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Abstract. We investigate regularity properties of solutions of Beltrami
equation expressed in terms of moduli of continuity. In particular, we
prove that a class of Calderon–Zygmund operators, including Ahlfors–
Beurling operator, preserves certain type of modulus of continuity of
compactly supported functions. We also prove a purely topological result
which easily gives injectivity of normal solutions of Beltrami equation.
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1. Introduction

We investigate questions related to Beltrami equation fz = µfz, where
∥µ∥∞ < 1. This equation is of fundamental importance in the theory of
quasiconformal mappings in the plane, see [1,5]. Note that no regularity
is assumed on the Beltrami coefficient µ and therefore one looks for a
solution in the local Sobolev space W 1,p

loc (C) for a suitably chosen p > 2.
One of the questions we investigate is: what are conditions on µ that
ensure that solution f is continuously differentiable? A partial result in
that direction is given in Section 3, using a result on Calderon–Zygmund
singular integral operators obtained in Section 2. In section 4 we address
a problem present in demonstrating that a solution f of Beltrami equation
is quasiconformal. We show that injectivity of f can be derived by purely
topological arguments. In the last section we discuss weakly closed forms,
in simple situations they can be used for solving Beltrami equation by
explicit method of curvilinear integration.
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The notation we use is standard, the Riemann sphere is denoted by C
and the unit disc by D. The boundary of a set S is denoted by bS. Surface
measure is denoted by dσ. Also, for a ∈ Rn and 0 < R1 < R2 < +∞, we
have a spherical ring A(a;R1, R2) = {x ∈ Rn : R1 < |x− a| < R2}.

In this paper χ denotes a mollifier, namely a nonnegative C∞ function
on C or Rn supported in the unit disc (unit ball) with integral equal to
1. We set χε(x) = ε−nχ(x/ε), ε > 0.

1.1. Additional comments

Concerning the subject shortly described above it seems appropriate
first to add a few comments suggested by the reviewer. We can consider
Theorem 1 and Propositions 2 and 4 as the main results of the paper.
This theorem is applied to the Ahlfors–Beurling operator (on functions
with compact support), which plays a crucial role in quasiconformal the-
ory. The classical applications of this operator have been related mainly
with the Hölder continuous functions and with homeomorphisms hav-
ing distributional derivatives. The important deep generalizations of this
theory have been given by the Polish and Ukrainian schools, see for ex-
ample [1, 2, 5]. Theorem 1 extends these results to more general moduli
of continuity. Its applications to quasiconformal theory given by Propo-
sitions 2 and 4 involve solving some injectivity problem.

2. Calderon-Zygmund operators and moduli of continuity

It is known that Ahlfors–Beurling operator S, formally defined by

(Sf)(z) = − 1

π

∫
C

f(ζ)

(z − ζ)2
dξ dη (1)

preserves Hölder continuity of order α of compactly supported functions
if 0 < α < 1. An analogous one-dimensional result is Privalov’s theorem
which essentially states that Hilbert’s operator preserves α – Hölder con-
tinuity. Both results are valid for Calderon–Zygmund singular integral
operators acting on periodic functions, see [3]. It is our aim here to gen-
eralize these results to moduli of continuity more general than ω(t) = tα,
0 < α < 1, and to deal with non periodic functions.

We investigate a singular integral operator T = TK with a kernel

K(x) = KΩ(x) = Ω(x⋆)|x|−n, x ∈ Rn, x ̸= 0, (2)

where x⋆ = x/|x| and Ω is a C1 function on the unit sphere Sn−1 ⊂ Rn.
A basic requirement is that Ω has the following cancellation property:∫

Sn−1

Ω(ξ)dσ(ξ) = 0. (3)
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The operator T is defined by the following formula:

Tf(x) = lim
ε→0

∫
Rn

Kε(y)f(x− y)dy, (4)

where Kε denotes a truncated kernel:

Kε(x) =

{
K(x) |x| ≥ ε

0 |x| < ε
. (5)

It is a deep result of Calderon–Zygmund theory that the limit in (4) exists
both in Lp norm and almost everywhere if f ∈ Lp(Rn), 1 < p < +∞;
moreover T is bounded on Lp: ∥Tf∥p ≤ Cp∥f∥p for 1 < p < ∞. Let us
note that T is not bounded neither on L1 nor on L∞.

We are interested in action of T on certain classes of continuous func-
tions. Let us choose a majorant ω, i.e. a continuous increasing and
concave function ω(t), t ≥ 0, such that ω(0) = 0 and ω(λt) ≤ Cλω(t),
λ > 1. It is said that f : Rn → C is ω-continuous function if

∥f∥ω = sup
x ̸=y

|f(x)− f(y)|
ω(|x− y|)

< +∞. (6)

The class of such functions is denoted by Λω, clearly it is a vector space.
Since, as noted, T is not bounded on L∞, we are going to work within
the following subclasses of Λω:

ΛRω = {f ∈ Λω : suppf ⊂ B(0, R)}, R > 0. (7)

We impose the following two conditions on majorant ω:∫ δ

0

ω(t)

t
dt ≤ A1ω(δ), 0 < δ ≤ 1 (8)

∫ 1

δ

ω(t)

t2
dt ≤ A2

ω(δ)

δ
, 0 < δ ≤ 1. (9)

Let us note that condition (8) is satisfied by ω(t) = tα for all 0 < α ≤ 1,
however condition (9) is satisfied by ω(t) = tα only if 0 < α < 1. It is
easy to see that if we replace requirement 0 < δ ≤ 1 in (8) and (9) by a
more general one 0 < δ ≤ R and integrate from δ to R in (9), then the
same inequalities hold, but with different constants A1 = A1(R,ω) and
A2 = A2(R,ω).

It is easy to show that the limit in (4) exists for all x ∈ Rn if f ∈ ΛRω .
Indeed, the cancellation property (3) imples that the existence of the
limit

lim
ε→0

∫
B(0,|x|+R)

Kε(y)[f(x− y)− c]dy, (10)
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is independent of the choice of a constant c and if it exists is equal to
Tf(x). In particular, by choosing c = f(x) and using spherical coordi-
nates we get∫
B(0,|x|+R)

|K(y)||f(x− y)− f(x)|dy ≤ ∥Ω∥∞∥f∥ω
∫
B(0,|x|+R)

ω(|y|)
|y|n

dy

= ∥Ω∥∞∥f∥ω|Sn−1|
∫ |x|+R

0

ω(t)

t
dt

< +∞ (11)

since the last integral is convergent by (8). Therefore we have

Tf(x) =

∫
K(y)[f(x− y)− f(x)] dy, x ∈ Rn (12)

where integration is extended over any ball B(0, ρ) containing the support
of f(x − y). The main result of this section is Theorem 1 below. The
proof relies on methods developed in foundational papers by Calderon
and Zygmund, in particular in [3], where Hölder continuity was treated
in the case of periodic functions.

A different approach is taken in [9], the authors treat a more general
case where the kernel K is of the form K(x, (x − y)/|x − y|) and derive
global estimates. However, they assume condition (9), drop condition (8)
and assume the following additional condition:

ωα(t) = t−αω(t) is increasing for some 0 < α < 1. (13)

In [10] the authors made some corrections to their previous paper [9] cited
above.

Theorem 1. Assume a majorant ω satisfies conditions (8) and (9).
Then for every R > 0 there is a constant C = C(R,n,Ω, ω) such that

∥Tf∥ω ≤ C∥f∥ω, f ∈ ΛRω . (14)

We note the following well known estimate for the kernel K:

|K(x+ h)−K(x)| ≤ C(Ω)
|h|

|x|n+1
, x ̸= 0, |h| ≤ |x|/3. (15)

Proof. Let us choose f ∈ ΛRω and x, x + h ∈ Rn, where |h| ≤ 1. From
(12) we obtain

Tf(x) =

(∫
|y|≤3|h|

+

∫
3|h|≤y≤|x|+R

)
K(y)[f(x− y)− f(x)] dy = I1 + I2.

(16)



296 On Ahlfors–Beurling Operator

Analogously to the argument leading to (11) we estimate I1:

|I1| ≤ ∥Ω∥∞∥f∥ω|Sn−1|
∫ 3|h|

0

ω(t)

t
dt ≤ C(n,Ω, ω)∥f∥ωω(|h|), (17)

where we used condition (8). Replacing x with x+ h in (16) we obtain

Tf(x+ h) =

(∫
|y|≤3|h|

+

∫
3|h|≤y≤|x+h|+R

)
K(y)

× [f(x+ h− y)− f(x+ h)] dy

= J1 + J2 (18)

where |J1| ≤ C(n,Ω, ω)∥f∥ωω(|h|) and

J2 =

∫
3|h|≤|y|≤|x+h|+R

K(y)[f(x+ h− y)− f(x+ h)] dy

=

∫
3|h|≤|y|≤|x+h|+R

K(y)[f(x+ h− y)− f(x)] dy

=

∫
3|h|≤|z+h|≤|x+h|+R

K(z + h)[f(x− z)− f(x)] dz

=

∫
3|h|≤|z|≤|x|+R

K(z + h)[f(x− z)− f(x)] dz + E = J̃2 +E. (19)

Note that cancellation property enabled replacement of f(x + h) with
f(x). Now we estimate the error term E, which results from a change
of domain of integration from one spherical ring A(−h; 3|h|, |x+ h|+R)
to another one A(0; 3|h|, |x| + R). Regarding the change of inner lim-
its, the size of K(z + h) is estimated by C(n)∥Ω∥∞|h|−n, the mea-
sure of the symmetric difference of B(0, 3|h|) and B(−h, 3|h|) is esti-
mated by C(n)|h|n and the size of f(x − z) − f(x) is estimated by
C(ω)∥f∥ωω(|h|). Hence the error due to the change of inner limits is
estimated by C(n,Ω, ω)∥Ω∥∞ω(|h|). Regarding the change of outer lim-
its, the measure of the symmetric difference of domains of integration is
estimated by C(n)|h|(|x|+R)n−1, the size ofK(z+h) by ∥Ω∥∞(|x|+R)−n
and the size of f(x− z)− f(x) by 2∥f∥∞, hence the contribution to the
error term is bounded by C∥Ω∥∞∥f∥∞|h|, where C is a constant depend-
ing only on n. Since ∥f∥∞ ≤ C(ω,R)∥f∥ω and δ ≤ Cω(δ) for 0 ≤ δ ≤ 1
we obtain

|E| ≤ C(R,n,Ω, ω)∥f∥ωω(|h|). (20)
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Combining (16), (17), (18), (19) and (20) we obtain

|Tf(x+ h)− Tf(x)| = |J1 + J̃2 +E − I1 − I2|
≤ |J̃2 − I2|+ |E|+ |I1|+ |J1|
= E1 + E2 where

E2 = |E|+ |I1|+ |J1| ≤ C(R,n,Ω, ω)∥f∥ωω(|h|) and

E1 =

∣∣∣∣∣
∫
3|h|≤|z|≤|x|+R

[K(z + h)−K(z)][f(x− z)− f(x)] dz

∣∣∣∣∣ .
Since f is supported in B(0, R) we can assume ω(t) is constant for

t ≥ 2R, in particular ω(t) ≤ ω(2R). We use (15) and (9) to estimate E1:

E1 ≤ C(Ω)

∫
3|h|≤|z|≤|x|+R

|h|
|z|n+1

|f(x− z)− f(z)| dz

≤ C(Ω)|h||Sn−1|∥f∥ω
∫ |x|+R

3|h|

ω(t)

t2
dt

= |h|C(n,Ω)∥f∥ω

(∫ 1

3|h|
+

∫ ∞

1

)
ω(t)

t2
dt

≤ Cn∥f∥ω(A2ω(|h|) + ω(2R)|h|) = C(R,n,Ω, ω)∥f∥ωω(|h|).

Note that this was the only estimate in the proof that relied on (9).
This gives desired estimate for |h| ≤ 1, the estimate for |h| > 1 follows
easily from the vanishing of Tf at infinity. In fact, since the support of
f is compact we have the following asymptotics: Tf(x) = O(|x|−n) as
|x| → +∞; we leave details to the reader.

3. An application to Beltrami equation

In this section ω denotes a majorant satisfying conditions (8) and (9).
If f : G → C is continuous on a domain G ⊂ Rn and K ⊂ G is compact
we set

∥f∥ω,K = sup
x ̸=y,x,y∈K

|f(x)− f(y)|
ω(|x− y|)

. (21)

The space Λω,loc(G) consists of all f ∈ C(G) such that ∥f∥ω,K < +∞
for every compact K ⊂ G. Next, for integer k ≥ 0, we define a space
Λkω,loc(G) as a vector space of all functions f ∈ Ck(G) such that ∂αf ∈
Λω,loc(G) for every multiindex α, |α| ≤ k. It is easily verified that ϕf ∈
Λkω,loc(G) if ϕ ∈ Ck+1(G) and f ∈ Λkω,loc(G).
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Proposition 1. Let µ ∈ Λω,loc(G), where G is a domain in C. If f is
a solution of Beltrami equation fz = µfz in G such that f and fz (weak
derivatives) belong to Λω,loc(G), then f is in Λ1

ω,loc(G).

Proof. Let us note that it suffices to prove that fz is in Λω,loc(G). For
a given compact K ⊂ G we choose a compactly supported φ ∈ C∞(G)
which is equal to 1 in a neighborhood of K. Since (φf)z = φzf +φfz we
see that (φf)z ∈ ΛRω for some R > 0. Now we use crucial property of the
Ahlfors–Beurling operator S, namely it transforms weak z - derivative to
weak z - derivative: S(gz) = gz for a compactly supported g. This gives
(φf)z = S[(φf)z]. Since (φf)z ∈ ΛRω , Theorem 1 gives (φf)z ∈ Λω. Since
φ is equal to 1 in a neighborhood of K, this shows that ∥fz∥ω,K < ∞
which, together with assumptions on f and fz, gives desired result.

Regarding the study of general Beltrami equations with singularities
we refer reader to a monograph [5] where further references can be found.
The authors of [5] use a geometric approach they deveolped, which is
based on the notions of modulus and capacity, to derive the main exis-
tence theorems, including sophisticated and more general existence the-
orems that have been recently established. It seems a natural question
for further research whether our initial results concerning Beltrami equa-
tions can be further developed using the methods from [5]. In particular
it is a plausible hypothesis that assumptions on regularity of f and fz in
Proposition 1 can be dropped. This is certainly true in the case of α -
Hölder continuity.

Indeed, in that case global results, i.e. up to the boundary, are avail-
able. For example, the following result is contained in [6].

Theorem 2. ([6], Theorem 1.2) Let f be a quasiconformal mapping
between bounded planar domains D and G with C1,α boundaries, where
0 < α < 1. Then the following three conditions are equivalent.

(A) f ∈ C1,α(D) and f−1 ∈ C1,α(G).
(B) The complex dilatation µf is α Hölder continuous on D.
(C) The complex dilatation µf−1 is α Hölder continuous on G.

The author states, without proof, that condition (A) implies the fol-
lowing estimate: 0 < c ≤ |fz| < |fz| ≤ C < +∞. The estimate from
below for fz does not hold, as the case of a conformal map f demon-
strates, however it is not used later on in the proof of the theorem. The
two sided estimate for fz follows easily from

(1− k2)|fz|2 ≤ |fz|2 − |fz|2 = Jf (z) ≤ |fz|2, where k = ∥µf∥∞ < 1

and the two-sided estimate of the Jacobian 0 < c1 ≤ Jf ≤ C1 which
in itself follows from the assumption that f and f−1 are continuously
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differentiable up to the boundary. Assuming (A), the estimate 0 < c ≤
|fz| ≤ C < +∞ easily gives, as stated in [6], that µf = fz/fz is α Hölder
continuous on D, by symmetry the same is true for µf−1 on G. Note
that this gives also α Hölder continuity of fz/|fz| and therefore α Hölder
continuity of the second complex dilatation νf = (fz/|fz|)2µf of f .

The argument present in [6] in fact gives equivalence of (A) and
(BC) The complex dilatation µf and the second complex dilatation

νf are α Hölder continuous on D.
The author proves that (B) implies f ∈ C1,α(D), and therefore (C)

implies f−1 ∈ C1,α(G). However, the proof that (B) implies (C) relies on
the wrong formula µf−1 = −µf ◦f−1, the correct one is µf−1 = −νf ◦f−1,
see [1].

Related to this, we present an example which shows that the condi-
tions f : D → G is quasiconformal, f ∈ C1,α(D) imply neither α - Hölder
continuity of µf nor even C1 smoothness of the boundary of G.

Example 1. Let f(z) = (1 − z)α+1 + k(1 − z)α+1 where 0 < α < 1,
0 < k < 1 and z ∈ D. Then p = fz = (α+1)(1− z)α and q = fz = k(α+
1)(1 − z)α = kp. Clearly, f ∈ C1,α(D). Let us show that f is injective.
In fact, it suffices to prove that the mapping g(w) = wα+1 + kwα+1 is
injective on the right half plane Π = {w ∈ C : ℜw > 0}. The last fact
is obvious, since w 7→ wα+1 is injective on Π and ζ 7→ ζ + kζ is also
injective on C.

Since |µf | = |q/p| = k < 1 we conclude that f is a quasiconformal
map on D which is in C1,α(D).

However, argµf (z) = 2α arg (1 − z), hence µf has no continuous
extension at point 1 ∈ bD. In particular, it is not α Hölder continuous
on D. It is easily verified that G = f(D) does not have smooth boundary
at point 0 in bG.

4. Local and global injectivity

As mentioned in Introduction, here we present a sufficient condition
for a continuous map f from a domain D ⊂ C to C to be a homeomor-
phism. For application to Beltrami equation on C the caseD = C suffices.
We point out that we have two assumptions in the following proposition,
one is local in nature (local homeomorphism) and the other one is global
(on cluster sets). In the usual expositions of Beltrami equation, for ex-
ample in [1], the second assumption comes from normalization at infinity.
There are other approaches to injectivity problems, in the context of har-
monic mappings, which are analytical in nature, see for example [8].
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Proposition 2. Let D ⊂ C be a simply connected domain and assume
f : D → C is a local homeomorphism. Set W = f(D) and let F∞ be
the component of F = C \W which contains ∞. Assume that for any
sequence zn in D with no accumulation point in D the sequence f(zn)
has all its accumulation points in the set bF∞. Then f : D → W is a
homeomorphism. In particular, W is simply connected.

Proof. We start by proving that W is simply connected. Indeed, oth-
erwise there is a bounded component K of F . Let us choose w in bK
and select a sequence wn in W such that wn → w. There is a sequence
zn in D such that f(zn) = wn. By assumption zn has an accumulation
point z in D, hence there is a subsequence znk

= ζk which converges to
a point z ∈ D. In particular, w = limk f(ζk) = f(z) ∈ W , which is a
contradiction.

The assumption on cluster sets and simple connectedness ofW imply
that f is a proper map (the inverse images of compact sets are compact
sets). This, and the assumption that f is a local homeomorphism, implies
that f : D → W is a covering map, see [4]. Since W and D are simply
connected domains this covering map is a homeomorphism.

5. Weakly closed and weakly exact 1 – forms

Proposition 3. Let ω =
∑

j aj(x)dxj be a weakly closed differential
form with continuous coefficients on a simply connected domain Ω ⊂ Rn,
i.e.

∂aj/∂xk = ∂ak/∂xj in the sense of distributions, 1 ≤ j, k ≤ n.

Then there is a function f ∈ C1(Ω) such that df = w.
Moreover, for a fixed x0 ∈ Ω, f is uniquelly determined by the condi-

tion f(x0) = 0 and given by a formula

f(x) =

∫
γ
ω, (22)

where γ is any piecewise smooth path from x0 to x.

Proof. It suffices to prove the proposition in the special case where Ω is a
ball B = B(y,R), the general case follows easily by standard topological
arguments.

Let, for ε > 0, ωε = ω ∗ χε. By this we mean ωε =
∑

j aj,εdxj where
aj,ε = aj ∗ χε are C∞ functions in B−ε = B(y,R − ε) for 1 ≤ j ≤ n.
Then, for 1 ≤ j, k ≤ n we have:

∂aj,ε
∂xk

=
∂

∂xk
(aj ∗ χε) =

(
∂aj
∂xk

)
∗ χε =

(
∂ak
∂xj

)
∗ χε =

∂ak,ε
∂xj

.
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Therefore, ωε is a C
∞ closed form in B−ε. Hence, setting

fε(x) =

∫
γx

ωε, (23)

where γx is any smooth path connecting a fixed point x0 to x within
B−ε, we obtain fε ∈ C∞(B−ε) such that dfε = ωε and fε(x0) = 0.

It is an immediate consequence of continuity of coefficients aj that
the limit limε→0 ωε = ω is locally uniform in B. Hence the convergence
of dfε to ω as ε tends to 0 is locally uniform. Since fε(x0) = 0, this gives
locally uniform convergence of fε to a C1 function f on B, moreover
df = ω. A simple passage to the limit in (23) shows that f is given by
(22).

Corollary 1. Assume p and q are continuous complex valued functions
on a simply connected domain D ⊂ C satisfying

∂

∂z
p(z) =

∂

∂z
q(z) (24)

in the sense of distribution theory. Then there is a continuously differ-
entiable function f : D → C such that df = pdz + qdz.

Proof. The assumption (24) can be written in the following form:

px + ipy = qx − iqy weakly.

This means that the form pdz+qdz = p(dx+ idy)+q(dx− idy) is weakly
closed. Hence the statement follows from Proposition 3.

Proposition 4. Let D, p, q and f be as in Corollary 1. Moreover,
assume that |p| > 0 and |q| ≤ k|p| for some constant 0 ≤ k < 1. Then
f is a C1 local homeomorphism, f(D) = W is open and f : D → W is
quasiregular. In particular, if f is proper then it is quasiconformal.

Proof. Since Jf = |p|2 − |q|2 > 0, the Inverse Function Theorem implies
that f is a C1 local homeomorphism and thus W is open. The condition
|q| ≤ k|p| gives quasiregularity of f . The last statement follows from
Proposition 2.

Remark 1. Concerning our discussion on Theorem 2 from [6], D. Kalaj
published, based on communication with the second author, a Corrigen-
dum to [6], see [7].

The authors are thankful to anonymous reviewer for useful comments
and in particular Prof. Z. Petrović and Prof. B. Prvulović for helpful
discussion related to Proposition 2.



302 On Ahlfors–Beurling Operator

References

[1] Ahlfors, L.V. (2006). Lectures on Quasiconformal mappings with additional chap-
ters by C.J. Earle and I. Kra, M. Shishikura, J.H. Hubbard. Univ. Lectures Series,
v. 38, Providence, R. I.

[2] Astala, K., Iwaniec, T., Martin, G. J. (2009). Elliptic partial differential equa-
tions and quasiconformal mappings in the plane, Princeton University Press, MR
2472875 (2010j:30040).

[3] Calderon, A.P., Zygmund, A. (1954). Singular integrals and periodic functions.
Studia Mathematica, 14, 349–371.

[4] Ho, Chung-Wu. (1975). A note on proper maps. Proc. AMS, 51 (1).

[5] Gutlyanskii, V., Ryazanov, V., Srebro, U., Yakubov, E. (2012). The Beltrami
equation. A geometric approach. Developments in Mathematics, 26. New York,
Springer.

[6] Kalaj, D. (2012). On Kellogg’s theorem for quasiconformal mappings. Glasgow
Mathematical Journal, 54 (03), 599–603.

[7] Kalaj, D. (2020). Corrigendum to the paper David Kalaj: On Kellogg’s theorem for
quasiconformal mappings. Glasgow Mathematical Journal, Vol. 54, No. 3, 599–603
(2012). Glasgow Math. J., 1. doi:10.1017/S001708952000062

[8] Klimentov, S.B. (2015). Another version of Kellogg’s theorem. Complex Variables
and Elliptic Equations, 60 (12), 1647–1657.

[9] Rode, L.O., Simonenko, I.B. (1968). Multidimensional singular integrals in classes
of common leading moduli of continuity. Siberian Mathematical Journal, 9, 690–
696.

[10] Rode, L.O., Simonenko, I.B. (1970). Corrections to the article “Multidimensional
Singular Integrals in Classes of General Leading Modules of Smoothness”, Sib.
Matem. Zh., 9, 4, 690–696 (1968). Siberian Mathematical Journal, 11 (3), 543.

Contact information
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