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Abstract. A commutative algebra B over the complex field with a
basis {e1, e2} satisfying the conditions (e21+e22)

2 = 0, e21+e22 ̸= 0, is con-
sidered. This algebra is associated with the 2-D biharmonic equation.
We consider Schwartz-type boundary value problems on finding a mono-
genic function of the type Φ(xe1 + ye2) = U1(x, y) e1 + U2(x, y) ie1 +
U3(x, y) e2 + U4(x, y) ie2, (x, y) ∈ D, when values of two components
either U1, U3 or U1, U4 are given on the boundary of a domain D lying
in the Cartesian plane xOy. For solving these boundary value problems
for a half-plane and for a disk, we develop methods, which are based on
expressions of solutions by means of Schwartz-type integrals, and obtain
solutions in the explicit forms.
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1. Monogenic functions in a biharmonic plane

We say that an associative commutative two-dimensional algebra B
with unit 1 over the field of complex numbers C is biharmonic (this
notion is proposed in [1]) if in B there exists a biharmonic basis, i.e., a
basis {e1, e2} satisfying the conditions

(e21 + e22)
2 = 0, e21 + e22 ̸= 0 . (1.1)

V. F. Kovalev and I. P. Mel’nichenko [1] found a multiplication table
for a biharmonic basis {e1, e2}:

e1 = 1, e22 = e1 + 2ie2, (1.2)
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where i is the imaginary complex unit.
E. Study [2] proved that there exist only two type (up to isomorphism)

of two-dimensional algebra with 1 over the field C. In the paper [3]
I. P. Mel’nichenko proved that there exists the unique biharmonic algebra
B and constructed all biharmonic bases in B. It means that only one of
algebras considered by E. Study [2] is biharmonic. Note that the algebra B
is isomorphic to four-dimensional over the field of real numbers R algebras
considered by A. Douglis [4] and L. Sobrero [5].

Consider a biharmonic plane µ := {ζ = x e1+y e2 : x, y ∈ R} which is
a linear span over the field R of the elements of biharmonic basis {e1, e2}
which satisfies (1.2).

With a domain D of the Cartesian plane xOy we associate the con-
gruent domain Dζ := {ζ = xe1 + ye2 : (x, y) ∈ D} in the biharmonic
plane µ and the congruent domain Dz := {z = x+ iy : (x, y) ∈ D} in the
complex plane C. Their boundaries are denoted by ∂D, ∂Dζ and ∂Dz,
respectively. Let Dζ (or Dz, D) be the closure of domain Dζ (or Dz, D,
respectively).

In what follows, ζ = x e1 + y e2 and z = x+ iy, where (x, y) ∈ D.
Any function Φ: Dζ −→ B has an expansion

Φ(ζ) = U1(x, y) e1 + U2(x, y) ie1 + U3(x, y) e2 + U4(x, y) ie2 , (1.3)

where Ul : D −→ R, l = 1, 4, are real-valued component-functions. We
use the following denotation:

Ul [Φ] := Ul, l = 1, 4.

We use also the euclidian norm ∥a∥ :=
√
|z1|2 + |z2|2 in the algebra

B, where a = z1e1 + z2e2 and z1, z2 ∈ C.
We say that a function Φ: Dζ −→ B is monogenic in a domain Dζ if

it has the classical derivative

Φ′(ζ) := lim
h→0, h∈µ

(
Φ(ζ + h)− Φ(ζ)

)
h−1

at every point ζ ∈ Dζ .
By biharmonic functions we call functions W : D −→ R which have

continuous partial derivatives up to the fourth order inclusively and sat-
isfy the biharmonic equation in the domain D:

∆2W (x, y) ≡ ∂4W (x, y)

∂x4
+ 2

∂4W (x, y)

∂x2∂y2
+
∂4W (x, y)

∂y4
= 0 . (1.4)

It is established in [6, 7] that every monogenic function Φ: Dζ −→ B
has derivatives Φ(n)(ζ) of all orders n in the domain Dζ and, therefore,
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it satisfies the two-dimensional biharmonic equation (1.4) in the domain
D due to the relations (1.1) and the equality

∆2Φ(ζ) = Φ(4)(ζ) (e21 + e22)
2.

Therefore, we named in [8] such a function Φ biharmonic monogenic
function in Dζ .

Every component Ul : D −→ R, l = 1, 4, of the expansion (1.3) of a
biharmonic monogenic function Φ: Dζ −→ B satisfies the equation (1.4)
also, i.e., Ul is a biharmonic function in the domain D.

At the same time, every biharmonic in D function U(x, y) is the
first component U1 ≡ U in the expression (1.3) of a certain biharmonic
monogenic function Φ : Dζ −→ B and, moreover, all such functions Φ are
found in [6, 7] in an explicit form.

We shall consider also a non-biharmonic basis {1, ρ} with the nilpo-
tent element

ρ = 2e1 + 2ie2 (1.5)

for which ρ2 = 0.
Every monogenic function Φ: Dζ −→ B is expressed via two corres-

ponding analytic functions F : Dz −→ C, F0 : Dz −→ C of the complex
variable z in the form (cf., e.g., [6, 7]):

Φ(ζ) = F (z)e1 −
(
iy

2
F ′(z)− F0(z)

)
ρ ∀ ζ ∈ Dζ . (1.6)

The equality (1.6) establishes one-to-one correspondence between mono-
genic functions Φ in the domain Dζ and pairs of complex-valued analytic
functions F, F0 in the domain Dz.

2. Schwarz-type boundary value problems for monogenic
functions

Consider a boundary value problem on finding a function
Φ: Dζ −→ B which is monogenic in a domain Dζ when limiting val-
ues of two component-functions in (1.3) are given on the boundary ∂Dζ ,
i.e., the following boundary conditions are satisfied:

Uk(x◦, y◦) = uk(ζ◦) , Um(x◦, y◦) = um(ζ◦) ∀ ζ◦ = x◦e1 + y◦e2 ∈ ∂Dζ

for 1 ≤ k < m ≤ 4, where

Ul(x◦, y◦) = lim
ζ→ζ◦,ζ∈Dζ

Ul [Φ (ζ)] , l ∈ {k,m},
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and uk, um are given continuous functions.
We demand additionally the existence of finite limits

lim
∥ζ∥→∞, ζ∈Dζ

Ul [Φ(ζ)] , l ∈ {k,m},

in the case where the domain Dζ is unbounded as well as the assumption
that every given function ul, l ∈ {k,m}, has a finite limit

ul(∞) := lim
∥ζ∥→∞, ζ∈∂Dζ

ul(ζ)

if ∂Dζ is unbounded.
We call such a problem by the (k-m)-problem.
V. F. Kovalev [9] considered (k-m)-problems with additional assump-

tions that the sought-for function Φ : Dζ −→ B is continuous in Dζ and
has the limit

lim
∥ζ∥→∞, ζ∈Dζ

Φ(ζ) =: Φ(∞) ∈ B

in the case where the domain Dζ is unbounded. He named such problems
as biharmonic Schwarz problems owing to their analogy with the classic
Schwarz problem on finding an analytic function of a complex variable
when values of its real part are given on the boundary of domain. In
[10,11], we called problems of such a type as (k-m)-problems in the sense
of Kovalev.

V. F. Kovalev [9] established that all (k-m)-problems are reduced to
the main three problems: with k = 1 and m ∈ {2, 3, 4}, respectively.

It is shown in [9] (see also [12,13]) that the main biharmonic problem
is reduced to the (1-3)-problem. A relation between the (1-4)-problem
and boundary value problems of the plane elasticity theory is established
in [14] (see also [10,15]).

(k-m)-problems in the sense of Kovalev are investigated in the papers
[8, 9, 12–17].

In particular, using the biharmonic Cauchy type integral, in [13] we
reduced the (1-3)-problem in the sense of Kovalev to a system of integral
equations and established sufficient conditions under which this system
has the Fredholm property. It was made for the case where the given
boundary functions satisfy the Dini condition and the boundary of do-
main belongs to a class being wider than the class of Lyapunov curves
that was usually required in the plane elasticity theory (cf., e.g., [18–22]).
The similar is done for the (1-4)-problem in the sense of Kovalev in [15].
For cases where Dζ is either a half-plane or a unit disk in the biharmonic
plane, the solutions of the (1-3)-problem in the sense of Kovalev and the
(1-4)-problem in the sense of Kovalev were found in explicit forms with
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using of integrals analogous to the classic Schwarz integral in [12] and [16],
respectively.

In [11], improving the reduction method of the papers [13] and [15] for
the (1-3)-problem and the (1-4)-problem, respectively, we have weakened
conditions on the boundary of domain and the given boundary functions
in comparison with corresponding results of the papers [13, 15]. Espe-
cially, it was shown that the Dini condition on the given boundary func-
tions can be withdrawn, and these functions can only be assumed to be
continuous. It was also shown in [10] that the formula of solutions of the
(1-4)-problem for a half-plane is the same as one for the (1-4)-problem in
the sense of Kovalev, but it is obtained under the mentioned weakening
of the assumptions with respect to the given boundary functions.

Below, we shall show that the similar facts are realized for the (1-3)-
problem in a half-plane and for both the (1-3)-problem and (1-4)-problem
in a unit disk.

3. (1-3)-problem for a half-plane

Consider the (1-3)-problem in the case where the domain Dζ is the
half-plane Π+ := {ζ = xe1 + ye2 : y > 0}. It is natural to identify the
boundary ∂Π+ with the real axis R as well as to consider R as a subset
of the complex plane C .

We shall find solutions of the (1-3)-problem for the half-plane Π+ in
the class MΠ+ of functions represented in the form

Φ(ζ) =
1

πi

+∞∫
−∞

u(t)(1 + tζ)

(t2 + 1)
(t− ζ)−1 dt =: SΠ+ [u](ζ) ∀ ζ ∈ Π+ , (3.1)

where the function u : R −→ B is continuous on the extended real axis
R := R ∪ {∞} .

Here and in what follows, all integrals along the real axis are under-
stood in the sense of their Cauchy principal values, i.e.,

+∞∫
−∞

g(t, ·) dt := lim
N→+∞

N∫
−N

g(t, ·) dt ,

Note that in the case where u : R −→ R is a continuous real-
valued function, the function SΠ+ [u](ζ) is the principal extension (see [23,
p. 165]) into the half-plane Π+ of the complex Schwarz integral

S[u](z) :=
1

πi

+∞∫
−∞

u(t)(1 + tz)

(t2 + 1)(t− z)
dt ,
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which determines a holomorphic function in the half-plane {z = x+ iy :
y > 0} of the complex plane with the given boundary values u(t) of real
part on the real axis. Furthermore, the equality

SΠ+ [u](ζ) = S[u](z)e1 −
y

2π
ρ

∞∫
−∞

u(t)

(t− z)2
d t ∀ ζ ∈ Π+ (3.2)

holds, and the following relations were proved within the proof of Theo-
rem 1 in [12]:

y

∞∫
−∞

u(t)

(t− z)2
d t ≤ 4ωR(u, 2y)

+2 y

∞∫
2y

ωR(u, η)

η2
dη → 0, z → ξ , ∀ ξ ∈ R , (3.3)

where
ωR(u, ε) = sup

t1,t2∈R:|t1−t2|≤ε
|u(t1)− u(t2)|

is the modulus of continuity of the function u .
In addition, using the change of variables t = −1/t1 and z = −1/z1,

we obtain the following relation in the similar way as (3.3):

y

∞∫
−∞

u(t)

(t− z)2
d t→ 0, z → ∞ . (3.4)

Thus, it follows from the relations (3.2)–(3.4) that

U1

[
SΠ+ [u](ζ)

]
→ u(ξ) , ζ → ξ, ∀ ξ ∈ R , (3.5)

i.e., SΠ+ [u] is the biharmonic Schwarz integral for the half-plane Π+.
To describe all solutions of (1-3)-problem for Π+ in the class MΠ+ ,

first consider the homogeneous (1-3)-problem.

Theorem 3.1. All solutions Φ ∈ MΠ+ of the homogeneous (1-3)-prob-
lem for Π+ with zero data u1 = u3 ≡ 0 are expressed in the form

Φ(ζ) = a1 ie1 + a2 ie2 , (3.6)

where a1, a2 are any real constants.
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Proof. For a monogenic function Φ ∈ MΠ+ we use the expression (1.6)
via two holomorphic functions F and F0 , where Dζ = Π+.

Let us consider the linear functional f : B → C such that f(e1) = 1
and f(ρ) = 0 . It is well known [23, p. 135] that the functional f is also
continuous and multiplicative due to the fact that its kernel is a maximal
ideal of the algebra B. Therefore, from the equalities (1.6), (3.1) it follows
that

F (z) = f(Φ(ζ)) = f(SΠ+ [u](ζ)) = S[v](z) ∀ z ∈ C : Im z > 0 ,

where v(t) := f(u(t)) for all t ∈ R . Then

F ′(z) =
1

2πi

∞∫
−∞

v(t)

(t− z)2
dt ∀ z ∈ C : Im z > 0 ,

and for the function yF ′(z) the relations of the form (3.3), (3.4) hold.
As a result, we obtain the equality

lim
z→ξ, y>0

yF ′(z) = 0 ∀ ξ ∈ R . (3.7)

Further, using the equality (1.5), we rewrite the expansion (1.6) for
all ζ ∈ Π+ in the basis {e1, e2}:

Φ(ζ) =
(
F (z)− iyF ′(z) + 2F0(z)

)
e1 + i

(
2F0(z)− iyF ′(z)

)
e2 . (3.8)

Thus, taking into account the relation (3.7), one can deduce that the
homogeneous (1-3)-problem for Π+ is reduced to finding holomorphic
functions F , F0 by solving two classical Schwarz problem for the half-
plane {z = x+ iy : y > 0} with the following boundary conditions:

Re
(
F (ξ) + 2F0(ξ)

)
= 0, Re

(
2iF0(ξ)

)
= 0 ∀ ξ ∈ R.

In such a way we obtain F0(z) ≡ a2/2 and F (z) ≡ −a2 + ia1, where
a1, a2 are any real constants.

Finally, substituting the obtained functions F , F0 into the equality
(3.8), we obtain the equality (3.6).

In the following theorem we establish the formula of solutions of the
(1-3)-problem for the half-plane Π+ in the class MΠ+ .

Theorem 3.2. Let the functions u1 : R −→ R and u3 : R −→ R be
continuous. Then the (1-3)-problem for Π+ is solvable in the class MΠ+,
and the general solution is expressed in the form

Φ(ζ) = SΠ+ [u1](ζ) e1 + SΠ+ [u3](ζ) e2 + a1 ie1 + a2 ie2, (3.9)

where a1, a2 are any real constants.
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Proof. It follows from the relation (3.5) that the function

SΠ+ [u1](ζ) e1 + SΠ+ [u3](ζ) e2

is a particular solution of the (1-3)-problem.

Now, it is obvious that the formula (3.9) represents the solution of
the (1-3)-problem for Π+ in the class MΠ+ as the sum of the mentioned
particular solution and the general solution (3.6) of the homogeneous
(1-3)-problem.

In Theorem 3 [12] we obtained the general solution of (1-3)-problem in
the sense of Kovalev in the form (3.9) but under complementary assump-
tions that for every given function ul : R −→ R, l ∈ {1, 3}, its modulus
of continuity and the local centered (with respect to the infinitely remote
point) modulus of continuity satisfy Dini conditions.

4. A biharmonic analogue of Schwarz integral for a disk

In what follows, Dζ := {ζ = xe1 + ye2 : ∥ζ∥ ≤ 1} is the unit disk in
the biharmonic plane µ and Dz := {z = x+ iy : |z| ≤ 1} is the unit disk
in the complex plane C.

For a continuous function u : ∂Dζ −→ R, by û we denote the function
defined on the unit circle ∂Dz of the complex plane C by the equality
û(z) = u(ζ) for all z ∈ ∂Dz.

Consider the integral

SDζ
[u](ζ) :=

1

2πi

∫
∂Dζ

u(τ)(τ + ζ)(τ − ζ)−1 τ−1 dτ ∀ ζ ∈ Dζ (4.1)

that is an analogue of the complex Schwarz integral

S0[û](ζ) :=
1

2πi

∫
∂Dz

û(t)
t+ z

t− z

dt

t
∀ z ∈ D

which determines a holomorphic function in the disk Dz with the given
boundary values û(t) of real part on the circle ∂Dz.

Some limiting properties of the integral (4.1) when ζ tends to a point
of the circle ∂Dζ are studied in [12] under the assumption that the mod-
ulus of continuity of the function u satisfies the Dini condition.

Now, supposing only the continuity of the function u, we shall con-
sider some limiting properties of the integral (4.1) and shall prove some
auxiliary statements.
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Lemma 4.1. If a function u : ∂Dζ −→ R is continuous, then the integral
(4.1) is expressed in the form

SDζ
[u](ζ) = S0[û](z) e1 + (I3(z) + I4(z))

i ρ

2
∀ ζ ∈ Dζ . (4.2)

where

I3(z) :=
1

2πi

∫
∂Dz

û(t)(xt2 − t1y)

t2(t− z)
dt , (4.3)

I4(z) :=
1

2π

∫
∂Dz

û(t)(t+ z)(t2(t2 − y) + t1(t1 − x))

t2(t− z)2
dt , (4.4)

and t1 := Re t , t2 := Im t .

Proof. Let τ := t1e1 + t2e2 ∈ ∂Dζ and t := t1 + it2 ∈ ∂Dz, where t1, t2
are real. Taking into account the relations ζ = ze1 − iy

2 ρ, τ = te1 − it2
2 ρ

and the equalities (cf., e.g., [6])

(τ − ζ)−1 =
1

t− z
e1 +

(t2 − y)

(t− z)2
iρ

2
, τ−1 =

1

t
e1 +

t2
t2
iρ

2
,

we obtain a chain of equalities

(τ + ζ)(τ − ζ)−1 τ−1

=

(
(t+ z)e1 − (t2 + y)

iρ

2

)(
1

t− z
e1 +

(t2 − y)

(t− z)2
iρ

2

)(
1

t
e1 +

t2
t2
iρ

2

)
=

(
t+ z

t− z
e1 −

(
t2 + y

t− z
− (t+ z)(t2 − y)

(t− z)2

)
iρ

2

)(
1

t
e1 +

t2
t2
iρ

2

)
=

t+ z

t(t− z)
e1 +

(
t2(t+ z)

t2(t− z)
− t2 + y

t(t− z)
+

(t+ z)(t2 − y)

t(t− z)2

)
iρ

2

=
t+ z

t(t− z)
e1 +

(
xt2 − t1y

t2(t− z)
+

(t+ z)(t2 − y)

t(t− z)2

)
iρ

2
. (4.5)

Substituting (4.5) and the expression dτ = e1dt − i
2ρ dt2 into (4.1),

we obtain

SDζ
[u](ζ) = S0[û](z) e1 +

i ρ

2
I3(z)

+
i ρ

2

1

2πi

∫
∂Dz

û(t)

(
(t+ z)(t2 − y)

t(t− z)2
dt− t+ z

t(t− z)
dt2

)

=S0[û](z) e1+
i ρ

2
I3(z)+

i ρ

2

1

2πi

∫
∂Dz

û(t)

(
(t+ z)

(
(t2 − y) dt1 − (t1 − x) dt2

)
t(t− z)2

)
.

Finally, to complete the proof, it remains to use the relations dt1 =
it2
t dt , dt2 = − it1

t dt .



S. V. Gryshchuk, S. A. Plaksa 347

In the next statement we use a singular integral which is understood
in the sense of its Cauchy principal value, i.e.∫

∂Dz

g(t, ·)
(t− z◦)2

dt := lim
ε→0+0

∫
{t∈∂Dz : |t−z◦|≥ε}

g(t, ·)
(t− z◦)2

dt ∀ z◦ ∈ ∂Dz .

Lemma 4.2. If a function û : ∂Dz −→ R is continuous, then the integral
(4.4) is continuously extended from Dz onto the boundary ∂Dz , and the
following equality holds:

lim
z→z◦, z∈Dz

I4(z) = I4(z◦) ∀ z◦ ∈ ∂Dz, (4.6)

where

I4(z◦) :=
1

2π

∫
∂Dz

û(t)(t+ z)(t2(t2 − y◦) + t1(t1 − x◦))

t2(t− z◦)2
dt , (4.7)

and t1 := Re t , t2 := Im t , x◦ := Re z◦ , y◦ := Im z◦ .

Proof. Let z∗ = x∗ + iy∗, where x∗, y∗ ∈ R, be the point of ∂Dz which is
the nearest to a point z ∈ Dz , z ̸= 0 . Let us represent the integral (4.4)
in the form

I4(z) =
1

2π

∫
∂Dz

G(t, z)−G(t, z∗)

(t− z)2
dt+

1

2π

∫
∂Dz

G(t, z∗)

(t− z)2
dt =:

=: I ′4(z) + I ′′4 (z) ,

where G(t, z) := û(t)(t+ z)
(
t2(t2 − y) + t1(t1 − x)

)
/t2 .

Consider the difference

G(t, z)−G(t, z∗)

=

(
û(t)(t+ z)

t2
− û(t)(t+ z∗)

t2

)(
t2(t2 − y∗) + t1(t1 − x∗)

)
−
(
û(t)(t+ z)

t2
− û(z∗)(z∗ + z∗)

z2∗

)(
t2(y − y∗) + t1(x− x∗)

)
−2û(z∗)

z∗

(
t2(y − y∗) + t1(x− x∗)

)
=: G1(t, z) +G2(t, z) +G3(t, z)

and represent I ′4(z) as the following sum:

I ′4(z) =
1

2π

3∑
m=1

∫
∂Dz

Gm(t, z)

(t− z)2
dt .
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Denote Γ1 := {t ∈ ∂Dz : |t− z∗| ≤ 2
(
1− |z|

)
}, Γ2 := ∂Dz \ Γ1 .

Assume by c to denote constants whose values are independent of t,
z and z∗, but, generally speaking, may be different even within a single
chain of inequalities.

Taking into account the inequalities |t−z| ≥
(
1−|z|

)
for all t ∈ ∂Dz ,

|t − z| ≥ |t − z∗|/2 for all t ∈ Γ2, |G1(t, z)| ≤ c
(
1 − |z|

)
|t − z∗| for all

t ∈ ∂Dz , we obtain the relations∣∣∣∣∣∣
∫
∂Dz

G1(t, z)

(t− z)2
dt

∣∣∣∣∣∣ ≤
∫
Γ1

|G1(t, z)|
|t− z|2

|dt|+
∫
Γ2

|G1(t, z)|
|t− z|2

|dt|

≤ c
(
1− |z|

) ∫
Γ1

|t− z∗|(
1− |z|

)2 |dt|+ ∫
Γ2

|t− z∗|
|t− z∗|2

|dt|


≤ c

(
1− |z|

)
ln

1(
1− |z|

) → 0, |z| → 1 . (4.8)

For the function G2, the following estimate is fulfilled:

|G2(t, z)| ≤ c
(
1− |z|

)
(ω(u, |t− z∗|) + |t− z∗|+ |t− z|) ,

where
ω(u, ε) = sup

t1,t2∈∂Dz :|t1−t2|≤ε
|u(t1)− u(t2)|

is the modulus of continuity of the function u . Therefore, in a similar
way as (4.8), we obtain∣∣∣∣∣∣

∫
∂Dz

G2(t, z)

(t− z)2
dt

∣∣∣∣∣∣ ≤ c

(
ω
(
u, 2
(
1− |z|

))
+
(
1− |z|

) 2∫
1−|z|

ω(u, η)

η2
dη

+
(
1− |z|

)
ln

1(
1− |z|

))→ 0, |z| → 1 .

We have also ∣∣∣∣∣∣
∫
∂Dz

G3(t, z)

(t− z)2
dt

∣∣∣∣∣∣
=

∣∣∣∣2û(z∗)z∗

∣∣∣∣
∣∣∣∣∣∣
∫
∂Dz

(t2 − y∗)(y − y∗) + (t1 − x∗)(x− x∗)
)

(t− z)2
dt

∣∣∣∣∣∣ ,
and further we obtain the same relations as (4.8).
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Thus,

I ′4(z) → 0, |z| → 1 . (4.9)

Before to consider I ′′4 (z), let us point out an estimate for the function
G . Using the change of variables t = exp(iθ), z∗ = exp(iθ∗), we obtain
the relations

|G(t, z∗)| ≤ c
∣∣t2(t2 − y∗) + t1(t1 − x∗)

∣∣
= c

∣∣1− cos(θ − θ∗)
∣∣ ≤ c |t− z∗|2 (4.10)

which imply the existence of singular integral (4.7).

Now, let us fix a positive ε such that ε ≥ 2 |z − z◦| . Denote Γε :=
{t ∈ ∂Dz : |t− z◦| ≤ ε} and represent I ′′4 (z) in the form

I ′′4 (z) =
1

2π

∫
Γε

G(t, z∗)

(t− z)2
dt+

1

2π

∫
∂Dz\Γε

G(t, z∗)

(t− z)2
dt =: J1(z) + J2(z) .

Taking into account the estimate (4.10) and the inequality |t− z∗| ≤
2|t− z| for all t ∈ Γε , we obtain the estimate

|J1(z)| ≤ c1 ε , (4.11)

where the constant c1 does not depend on z, z∗ and ε .

Furthermore, it is evident that

J2(z) →
1

2π

∫
∂Dz\Γε

G(t, z◦)

(t− z◦)2
dt, z → z◦ . (4.12)

Now, taking into account the relations (4.9), (4.11), (4.12), we can
state that for any ε > 0 there exists a positive number δ < ε/2 such that
for all z ∈ Dz : |z − z◦| < δ the following inequality is fulfilled:∣∣∣∣∣∣∣I4(z)−

1

2π

∫
∂Dz\Γε

G(t, z◦)

(t− z◦)2
dt

∣∣∣∣∣∣∣ ≤ c0 ε , (4.13)

where c0 is a fixed constant independent of z, z◦ and ε .

Finally, the inequality (4.13) implies the equality (4.6) as ε→ 0 .

Now, we can prove the main lemma of this section.
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Lemma 4.3. If a function u : ∂Dζ −→ R is continuous, then the real-
valued component-functions U1[SDζ

[u]], U3[SDζ
[u]], U4[SDζ

[u]] of integral
(4.1) are continuously extended to the boundary ∂D , and the following
equalities hold:

lim
ζ→ζ◦, ζ∈Dζ

U1[SDζ
[u](ζ)] = u(ζ◦) +Bx◦ −Ay◦ +D ∀ ζ◦ ∈ ∂Dζ , (4.14)

lim
ζ→ζ◦, ζ∈Dζ

U3[SDζ
[u](ζ)] = Ax◦ +By◦ + C ∀ ζ◦ ∈ ∂Dζ , (4.15)

lim
ζ→ζ◦, ζ∈Dζ

U4[SDζ
[u](ζ)] = Bx◦ −Ay◦ +D ∀ ζ◦ ∈ ∂Dζ , (4.16)

where real x◦, y◦ such that ζ◦ = x◦e1 + y◦e2 , and

A :=
1

2π
Re

∫
∂Dz

û(t)

t2
dt, B :=

1

2π
Im

∫
∂Dz

û(t)

t2
dt,

C :=
1

2π
Re

∫
∂Dz

û(t)

t3
dt, D :=

1

2π
Im

∫
∂Dz

û(t)

t3
dt .

Proof. Let us use the equality (4.2). It is evident that U3[S0[û](z)e1] ≡
U4[S0[û](z)e1] ≡ 0 and

U1

[
S0[û](z)e1

]
→ u(ζ◦) , ζ → ζ◦, ∀ ζ◦ ∈ ∂Dζ .

In order to consider the integral (4.3), let us denote Ω(t, z) :=
û(t)(xt2 − t1y)/t

2 . The following estimates are fulfilled:

|Ω(t, z)| ≤ c
∣∣t2(x− t1) + t1(t2 − y)

∣∣ ≤ c |t− z| ,

|Ω(t, z)− Ω(t, z0)| ≤ c |z − z0| ,

where the constant c does not depend on t, z and z0 . Therefore, by
virtue of Lemma 2 [11], the integral I3(z) is continuously extended from
Dz onto the boundary ∂Dz , and the following equality holds:

lim
z→z◦, z∈Dz

I3(z) = I3(z◦) ∀ z◦ ∈ ∂Dz,

where

I3(z◦) :=
1

2πi

∫
∂D

û(t)(x◦ t2 − t1y◦)

t2(t− z◦)
dt (4.17)

exists as an improper integral and x◦ = Re z◦ , y◦ = Im z◦ .
The integral I4(z) is also continuously extended from Dz onto the

boundary ∂Dz and the equality (4.6) holds due to Lemma 4.2.
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The computations of integrals (4.7) and (4.17) are done in Theorem 4
[12], viz.,

I3(z◦) = I4(z◦) =
−x◦ + iy◦

4π

∫
∂Dz

û(t)

t2
dt− 1

4π

∫
∂Dz

û(t)

t3
dt .

Finally, to complete the proof of equalities (4.14) – (4.16), it remains
to single out corresponding component-functions for the hypercomplex
function (I3(z◦) + I4(z◦))iρ/2 ≡ (I3(z◦) + I4(z◦))(ie1 − e2) .

5. (1-3)-problem for the unit disk

Before to consider the (1-3)-problem for the unit disk Dζ , let us make
some comments.

V. F. Kovalev [9] shown that the biharmonic problem (cf., e.g., [24, p.
194] and [18, p. 13]) on finding a biharmonic function U : D −→ R with
given limiting values of its partial derivatives ∂U/∂x and ∂U/∂y on the
boundary ∂D can be reduced to the (1-3)-problem (see also [12,13]).

It is well-known that the biharmonic problem has a necessary condi-
tion of solvability (cf., e.g., [24, p. 195]) which can be rewritten in the
terms of (1-3)-problem as the following (cf., e.g., [10]):∫

∂Dζ

u1(ζ) dx+ u3(ζ) dy = 0. (5.1)

Below, we shall prove that under the condition (5.1), the (1-3)-prob-
lem for Dζ is solvable in the class M1,3 of functions represented in the
form

Φ(ζ) = SDζ
[g1](ζ)e1 + SDζ

[g3](ζ)e2 ∀ ζ ∈ Dζ , (5.2)

where the functions g1 : ∂Dζ −→ R , g3 : ∂Dζ −→ R are continuous.
The solvability of the (1-3)-problem for Dζ in the class M1,3 is de-

scribed in the following theorem.

Theorem 5.1. Let the functions u1 : ∂Dζ −→ R and u3 : ∂Dζ −→ R
be continuous. Then (1-3)-problem for Dζ is solvable in the class M1,3

if and only if the condition (5.1) is satisfied. The general solution is
expressed in the form

Φ(ζ) = SDζ
[u1](ζ) e1 + SDζ

[u3](ζ) e2 + bζ + b1e1 + b2e2 + iaζ , (5.3)

where

b := − 1

2π
Re

∫
∂Dz

û3(t)

t2
dt− 1

2π
Im

∫
∂Dz

û1(t)

t2
dt ,
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b1 := − 1

2π
Re

∫
∂Dz

û3(t)

t3
dt− 1

2π
Im

∫
∂Dz

û1(t)

t3
dt ,

b2 :=
1

2π
Im

∫
∂Dz

û3(t)

t3
dt− 1

2π
Re

∫
∂Dz

û1(t)

t3
dt ,

and a is any real constant.

Proof. Let the function (5.2) be a solution of the (1-3)-problem for Dζ ,
i.e., the following boundary conditions are satisfied:

lim
ζ→ζ◦, ζ∈Dζ

Uk
[
S∂Dζ

[g1](ζ) e1 + S∂Dζ
[g3](ζ) e2

]
= uk(ζ◦) ∀ζ◦ ∈ ∂Dζ , k = 1, 3 . (5.4)

Our strategy is to find the functions g1 and g3 with using the method
of indefinite coefficients and two equations (5.4) with respect to sought-
for functions g1, g3.

Taking into account the equalities (4.14), (4.15), (5.4) and the multi-
plication rules (1.2), we deduce that the functions g1, g3 can be expressed
in the form

gk(ζ) = uk(ζ) + ak,1 x+ ak,2 y + ak,0 ∀ζ ∈ ∂Dζ , (5.5)

where unknown coefficients ak,m are real numbers for k = 1, 3 and
m = 0, 1, 2 .

Let us denote

Ak :=
1

2π
Re

∫
∂Dz

ûk(t)

t2
dt, Bk :=

1

2π
Im

∫
∂Dz

ûk(t)

t2
dt,

Ck :=
1

2π
Re

∫
∂Dz

ûk(t)

t3
dt, Dk :=

1

2π
Im

∫
∂Dz

ûk(t)

t3
dt, k = 1, 3 ,

and substitute the expressions (5.5) into the equations (5.4). Taking into
account the relations (4.14) – (4.16), the equalities U1 [e2v] = U3 [v] and
U3 [e2v] = U1 [v]− 2U4 [v] for all v ∈ B and

1

2π

∫
∂Dz

x

z2
dz =

i

2
,

1

2π

∫
∂Dz

y

z2
dz =

1

2
,

∫
∂Dz

x

z3
dz =

∫
∂Dz

y

z3
dz = 0 ,
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we obtain the equalities(
3

2
a1,1 +

1

2
a3,2 +A3 +B1

)
x◦

+

(
1

2
a1,2 +

1

2
a3,1 −A1 +B3

)
y◦

+a1,0 + C3 +D1 = 0,(
1

2
a1,2 +

1

2
a3,1 +A1 −B3

)
x◦

+

(
1

2
a1,1 +

3

2
a3,2 +A3 +B1

)
y◦

+a3,0 + C1 −D3 = 0 ,

where real x◦, y◦ such that ζ◦ = x◦e1 + y◦e2 .
Consequently, we have a system of six equations with six real un-

knowns ak,m (with k = 1, 3 and m = 0, 1, 2):

a1,0 = −C3 −D1 ,

a3,0 = −C1 +D3 ,

a1,2 + a3,1 = 2A1 − 2B3 ,

a1,2 + a3,1 = −2A1 + 2B3 ,

3a1,1 + a3,2 = −2A3 − 2B1 ,

a1,1 + 3a3,2 = −2A3 − 2B1 .

(5.6)

It is obvious that this system is solvable if and only if A1 − B3 =
B3 − A1, i.e. A1 = B3 that is equivalent to the condition (5.1). If
this condition is satisfied, then the general solution of the system (5.6)
contains an arbitrary real number a1,2 and is of the form:

a1,0 = −C3 −D1 ,

a3,0 = −C1 +D3 ,

a3,1 = −a1,2 ,

a1,1 = −1

2
A3 −

1

2
B1 ,

a3,2 = −1

2
A3 −

1

2
B1 .

(5.7)

Thus, the function (5.2) is the general solution of (1-3)-problem for
Dζ in the class M1,3 if the functions g1, g3 are of the form (5.5), where
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the coefficients ak,m with k = 1, 3 and m = 0, 1, 2 are determined by
the equalities (5.7).

Finally, with using the equalities

SDζ
[1](ζ) = e1, SDζ

[x](ζ) =
1

2
(3e1 + ie2)ζ, SDζ

[y](ζ) =
1

2
(−3ie1 + e2)ζ

for any ζ ∈ Dζ , the formula (5.2) is reduced to the form (5.3).

In Theorem 5 [12] we obtained the general solution of (1-3)-problem
in the sense of Kovalev for ∂Dζ in a somewhat wider class of func-
tions but under a complementary assumption that for the given functions
uk : ∂Dζ −→ R, k ∈ {1, 3}, their moduli of continuity satisfy the Dini
condition. In comparison with the formula (5.3), the solution in [12] con-
tains an additional summand i(a1e1 + a2e2) (where a1, a2 are any real
constants) that does not belong to the class M1,3 , as it follows from the
proof of Theorem 5.1.

6. (1-4)-problem for the unit disk

Consider the (1-4)-problem for the unit disk Dζ .
In contradistinction to the (1-3)-problem, which is solvable if and only

if the condition (5.1) is satisfied, it is shown in the next theorem that
the (1-4)-problem is solvable unconditionally, and an explicit formula for
solution of the (1-4)-problem for Dζ is obtained.

Theorem 6.1. Let the functions u1 : ∂Dζ −→ R and u4 : ∂Dζ −→ R be
continuous. Then the general solution of (1-4)-problem is expressed in
the form

Φ(ζ) = SDζ
[u1](ζ) e1 + SDζ

[u4](ζ) ie2

+
(
(d1 + id2)ζ + d

)
(e1 + ie2) + a1 ie1 + a2 e2 , (6.1)

where

d1 := − 1

2π
Im

∫
∂Dz

û1(t)− û4(t)

t2
dt , d2 := − 1

2π
Re

∫
∂Dz

û1(t)− û4(t)

t2
dt ,

d := − 1

2π
Im

∫
∂Dz

û1(t)− û4(t)

t3
dt ,

and a1, a2 are any real constants.
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Proof. First, note that the general solution of the homogeneous (1-4)-
problem with zero data u1 = u4 ≡ 0 is expressed by the formula

Φ0(ζ) = a1ie1 + a2e2 ∀ ζ ∈ Dζ , (6.2)

where a1, a2 are any real constants (see Theorem 5.2 in [10]).
Further, let us prove that there exists a particular solution of the

(1-4)-problem in the form

Φp(ζ) = SDζ
[u1](ζ) e1 + SDζ

[u4](ζ) ie2

+
(
d1e1 + d2ie1 + d3e2 + d4ie2

)
ζ + c1 e1 + c2 ie2 ∀ ζ ∈ Dζ , (6.3)

where unknown real coefficients d1, d2, d3, d4, c1, c2 are need to be found
to satisfy the following boundary conditions

lim
ζ→ζ◦, ζ∈Dζ

Uk [Φp(ζ)] = uk(ζ◦) ∀ ζ◦ ∈ ∂Dζ , k = 1, 4 . (6.4)

Denoting

Ak :=
1

2π
Re

∫
∂Dz

ûk(t)

t2
dt , Bk :=

1

2π
Im

∫
∂Dz

ûk(t)

t2
dt ,

Dk :=
1

2π
Im

∫
∂Dz

ûk(t)

t3
dt, k = 1, 4 ,

and taking into account the relations (4.14), (4.16) and the equalities

lim
ζ→ζ◦, ζ∈Dζ

U1 [Φp(ζ)] = u1(ζ◦)+

+(B1 −B4 + d1)x◦ − (A1 −A4 − d3)y◦ +D1 −D4 + c1 ,

lim
ζ→ζ◦, ζ∈Dζ

U4 [Φp(ζ)] = u4(ζ◦)+

+(B1 −B4 + d4)x◦ − (A1 −A4 − d2 − 2d3)y◦ +D1 −D4 + c2

for ζ◦ ∈ ∂Dz, where real x◦, y◦ such that ζ◦ = x◦e1 + y◦e2 .
Now, it is clear that the identities (6.4) hold if and only if d4 = d1 =

−(B1 −B4) , d3 = −d2 = A1 −A4 , c1 = c2 = −(D1 −D4) .
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Finally, substituting the found values for the coefficients d1, d2, d3,
d4, c1, c2 to the partial solution (6.3) of the inhomogeneous (1-4)-problem
and adding the general solution (6.2) of the homogeneous (1-4)-problem,
after evident identical transformations we obtain the formula (6.1) for
the general solution of the (1-4)-problem for the unit disk.

In Theorem 4 [16] we obtain the general solution of (1-4)-problem in
the sense of Kovalev for ∂Dζ in the form (6.1) but under a complementary
assumption that for the given functions uk : ∂Dζ −→ R, k ∈ {1, 4}, their
moduli of continuity satisfy the Dini condition.
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S. V. Gryshchuk, S. A. Plaksa 357

[11] Gryshchuk, S.V., Plaksa, S.A. (2021). A Hypercomplex Method for Solving Bound-
ary Value Problems for Biharmonic Functions. In: Hošková-Mayerová Š., Flaut
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