cauchy problem

Λu−j (x, t) = f−j (x, t), u−j (x, t)

∣∣∣∣
Γ

= νj(t). (5.15)

Here, the differential operator Λ is written by the formula

Λ = a0(x, t)
∂

∂t
+ b0(x, t)

∂

∂x
+ c0(x, t)u0(x, t)

∂

∂x
+ c0(x, t)u0x(x, t).

The equation in (5.15) is obtained from (1.1) by substituting (5.14)
in (1.1) and calculating the limit at τ → −∞.

Since, taking into account inequality (4.3) for all t ∈ [0;T ], the curve Γ
is transversal to the characteristics of the operator Λ, the Cauchy problem
(5.15) is well defined. Therefore, in the domain Ωµ(Γ) = {(x, t) ∈ R ×
[0;T ] : |x − φ(t)| < µ}, for sufficiently small values of µ, the problem
has a unique solution u−j (x, t) ∈ C∞(Ωµ(Γ)), which exists under general
conditions on the coefficients of the operator Λ.

Moreover, the Cauchy problem (5.15) can have a solution defined not
only in some neighborhood of the curve Γ, but also in an unbounded (with
respect to the variable x) domain. For example, the function u−j (x, t),

j = 2, N, can be defined in the domain {(x, t) : x− φ(t) < µ, t ∈ [0;T ]}
and then the asymptotic solution to equation (1.1) is written as

YN (x, t, ε) =



N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] , (x, t) ∈ Ωµ(Γ),

N∑
j=0

εjuj(x, t) +
N∑
j=2

εju−j (x, t), (x, t) ∈ D−,

N∑
j=0

εjuj(x, t), (x, t) ∈ D+,

(5.16)

where
D− = {(x, t) ∈ R× [0;T ] : x− φ(t) ≤ −µ},
D+ = {(x, t) ∈ R× [0;T ] : x− φ(t) ≥ µ},

Summarizing the considerations set out above, we obtain the following
statement.
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Theorem 5.3. Let n = 2 in equation (1.1) and the following conditions
be fulfilled:

10) the conditions 10, 20 of theorem 5.1 take place;
20) the functions Fj(t, τ) ∈ G0

1, j = 2, N, and the orthogonality con-
ditions (5.5) are true for them;

30) the Cauchy problem (5.15) has a solution in the set D−.
Then the asymptotic one-phase soliton-like solution to equation (1.1)

is written in form (5.16) and satisfies the equation with an accuracy
O(εN−1) on the set R× [0;T ]. Moreover, for τ → ±∞, function (5.16)
satisfies equation (1.1) with an accuracy O(εN ), N ∈ N.

Theorem 5.4. Let n > 2 in equation (1.1); both conditions 10, 20 of
theorem 5.2 and condition 30 of theorem 5.3 be true; and the functions
Fj(t, τ) ∈ G0

1, j = 2, N, satisfy condition (5.5).
Then the asymptotic one-phase soliton-like solution to equation (1.1)

is written in form (5.16) and satisfies the equation with an accuracy
O(εN−n+1) on the set R × [0;T ]. Moreover, for τ → ±∞, function
(5.16) satisfies equation (1.1) with an accuracy O(εN−n+2), N ∈ N.

Conclusion

In this paper, an asymptotic single-phase soliton-like solution of the
Benjamin-Bona-Mahony equation with variable coefficients and a strong
singularity, i.e. when the power exponent 2n of the small parameter is
greater than 2, has been constructed using the nonlinear WKB method.
An algorithm of constructing the solution has been described and the in-
fluence of the power exponent of the small parameter on the structure of
the asymptotic solution, as well as on the algorithm of its construction,
the qualitative properties of the asymptotic solution, and the accuracy
with which the constructed approximate solution satisfies the initial equa-
tion, has been analyzed.

It was also shown that due to the strong singularity in (1.1), the
right-hand sides of the differential equations for determining the terms
in the regular and singular parts of the asymptotics change, which leads
to some new qualitative properties of the asymptotics. The consequence
of such changes is the ability to find explicitly not only the main term of
the singular part of the asymptotics but also at least its first-order term.
The obtained results are consistent with the results published earlier [10]
for the case of quadratic singularity, i.e. for n = 1.
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