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Abstract. In our investigation, we have presented the second or-
der linear partial differential equation in polar coordinates. Considering
this differential equation on the unit disk, we have obtained the one-
dimensional heat equation. It is well-known that the heat equation can
be solved taking into account the boundary condition for the general
solution on the unit circle. In our paper, the boundary value problem
is solved by the well-known method called the separation of variables.
As a result, the general solution to the boundary value problem is pre-
sented in terms of the Fourier series. After that, the expressions for
the Fourier coefficients are used with the aim to transform the Fourier
series expansion for the general solution to the boundary value prob-
lem into the so-called Weierstrass integral that is represented via the
so-called Weierstrass kernel. A representation of the Weierstrass kernel
via the infinite geometric series is derived by a way to parameterize a
complicated function via a simplified function. The derivation of the
corresponding parametrization is based on two well-known integrals. As
a result, a complicated function of the natural argument is represented
in the form of the double integral that contains a simplified function of
the same natural argument. So, the double-integral representation of
the Weierstrass kernel is derived. To obtain this result, the integral rep-
resentation of the so-called Dirac delta function is taken into account.
The found expression for the Weierstrass kernel is substituted into the
expression for the Weierstrass integral. As a result, it was found that
the Weierstrass integral can be considered to be the double-integral that
contains the Poisson integral and the conjugate Poisson integral.
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1. Introduction

Let us consider the second order linear partial differential equation

ρ
∂U

∂ρ
+
∂2U

∂x2
= 0 (1.1)

in two independent variables ρ and x. Considering the differential equa-
tion (1.1) on the unit disk (0 < ρ < 1), we obtain the one-dimensional
heat equation. In the presence of the boundary condition

lim
ρ→1

U (ρ, x) = f (x) , (1.2)

it is well-known that the one-dimensional heat equation (1.1) can be
solved by a way to parameterize a complicated operator function via a
simplified operator function [1]. In the presence of the periodicity pro-
perty f(x + 2π) = f (x), the one-dimensional heat equation (1.1) with
the boundary condition (1.2) can be solved by separation of variables.
So, the periodic function f (x) and the general solution U (ρ, x) to the
one-dimensional heat equation (1.1) can be expanded in the Fourier series

f (x) =
a0
2

+

+∞∑
k=1

(ak cos kx+ bk sin kx) (1.3)

and

U (ρ, x) =
a0
2

+

+∞∑
k=1

ρk
2
(ak cos kx+ bk sin kx) (1.4)

that contain the Fourier coefficients

a0 =
1

π

π∫
−π

f
(
x′
)
dx′, (1.5)

ak =
1

π

π∫
−π

f
(
x′
)
cos kx′dx′ (1.6)

and

bk =
1

π

π∫
−π

f
(
x′
)
sin kx′dx′. (1.7)

The Fourier series expansion (1.4) is a formal solution to the one-
dimensional heat equation (1.1). To obtain a closed-form solution to this
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equation, we need to substitute the Fourier coefficients (1.5), (1.6) and
(1.7) into the Fourier series expansion (1.4). Introducing the notation
U (ρ, x) ≡W (ρ; f ;x), the integral [2]

W (ρ; f ;x) =
1

π

π∫
−π

f
(
x′
){1

2
+

+∞∑
k=1

ρk
2
cos k

(
x− x′

)}
dx′ (1.8)

can be obtained. It is significant to note that the quantity (1.8) is called
the Weierstrass integral [3] of the function f . Taking into account the new
notation, the boundary condition (1.2) can be replaced by the boundary
condition

lim
ρ→1

W (ρ; f ;x) = f (x) . (1.9)

In approximation theory, the summation of the Fourier series between
curly brackets of the formula (1.8) is a problem of a great significance. In
the current research, we suggested a way to compute the sum of the above-
mentioned Fourier series. It is important to note that this way is based on
a way to parameterize a complicated function via a simplified function.
As a result, the double-integral representation of the Weierstrass integral
is obtained. The obtained result can be useful for future explorations in
the field of approximation theory.

2. Weierstrass kernel

A way to parameterize a complicated function via a simplified function
means that a general term of a Fourier series can be replaced by its
integral representation. This can enable us to represent an unknown
Fourier series via some well-known series. In our investigation, the general
term of the Fourier series between curly brackets of the formula (1.8) will
be considered to be a double integral.

In the formula (1.8), the Fourier series between curly brackets is called
the Weierstrass kernel. A double-integral representation of the Weier-
strass kernel can be derived from the parametrization

ρk
2
cos k

(
x− x′

)
=

1

2π

+∞∫
−∞

dξ

+∞∫
−∞

e±iξηρk(1+|η|) cos
[
k
(
x+ ξ − x′

)
− ξ
]
dη. (2.1)
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The parametrization (2.1) can be useful to compute the infinite sum
+∞∑
k=1

ρk
2
cos k

(
x− x′

)
=

1

2π

+∞∫
−∞

dξ

+∞∫
−∞

e±iξη
+∞∑
k=1

ρk(1+|η|) cos
[
k
(
x+ ξ − x′

)
− ξ
]
dη. (2.2)

The further calculations can be simplified by the identity
+∞∫

−∞

δ (ξ)
cos ξ

2
dξ =

1

2
(2.3)

that contains the so-called Dirac delta function [4]

δ (ξ) =
1

2π

+∞∫
−∞

e±iξηdη. (2.4)

Substituting the integral representation (2.4) of the Dirac delta func-
tion into the identity (2.3), we can derive the identity

1

2
=

1

2π

+∞∫
−∞

dξ

+∞∫
−∞

e±iξη
cos ξ

2
dη. (2.5)

The sum of the identities (2.2) and (2.5) is the Weierstrass kernel

1

2
+

+∞∑
k=1

ρk
2
cos k

(
x− x′

)
=

1

2π

+∞∫
−∞

dξ

+∞∫
−∞

e±iξη
(
cos ξ

2

+

+∞∑
k=1

ρk(1+|η|) cos
[
k
(
x+ ξ − x′

)
− ξ
])

dη. (2.6)

In the right side of the identity (2.6), we have the absolutely conver-
gent series, because 0 < ρ1+|η| ≤ ρ < 1. A well-known sum of an infinite
geometric series (see [5], p. 48 or see [6], p. 573) enables us to compute
the infinite sum

cos ξ

2
+

+∞∑
k=1

ρk(1+|η|) cos
[
k
(
x+ ξ − x′

)
− ξ
]

=
cos ξ

2

1− ρ2(1+|η|)

1− 2ρ1+|η| cos (x+ ξ − x′) + ρ2(1+|η|)

+
ρ1+|η| sin (x+ ξ − x′)

1− 2ρ1+|η| cos (x+ ξ − x′) + ρ2(1+|η|) sin ξ. (2.7)
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We need to substitute the absolutely convergent series (2.7) into the
right side of the identity (2.6). This enables us to derive the double-
integral representation of the Weierstrass kernel

1

2
+

+∞∑
k=1

ρk
2
cos k

(
x− x′

)
=

1

2π

+∞∫
−∞

dξ

+∞∫
−∞

e±iξη

(
ρ1+|η| sin (x+ ξ − x′) sin ξ

1− 2ρ1+|η| cos (x+ ξ − x′) + ρ2(1+|η|)

+
cos ξ

2

1− ρ2(1+|η|)

1− 2ρ1+|η| cos (x+ ξ − x′) + ρ2(1+|η|)

)
dη. (2.8)

3. Weierstrass integral

Let us now substitute the Weierstrass kernel (2.8) into the expression
(1.8) for the Weierstrass integral. Then we can derive the double-integral
representation

W (ρ; f ;x) =
1

2π

+∞∫
−∞

dξ

+∞∫
−∞

e±iξη
{
P
(
ρ1+|η|; f ;x+ ξ

)
cos ξ

+ P̄
(
ρ1+|η|; f ;x+ ξ

)
sin ξ

}
dη (3.1)

that contains the Poisson integral [7–11]

P
(
ρ1+|η|; f ;x+ ξ

)
=

1

2π

π∫
−π

1− ρ2(1+|η|)

1− 2ρ1+|η| cos (x+ ξ − x′) + ρ2(1+|η|) f
(
x′
)
dx′ (3.2)

and the conjugate Poisson integral [12, 13]

P̄
(
ρ1+|η|; f ;x+ ξ

)
=

1

π

π∫
−π

ρ1+|η| sin (x+ ξ − x′)

1− 2ρ1+|η| cos (x+ ξ − x′) + ρ2(1+|η|) f
(
x′
)
dx′. (3.3)

In the case of the Weierstrass integral (3.1), we have the boundary
condition (1.9). In the case of the integrals (3.2) and (3.3), the analogous
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boundary conditions can also be derived. Let us consider the Poisson
integral (3.2). Taking into account the Fourier series expansion

1

2

1− ρ2(1+|η|)

1− 2ρ1+|η| cos (x+ ξ − x′) + ρ2(1+|η|)

=
1

2
+

+∞∑
k=1

ρk(1+|η|) cos k
(
x+ ξ − x′

)
, (3.4)

we can transform the integral (3.2) into the integral

P
(
ρ1+|η|; f ;x+ ξ

)
=

1

π

π∫
−π

f
(
x′
){1

2
+

+∞∑
k=1

ρk(1+|η|) cos k
(
x+ ξ − x′

)}
dx′. (3.5)

The Fourier coefficients (1.5), (1.6) and (1.7) can be useful to trans-
form the integral (3.5) into the Fourier series expansion

P
(
ρ1+|η|; f ;x+ ξ

)
=
a0
2

+

+∞∑
k=1

ρk(1+|η|) {ak cos k (x+ ξ) + bk sin k (x+ ξ)} . (3.6)

Let us analyze the Fourier series expansion (3.6) in the asymptotical
case ρ→ 1. Taking the Fourier series representation (1.3) of the periodic
function f (x) into account, we can derive the boundary condition

lim
ρ→1

P
(
ρ1+|η|; f ;x+ ξ

)
= f (x+ ξ) . (3.7)

Let us now consider the conjugate Poisson integral (3.3). Introducing
the new integration variable t = x′ − x − ξ, the integral (3.3) can be
transformed into the integral

P̄
(
ρ1+|η|; f ;x+ ξ

)
= − 1

π

π∫
−π

ρ1+|η| sin t

1− 2ρ1+|η| cos t+ ρ2(1+|η|) f (t+ x+ ξ) dt. (3.8)

Let us now analyze the conjugate Poisson integral (3.8) in the asymp-
totical case ρ→ 1. Then we can derive the boundary condition

lim
ρ→1

P̄
(
ρ1+|η|; f ;x+ ξ

)
= f̄ (x+ ξ) (3.9)
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that contains the function

f̄ (x) = − 1

2π

π∫
−π

f (t+ x) cot
t

2
dt. (3.10)

The double-integral representation (3.1) of the Weierstrass integral
can also be analyzed in the asymptotical case ρ → 1. The boundary
conditions (1.9), (3.7) and (3.9) must be taken into account with the aim
to derive the identity

f (x) =
1

2π

+∞∫
−∞

dξ

+∞∫
−∞

e±iξη
{
f (x+ ξ) cos ξ + f̄ (x+ ξ) sin ξ

}
dη. (3.11)

The identities (3.1) and (3.11) can be used with the aim to calculate
the difference

f (x)−W (ρ; f ;x)

=
1

2π

+∞∫
−∞

dξ

+∞∫
−∞

e±iξη
([
f (x+ ξ)− P

(
ρ1+|η|; f ;x+ ξ

)]
cos ξ

+
[
f̄ (x+ ξ)− P̄

(
ρ1+|η|; f ;x+ ξ

)]
sin ξ

)
dη. (3.12)

The double-integral representation (3.1) of the Weierstrass integral
W (ρ; f ;x) and the double-integral representation (3.12) of the difference
f (x)−W (ρ; f ;x) are the main results of our investigation.

Conclusion

To calculate a sum of the Fourier series between curly brackets of
the formula (1.8), we derived the parametrization (2.1) that enables one
to represent the complicated function ρk

2
cos k

(
x− x′

)
of k via the sim-

plified function ρk(1+|η|) cos
[
k
(
x+ ξ − x′

)
− ξ
]

of k. As a result, the
integral kernel (2.6) of the Weierstrass integral (1.8) is represented via
the absolutely convergent series (2.7). In fact, a sum of the Fourier se-
ries (2.7) can be calculated taking into account a well-known sum of an
infinite geometric series. So, the double-integral representation (2.8) of
the Weierstrass kernel is derived. The identity (2.8) enables one to derive
the identity (3.1) that contains the Weierstrass integral (1.8), the Poisson
integral (3.2) and the conjugate Poisson integral (3.8). In addition to the
boundary condition (1.9) for the Weierstrass integral (1.8), the boundary
condition (3.7) for the Poisson integral (3.2) and the boundary condition
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(3.9) for the conjugate Poisson integral (3.8) can also be derived. It is
also important to note that the obtained results can be useful to derive
the identity (3.12) that contains the differences

f (x)−W (ρ; f ;x) ,

f (x+ ξ)− P
(
ρ1+|η|; f ;x+ ξ

)
and

f̄ (x+ ξ)− P̄
(
ρ1+|η|; f ;x+ ξ

)
.

All the results obtained in this investigation can be useful for future
explorations in the field of approximation theory.
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