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On boundary-value problems for semi-linear
equations in the plane

V. Gutlyanskĭı, O. Nesmelova, V. Ryazanov, A. Yefimushkin

Abstract. The study of the Dirichlet problem with arbitrary mea-
surable data for harmonic functions in the unit disk D is due to the
dissertation of Luzin. Later on, the known monograph of Vekua has
been devoted to boundary-value problems only with Hölder continuous
data for the generalized analytic functions, i.e., continuous complex-
valued functions f(z) of the complex variable z = x+iy with generalized
first partial derivatives by Sobolev satisfying the equations of the form
∂z̄f + af + bf = c , where it was assumed that the complex-valued
functions a, b and c belong to the class Lp with some p > 2 in smooth
enough domains D in C.

Our last paper [12] contained theorems on the existence of nonclassi-
cal solutions of the Hilbert boundary-value problem with arbitrary mea-
surable data (with respect to logarithmic capacity) for generalized ana-
lytic functions f : D → C such that ∂z̄f = g with the real-valued sources.
On this basis, it was established the corresponding existence theorems
for the Poincare problem on directional derivatives and, in particular, for
the Neumann problem to the Poisson equations △U = G ∈ Lp, p > 2,
with arbitrary measurable boundary data over logarithmic capacity.

The present paper is a natural continuation of the article [12] and in-
cludes, in particular, theorems on the existence of solutions of the Hilbert
boundary-value problem with arbitrary measurable data for the corre-
sponding nonlinear equations of the Vekua type ∂z̄f(z) = h(z)q(f(z)).
On this basis, it is also established existence theorems for the Poincare
boundary-value problem and, in particular, for the Neumann problem
to the nonlinear Poisson equations of the form △U(z) = H(z)Q(U(z))
with arbitrary measurable boundary data over logarithmic capacity. The
Dirichlet problem was investigated by us for the given equations, too.

Our approach is based on the interpretation of boundary values in the
sense of angular (along nontangential paths) limits that are a traditional
tool of the geometric function theory.

As consequences, we give applications to some concrete semi-linear
equations of mathematical physics, arising from modelling various phys-
ical processes. These results can be also applied to semi-linear equations
of mathematical physics in anisotropic and inhomogeneous media.
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1. Introduction

The research of boundary-value problems with arbitrary measurable
data is due to the famous dissertation of Luzin, see its original text [17],
and its reprint [18] with comments of his pupils Bari and Men’shov.
Namely, he has established that, for each measurable a.e. finite 2π-pe-
riodic function φ(ϑ) : R → R, there is a harmonic function U in the unit
disk D such that U(z) → φ(ϑ) for a.e. ϑ as z → ζ := eiϑ along all nontan-
gential paths to ∂D. The latter was based on his other deep result on the
antiderivatives stated that, for any measurable function ψ : [0, 1] → R,
there is a continuous function Ψ : [0, 1] → R with Ψ′ = ψ a.e., see e.g.
his papers [16] and [19], Theorem VII(2.3) in the Saks monograph [22].

The well–known monograph of Vekua [24] has been devoted to the
theory of the generalized analytic functions, i.e., continuous complex-
valued functions h(z) of the complex variable z = x+ iy with generalized
first partial derivatives by Sobolev satisfying equations of the form

∂z̄h + ah + bh = c , ∂z̄ :=
1

2

(
∂

∂x
+ i · ∂

∂y

)
, (1.1)

where it was assumed that the complex-valued functions a, b and c belong
to the class Lp with some p > 2 in the corresponding domains D ⊆ C.

Our paper [12] contained theorems on the existence of nonclassical
solutions of the Hilbert boundary-value problem with arbitrary measur-
able data (with respect to logarithmic capacity) for generalized analytic
functions f : D → C such that ∂z̄f = g with the real-valued sources g.
On this basis, it was established the corresponding existence theorems
for the Poincare problem on directional derivatives and, in particular, for
the Neumann problem to the Poisson equations △U = G ∈ Lp, p > 2
with arbitrary measurable boundary data.

The present paper is a natural continuation of the article [12], where
the reader can find further historical comments, and includes, in particu-
lar, theorems on the existence of solutions of the Hilbert boundary-value
problem with arbitrary measurable data for the corresponding nonlinear
equations of the Vekua type ∂z̄f(z) = h(z)q(f(z)). On this basis, it is also
established existence theorems for the Poincare boundary-value problem
and, in particular, for the Neumann problem to the nonlinear Poisson
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equations of the form △U(z) = H(z)Q(f(z)) with arbitrary measurable
boundary data.

Our approach is based on the interpretation of boundary values in the
sense of angular (along nontangential paths) limits that are a traditional
tool of the geometric function theory.

As consequences, we give applications to some concrete semi-linear
equations of mathematical physics arising under modelling various phy-
sical processes.

These results can be also applied to semi-linear equations of mathe-
matical physics in anisotropic and inhomogeneous media that will be
published elsewhere.

Many definitions for the following sections can be found in our last
paper [12].

2. On the Dirichlet problem with measurable data for
harmonic functions

Let us start with the following analog of the Luzin theorem on the
antiderivatives in terms of logarithmic capacity, see Theorem 3.1 in [7].

Lemma 1. Let φ : [a, b] → R be a measurable function with respect to
logarithmic capacity. Then there is a continuous function Φ : [a, b] → R
with Φ′(x) = φ(x) q.e. on (a, b). Furthermore, Φ can be chosen with
Φ(a) = Φ(b) = 0 and |Φ(x)| ≤ ε under arbitrary prescribed ε > 0 for all
x ∈ [a, b].

Remark 1. In view of arbitrariness of ε > 0 in Lemma 1, for each
φ, there is the infinite collection of such Φ. Furthermore, it is easy to see
by Lemma 3.1 in [7] that the space of such functions Φ has the infinite
dimension.

Corollary 1. Let φ : ∂D → R be a measurable function with respect
to logarithmic capacity. Then the space of continuous functions Φ : ∂D →
[−1, 1] with Φ(1) = 0, |Φ(ζ)| ≤ ε under arbitrary prescribed ε > 0 for all
ζ ∈ ∂D, and Φ′(eit) = φ(eit) q.e. on R has the infinite dimension.

On this basis, we obtain the following result, see e.g. Theorem 4.1
in [7].

Proposition 1. Let φ : ∂D → R be a measurable function with res-
pect to logarithmic capacity. Then there is a space of harmonic functions
U in the unit disk D of the infinite dimension with the angular limits

lim
z→ζ

u(z) = φ(ζ) q.e. on ∂D . (2.1)
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Remark 2. By the proof of Theorem 4.1 in [7], u(z) = ∂
∂ϑ U(z),

where

U(reiϑ) =
1

2π

2π∫
0

1− r2

1− 2r cos(ϑ− t) + r2
Φ(eit) dt , (2.2)

i.e., for any function Φ from Corollary 1, u can be calculated in the
explicit form

u(reiϑ) = − r

π

2π∫
0

(1− r2) sin(ϑ− t)

(1− 2r cos(ϑ− t) + r2)2
Φ(eit) dt . (2.3)

Later on, it was shown by Theorems 1 and 3 in [21] that the functions
u(z) can be represented as the Poisson–Stieltjes integrals

UΦ(z) =
1

2π

π∫
−π

Pr(ϑ− t) dΦ(eit) ∀ z = reiϑ, r ∈ (0, 1) , ϑ ∈ [−π, π] ,

(2.4)
where Pr(Θ) = (1− r2)/(1− 2r cosΘ+ r2), r < 1,Θ ∈ R, is the Poisson
kernel.

The corresponding analytic functions A(z) in D with the real parts
u(z) can be represented as the Schwartz–Stieltjes integrals

SΦ(z) =
1

2π

∫
∂D

ζ + z

ζ − z
dΦ(ζ) , z ∈ D , (2.5)

because of the Poisson kernel is the real part of the (analytic in the
variable z) Schwartz kernel (ζ + z)/(ζ − z). Integrating (2.5) by parts,
see Lemma 1 and Remark 1 in [21], we obtain also the more convenient
form of the representation

SΦ(z) =
z

π

∫
∂D

Φ(ζ)

(ζ − z)2
d ζ , z ∈ D . (2.6)

By Corollary 1 the spaces of solutions of the Dirichlet problem in the
classes of harmonic and analytic functions generating by integral ope-
rators UΦ and SΦ, correspondingly, under each fixed boundary date φ
that is measurable with respect to logarithmic capacity have the infinite
dimension.
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3. On completely continuous Hilbert operators

First of all, recall that a completely continuous mapping from a
metric space M1 into a metric space M2 is defined as a continuous map-
ping on M1 which takes bounded subsets of M1 into relatively compact
ones of M2, i.e. with compact closures in M2. When a continuous map-
ping takes M1 into a relatively compact subset of M1, it is nowadays said
to be compact on M1.

The notion of completely continuous (compact) operators is due es-
sentially, in the simplest partial cases, to Hilbert and Riesz F., see the cor-
responding comments of Section VI.12 in [5], and to Leray and Schauder
in the general case, see the paper [15].

In paper [12], we considered generalized analytic functions f
with sources g ∈ Lp, p > 2, that have generalized first derivatives by
Sobolev and satisfy the equation

∂f

∂z̄
= g ,

∂

∂z̄
:=

1

2

(
∂

∂x
+ i · ∂

∂y

)
, z = x+ iy , (3.1)

and studied for them the Hilbert boundary-value problem under arbit-
rary boundary data that are measurable with respect to the logarithmic
capacity.

In particular, Theorem 1 in [12] stated, for λ : ∂D → C, |λ(ζ)| ≡ 1,
with countable bounded variation, φ : ∂D → R which is measurable with
respect to logarithmic capacity and g : D → R in Lp(D), p > 2, there
exist generalized analytic functions f : D → C with the source g that
have the angular limits

lim
z→ζ

Re
{
λ(ζ) · f(z)

}
= φ(ζ) q.e. on ∂D . (3.2)

Furthermore, the space of such functions f has the infinite dimension.
Thus, the Hilbert boundary-value problem always has many solutions

in the given sense for each such coefficient λ, boundary date φ and source
g. Of course, axiom of choice by Zermelo makes it possible to choose one
of such correspondence named further as a Hilbert operator but the latter
with such a random choice can be completely discontinuous. Later on, to
apply the approach of Leray–Schauder for extending Theorem 1 in [12] to
the generalized analytic functions, satisfying nonlinear equations of the
Vekua type, we need just the complete continuity of such correspondence.

Now we show that, fixing only one antiderivative Φ for the function φ
from Corollary 1, it is possible to obtain a completely continuous Hilbert
operator. For this purpose, let us analyze the construction of solutions of
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equation (3.1) with the Hilbert boundary condition (3.2) from the proof
of Theorem 1 in [12].

There we often applied the logarithmic (Newtonian) potential
NG of sources G ∈ Lp(C), p > 2, with compact supports given by the
formula:

NG(z) :=
1

2π

∫
C

ln |z − w|G(w) dm(w) . (3.3)

However, by the linearity of the operator NG with respect to G, we extend
here the definition (3.3) in a natural way to the complex-valued sources G,
as usual, interpreting the imaginary parts of G as distributed currents.
Recall also that by Lemma 3 in [9], see also Theorem 2 in [11], NG ∈
W 2,p

loc (C) ∩ C
1,α
loc (C) with α := (p− 2)/p and △NG = G a.e.

Let us consider equation (3.1) in the unit disk D. Extending g by zero
outside of D and setting P = NG with G = 2g, U = Px and V = −Py,
we have that

H := U + iV = 2 · ∂P
∂z

,
∂

∂z
:=

1

2

(
∂

∂x
− i · ∂

∂y

)
, z = x+iy ,

(3.4)
is just a generalized analytic function with the source g because the Lapla-
cian

△ :=
∂2

∂x2
+

∂2

∂y2
= 4 · ∂2

∂z∂z
= 4 · ∂2

∂z∂z
. (3.5)

Note also by the way the connection of H with the known Pompeiu
integral operator, see e.g. the relation (2.21) in [10], that gives its repre-
sentation in the explicit form

H(z) = Tg(z) :=
1

π

∫
C

g(w)
dm(w)

z − w
. (3.6)

Remark 3. In view of relation (3.6), we have by Theorem 1.19 in [24]
that

|H(z)| ≤ M1 ∥g∥p ∀ z ∈ C , (3.7)

|H(z1)−H(z2)| ≤ M2 ∥g∥p |z1 − z2|α ∀ z1, z2 ∈ C , (3.8)

where the constants M1 and M2 depend only on p > 2, and α = (p−2)/p.
Thus, the linear operator H is completely continuous on compact sets in
C and, in particular, on D by Arzela-Ascoli theorem, see e.g. Theorem
IV.6.7 in [5].

Next, since H ∈ Cαloc(C), α := (p− 2)/p, the boundary function

φg(ζ) := lim
z→ζ

Re
{
λ(ζ) ·H(z)

}
= Re

{
λ(ζ) ·H(ζ)

}
, ∀ ζ ∈ ∂D ,

(3.9)
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is measurable with respect to logarithmic capacity.
Consequently, the generalized analytic functions f with the source g

satisfying the Hilbert condition (3.2) can be get as the sums f = H + C
with analytic functions C satisfying, in the sense of angular limits, the
Hilbert boundary condition

lim
z→ζ

Re {λ(ζ) · C(z)} = ψ(ζ) := φ(ζ)−φg(ζ) q.e. on ∂D . (3.10)

In turn, by the construction of Theorem 5.1 in [13], such analytic
functions C can be obtained as the products of 2 analytic functions A
and B. The first

A(z) = eia(z) , a(z) :=
1

2πi

∫
∂D

αλ(ζ)
z + ζ

z − ζ

dζ

ζ
, z ∈ D , (3.11)

with a function αλ that is measurable with respect to the logarithmic
capacity, bounded on ∂D, of countable bounded variation and such that

λ(ζ) = eiαλ(ζ) q.e. on ∂D . (3.12)

By Lemma 4.1 in [13] the angular limits of Im a(z) as z → ζ q.e. on
∂D form a function β : ∂D → R that is measurable with respect to the
logarithmic capacity. By Remark 2 the second analytic function B can
be obtained in the form

B(z) = SΨ(z) =
z

π

∫
∂D

Ψ(ζ)

(ζ − z)2
d ζ , z ∈ D , (3.13)

where Ψ is an antiderivative of the function ψeβ from Corollary 1.
Thus, analytic functions C can be represented in more convenient form

C(z) = A(z) · [SΦ(z) − SΦg(z) ] , (3.14)

where Φ and Φg are antiderivatives of the functions of φeβ and φ∗e
β from

Corollary 1, correspondingly. Note that the analytic functions A and SΦ
do not depend on the sources g at all. Let us choose the function Φg in
a suitable way.

From this point on, we demand that all sources g have compact sup-
ports in the unit disk and belong to a disk Dρ := {z ∈ C : |z| ≤ ρ} with a
radius ρ ∈ (0, 1). Then the function H(z), z ∈ C, is analytic in a neigh-
borhood of the unit circle ∂D and, in particular, H(ζ) is continuously
differentiable in the variable ϑ, ζ = eiϑ, ϑ ∈ R. Moreover, by relation
(3.6) we have that

Hϑ(ζ) = iζH ′(ζ) =
ζ

πi

∫
Dρ

g(w)
dm(w)

(ζ − w)2
∀ ζ ∈ ∂D . (3.15)
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Let us denote by Λ an antiderivative for the function λeβ from Corollary
1.

Then the following function Φg is an antiderivative for the function
φge

β :

Φg(ζ) := Re

Λ(ζ)H(ζ)−
ϑ∫

0

Λ(ξ)Hθ(ξ) d θ + S(ϑ)

 , (3.16)

where S : [0, 2π] → C is either zero or a singular function of the form

S(ϑ) := C(ϑ)

2π∫
0

Λ(ξ)Hθ(ξ) d θ , ζ = eiϑ, ξ = eiθ, ϑ, θ ∈ [0, 2π] ,

(3.17)
with a singular function C : [0, 2π] → [0, 1] of the Cantor ladder type,
i.e., C is continuous, nondecreasing, C(0) = 0, C(2π) = 1 and C ′ = 0
q.e. on [0, 2π]. Recall that the existence of such functions C follows from
Lemma 3.1 in [7].

Let us show that the Hilbert operator Hg generated by the sums H+C
under the given choice of Φ and Φg in (3.14) is completely continuous on
compact sets in D. Recall that the analytic functions A and SΦ in the
representation (3.14) of C do not depend on the sources g. Hence by
Remark 3, it remains to show that the linear operator SΦg is completely
continuous.

Indeed, by the construction of Φg in (3.16) and relations (3.6) and
(3.15)

|Φg(ζ)| ≤ 1

π
· ∥g∥1
1− ρ

+ 2 · ∥g∥1
(1− ρ)2

≤ cρ · ∥g∥1 ≤ Cρ · ∥g∥p ∀ ζ ∈ ∂D

(3.18)
with cρ = 3/(1− ρ)2 and Cρ = 3π/(1− ρ)2, respectively. Hence, by (2.6)

|SΦg(z)| ≤ Cρ,r · ∥g∥p , ∀ z ∈ Dr , r ∈ (0, 1) , (3.19)

|SΦg(z1)− SΦg(z2)| ≤ C∗
ρ,r · ∥g∥p · |z1 − z2| , ∀ z1, z2 ∈ Dr , r ∈ (0, 1) ,

(3.20)
where the constants Cρ,r and C∗

ρ,r depend only on the radii ρ and r ∈
(0, 1). Thus, the operator SΦ∗ is completely continuous on compact sets
in D again by the Arzela–Ascoli theorem. Combining it with Remark 3,
we obtain the following conclusion.

Lemma 2. Let λ : ∂D → C, |λ(ζ)| ≡ 1, be of countable bounded vari-
ation and let φ : ∂D → R be measurable with respect to the logarithmic
capacity.
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Then there is a Hilbert operator Hg over g : D → C in Lp(D), p > 2,
with compact supports in D, generating generalized analytic functions
f : D → C with the sources g and the angular limits

lim
z→ζ

Re
{
λ(ζ) · f(z)

}
= φ(ζ) q.e. on ∂D , (3.21)

whose restriction to sources g with supp g ⊆ Dρ is completely continuous
over Dr for each ρ and r ∈ (0, 1).

Remark 4. Note that the nonlinear operator Hg constructed above is
not bounded except the trivial case Φ ≡ 0 because then H0 = A·SΦ ̸= 0.
However, the restriction of the operator Hg to Dr under each r ∈ (0, 1)
is bounded at infinity in the sense that max

z∈Dr

|Hg(z)| ≤M · ∥g∥p for some

M > 0 and all g with large enough ∥g∥p. Note also that by Corollary 1
we are able always to choose Φ for any φ, including φ ≡ 0, which is not
identically 0 in the unit disk D.

4. On Hilbert problem for semi-linear equations

In this section we study the solvability of the Hilbert boundary-value
problem for nonlinear equations of the Vekua type ∂z̄f(z) = h(z)q(f(z))
in the unit disk D. The well-known Leray–Schauder approach allows us
to reduce the problem to the study of the corresponding linear equation
from our last paper [12] on the basis of Lemma 2 in the previous sec-
tion on completely continuous Hilbert operator Hg and Remark 4 on its
boundedness at infinity.

For the sake of completeness, we recall some definitions and basic
facts of the celebrated paper [15].

First of all Leray and Schauder extend as follows the Brouwer degree
to compact perturbations of the identity I in a Banach space B, i.e.
a complete normed linear space. Namely, given an open bounded set
Ω ⊂ B, a compact mapping F : B → B and z /∈ Φ(∂Ω), Φ := I − F , the
(Leray–Schauder) topological degree deg [Φ,Ω, z] of Φ in Ω over z
is constructed from the Brouwer degree by approximating the mapping
F over Ω by mappings Fε with range in a finite-dimensional subspace Bε
(containing z) of B. It is showing that the Brouwer degrees deg [Φε,Ωε, z]
of Φε := Iε−Fε, Iε := I|Bε , in Ωε := Ω∩Bε over z stabilize for sufficiently
small positive ε to a common value defining deg [Φ,Ω, z] of Φ in Ω over
z.

This topological degree “algebraically counts” the number of fixed
points of F (·)− z in Ω and conserves the basic properties of the Brouwer
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degree as additivity and homotopy invariance. Now, let a be an isolated
fixed point of F . Then the local (Leray–Schauder) index of a is
defined by ind [Φ, a] := deg[Φ, B(a, r), 0] for small enough r > 0. If a = 0,
then we say on the index of F . In particular, if F ≡ 0, correspondingly,
Φ ≡ I, then the index of F is equal to 1.

The fundamental Theorem 1 in [15] can be formulated in the following
way: Let B be a Banach space, and let F (·, τ) : B → B be a family of
operators with τ ∈ [0, 1]. Suppose that the following hypotheses hold:

(H1) F (·, τ) is completely continuous on B for each τ ∈ [0, 1] and
uniformly continuous with respect to the parameter τ ∈ [0, 1] on each
bounded set in B;

(H2) the operator F := F (·, 0) has finite collection of fixed points
whose total index is not equal to zero;

(H3) the collection of all fixed points of the operators F (·, τ), τ ∈
[0, 1], is bounded in B.

Then the collection of all fixed points of the family of operators F (·, τ)
contains a continuum along which τ takes all values in [0, 1].

In the proof of the next theorem the initial operator F (·) := F (·, 0) ≡
0. Hence F has the only one fixed point (at the origin) and its index is
equal to 1 and, thus, hypothesis (H2) will be automatically satisfied.

Theorem 1. Let λ : ∂D → C, |λ(ζ)| ≡ 1, be of countable bounded
variation and let φ : ∂D → R be measurable with respect to the logarith-
mic capacity.

Suppose that h : D → C is a function in the class Lp(D) for p > 2
with compact support in D and q : C → C is a continuous function with

lim
w→∞

q(w)

w
= 0 . (4.1)

Then there is a function f : D → C in the class Cαloc(D) with α =
(p− 2)/p and generalized first derivatives by Sobolev such that

∂z̄f(z) = h(z) · q(f(z)) a.e. in D (4.2)

and, in addition, f is a generalized analytic function with a source g ∈
Lp(D) and the angular limits

lim
z→ζ

Re
{
λ(ζ) · f(z)

}
= φ(ζ) q.e. on ∂D . (4.3)

Moreover, f = Hg, where Hg is the Hilbert operator described in the
last section, and the support of g is in the support of h and the upper
bound of ∥g∥p depends only on ∥h∥p and on the function q.
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Proof. If ∥h∥p = 0 or ∥q∥C = 0, then any analytic function from Theorem
5.1 in [13] gives the desired solution of (4.2). Thus, we may assume that
∥h∥p ̸= 0 and ∥q∥C ̸= 0. Set q∗(t) = max

|w|≤t
|q(w)|, t ∈ R+ := [0,∞).

Then the function q∗ : R+ → R+ is continuous and nondecreasing and,
moreover, by (4.1)

lim
t→∞

q∗(t)

t
= 0 . (4.4)

By Lemma 2 and Remark 4 we obtain the family of operators F (g; τ) :
Lph(D) → Lph(D), where Lph(D) consists of functions g ∈ Lp(D) with
supports in the support of h,

F (g; τ) := τh · q(Hg) ∀ τ ∈ [0, 1] (4.5)

which satisfies all groups of hypothesis H1–H3 of Theorem 1 in [15].
Indeed:

H1). First of all, by Lemma 2 the function F (g; τ) ∈ Lph(D) for all
τ ∈ [0, 1] and g ∈ Lph(C) because the function q(Hg) is continuous and,
furthermore, the operators F (·; τ) are completely continuous for each
τ ∈ [0, 1] and even uniformly continuous with respect to the parameter
τ ∈ [0, 1].

H2). The index of the operator F (g; 0) is obviously equal to 1.

H3). Let us assume that solutions of the equations g = F (g; τ) is not
bounded in Lph(D), i.e., there is a sequence of functions gn ∈ Lph(D) with
∥gn∥p → ∞ as n → ∞ such that gn = F (gn; τn) for some τn ∈ [0, 1],
n = 1, 2, . . ..

However, then by Remark 4 we have that, for some constant M > 0,

∥gn∥p ≤ ∥h∥p q∗ (M ∥gn∥p)

and, consequently,

q∗(M ∥gn∥p)
M ∥gn∥p

≥ 1

M ∥h∥p
> 0 (4.6)

for all large enough n. The latter is impossible by condition (4.4). The
obtained contradiction disproves the above assumption.

Thus, by Theorem 1 in [15] there is a function g ∈ Lph(D) with
F (g; 1) = g, and by Lemma 2 the function f := Hg gives the desired
solution of (4.2).

Remark 5. By the construction in the above proof, the source g :
D → C is a fixed point of the (nonlinear) integral operator Ωg := h·q(Hg) :
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Lph(D) → Lph(D), where Lph(D) consists of functions g in Lp(D) with
supports in the support of h.

In particular, choosing λ ≡ 1 in Theorem 1 we obtain the following
consequence on the Dirichlet problem for the nonlinear equations of the
Vekua type.

Corollary 2. Let φ : ∂D → R be measurable with respect to the
logarithmic capacity, h : D → C be a function in the class Lp(D) for
p > 2 with compact support in D and let q : C → C be a continuous
function with condition (4.1).

Then there is a function f : D → C in the class Cαloc(D) with α =
(p− 2)/p and generalized first derivatives by Sobolev, satisfying equation
(4.2) a.e. that is a generalized analytic function with a source g ∈ Lp(D)
and the angular limits

lim
z→ζ

Re f(z) = φ(ζ) q.e. on ∂D . (4.7)

Moreover, f = Hg, where Hg is the Hilbert operator described in the
last section (with the simplest A ≡ 1), and the support of g is in the
support of h and the upper bound of ∥g∥p depends only on ∥h∥p and on
the function q.

5. Extension of results to regular enough domains

Here we extend the above results to Jordan domains with the so–called
quasihyperbolic boundary condition, see definitions in our last paper [12].
As known, such domains include, for instance, domains with quasiconfor-
mal boundaries and, in particular, domains with smooth and Lipschitz
boundaries. However, quasiconformal curves can be even nowhere locally
rectifiable.

Theorem 2. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., λ : ∂D → C, |λ(ζ)| ≡
1, be in CBV(∂D) and let φ : ∂D → R be measurable with respect to
logarithmic capacity.

Suppose that h : D → C is a function in the class Lp(D) for p > 2
with compact support in D and q : C → C is a continuous function with

lim
w→∞

q(w)

w
= 0 . (5.1)

Then there is a function f : D → C in the class Cαloc(D) with α =
(p− 2)/p and generalized first derivatives by Sobolev such that

∂ξ̄f(ξ) = h(ξ) · q(f(ξ)) a.e. in D (5.2)
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and, in addition, f is a generalized analytic function with a source g ∈
Lp(D) and the angular limits

lim
ξ→ω

Re
{
λ(ω) · f(ξ)

}
= φ(ω) q.e. on ∂D . (5.3)

Moreover, f(ξ) = Hg̃(c(ξ)), where c is a conformal mapping of D
onto D, Hg̃ is the Hilbert operator described in Section 3, g̃ = g ◦ c−1,
and the support of g is in the support of h and the upper bound of ∥g∥p
depends only on ∥h∥p, the function q and the domain D.

Proof. Let c be a conformal mapping of D onto D that exists by the
Riemann mapping theorem, see e.g. Theorem II.2.1 in [8]. Now, by the
Caratheodory theorem, see e.g. Theorem II.3.4 in [8], c is extended to a
homeomorphism c̃ of D onto D. Furthermore, by Corollary of Theorem
1 in [4], c∗ := c̃|∂D : ∂D → ∂D and its inverse function are Hölder
continuous. Then λ̃ := λ◦c−1

∗ ∈ CBV(∂D) and φ̃ := φ◦c−1
∗ is measurable

with respect to the logarithmic capacity, see e.g. Remarks 1 and 2 in [12].

Now, set h̃ = h◦C ·C ′, where C is the inverse conformal mapping to c,
C := c−1 : D → D. Then it is clear by the hypothesis of Theorem 2 that h̃
has compact support in D and belongs to the class Lp(D). Consequently,
by Theorem 1 there is a function f̃ : D → C in the class Cαloc(D) with
α = (p− 2)/p and generalized first derivatives by Sobolev such that

∂z̄ f̃(z) = h̃(z) · q(f̃(z)) a.e. in D (5.4)

and f̃ is a generalized analytic function with a source g̃ ∈ Lp(D) and the
angular limits

lim
z→ζ

Re
{
λ̃(ζ) · f̃(z)

}
= φ̃(ζ) q.e. on ∂D , (5.5)

moreover, f̃ = Hg̃, where Hg̃ is the Hilbert operator described in Section
3, and the support of g̃ is in the support of h̃ and the upper bound of
∥g̃∥p depends only on ∥h̃∥p and on the function q.

Next, setting f = f̃ ◦ c, by simple calculations, see e.g. Section

1.C in [1], we obtain that ∂f

∂ξ
= ∂f̃

∂z ◦ c · c′ and, consequently, the function

f : D → C is in the class Cαloc(D) with α = (p−2)/p and generalized first
derivatives by Sobolev that satisfies equation (5.2), f is a generalized ana-
lytic function with a source g ∈ Lp(D) and, moreover, f(ξ) = Hg̃(c(ξ)),
where Hg̃ is the Hilbert operator described in Section 3, g̃ = g ◦ c−1,
and the support of g is in the support of h and the upper bound of ∥g∥p
depends only on ∥h∥p, the function q and the domain D.
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It remains to show that f has the angular limits as ξ → ω ∈ ∂D
and satisfies the boundary condition (5.3) q.e. on ∂D. Indeed, by the
Lindelöf theorem, see e.g. Theorem II.C.2 in [14], if ∂D has a tangent
at a point ω, then arg [c∗(ω)− c(ξ)]− arg [ω − ξ] → const as ξ → ω. In
other words, the images under the conformal mapping c of sectors in D
with a vertex at ω ∈ ∂D is asymptotically the same as sectors in D with
a vertex at ζ = c∗(ω) ∈ ∂D. Consequently, nontangential paths in D are
transformed under c into nontangential paths in D and inversely q.e. on
∂D and ∂D, respectively, because ∂D has a tangent q.e. and c∗ and c−1

∗
keep sets of logarithmic capacity zero.

Remark 6. By the construction in the above proof, the source g =
g̃◦c, where c is a conformal mapping of D onto D and g̃ : D → C is a fixed
point of the (nonlinear) integral operator Ω̃g∗ := h̃ · q(Hg∗) : Lp

h̃
(D) →

Lp
h̃
(D), where Lp

h̃
(D) consists of functions g∗ in Lp(D) with supports in

the support of h̃ := h ◦ C · C ′, C is the inverse conformal mapping to c,
C := c−1 : D → D.

In particular, choosing λ ≡ 1 in Theorem 2 we obtain the following
consequence on the Dirichlet problem for the nonlinear equations of the
Vekua type.

Corollary 3. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., φ : ∂D → R be measurable
with respect to the logarithmic capacity, h : D → C be in the class Lp(D),
p > 2, with compact support in D, and let q : C → C be a continuous
function with condition (5.1).

Then there is a function f : D → C in the class Cαloc(D) with α =
(p− 2)/p and generalized first derivatives by Sobolev, satisfying equation
(5.2) that is a generalized analytic function with a source g ∈ Lp(D) and
the angular limits

lim
ξ→ω

Re f(ξ) = φ(ω) q.e. on ∂D . (5.6)

Moreover, f(ξ) = Hg̃(c(ξ)), where c is a conformal mapping of D
onto D, Hg̃ is the Hilbert operator described in Section 3 (with the sim-
plest A ≡ 1), g̃ = g ◦ c−1, and the support of g is in the support of h
and the upper bound of ∥g∥p depends only on ∥h∥p, the function q and
the domain D.

6. On completely continuous Poincare operators

In Section 7 of [12], we considered the Poincare boundary-value prob-
lem on the directional derivatives and, in particular, the Neumann prob-
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lem with arbitrary measurable boundary data over logarithmic capacity
for the Poisson equations

△U(z) = G(z) (6.1)

with real valued functions G of classes Lp(D) with p > 2 in Jordan’s
domains D ⊂ C. Recall that a continuous solution U of (6.1) in the
class W 2,p

loc was called by us in [12] a generalized harmonic function
with the source G and that by the Sobolev embedding theorem such
a solution belongs to the class C1, see Theorem I.10.2 in [23].

As usual, here ∂u
∂ν (ξ) denotes the derivative of u at the point ξ ∈ D

in the direction ν ∈ C, |ν| = 1, i.e.,

∂u

∂ν
(ξ) := lim

t→0

u(ξ + t · ν)− u(ξ)

t
. (6.2)

The Neumann boundary value problem is a special case of the Poincare
problem on the directional derivatives with the unit interior normal n =
n(ω) to ∂D at the point ω as ν(ω), see Corollary 4 further.

By Theorem 5 in [12], for each ν : ∂D → C, |ν(ζ)| ≡ 1, in CBV(∂D),
φ : ∂D → R that is measurable with respect to logarithmic capacity and
G : D → R in Lp(D), p > 2, there is a generalized harmonic function
U : D → R with the source G that have the angular limits

lim
z→ζ

∂U

∂ν
(z) = φ(ζ) q.e. on ∂D . (6.3)

Furthermore, the space of such functions U has the infinite dimension.

As it follows from its proof and Section 3 at the present paper with λ =
ν̄, one of such functions U can be presented as a sum of the logarithmic
potential P = NG with the source G, see (3.3), and the harmonic function

γ(z) := Re

z∫
0

{ HG/2(ξ) − TG/2(ξ) } d ξ , (6.4)

where we assume that G ∈ Lp(D), p > 2, and has compact support in D.
Denoting by PG the given correspondence between such sources G and

the generalized harmonic functions with the sources G and the Poincare
boundary condition (6.3), we see that PG is a completely continuous
operator over each disk |z| < r < 1 because the operators HG/2 and TG/2
are so and, in addition, the indefinite integral as well as the operator of
taking Re are bounded and linear. Thus, by Lemma 2 and Remark 4 we
come to the following statements.
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Lemma 3. Let ν : ∂D → C, |ν(ζ)| ≡ 1, be of countable bounded vari-
ation and let φ : ∂D → R be measurable with respect to the logarithmic
capacity.

Then there is a Poincare operator PG over the sources G : D → R
in Lp(D), p > 2, with compact supports in D, generating generalized
harmonic functions U : D → R with the sources G and the angular limits
(6.3), whose restriction to sources G with suppG ⊆ Dρ is completely
continuous over Dr for each ρ and r ∈ (0, 1).

Remark 7. Moreover, we may assume that the restriction of the
operator PG to Dr under each r ∈ (0, 1) is bounded at infinity in the
sense that max

z∈Dr

|PG(z)| ≤M · ∥G∥p for some M > 0 and all G with large

enough ∥G∥p.

7. On Poincare problem for semi-linear equations

In this section we study the solvability of the Poincare boundary-
value problem for semi-linear Poisson equations of the form △U(z) =
H(z) ·Q(U(z)) in the unit disk D. Again the Leray–Schauder approach
allows us to reduce the problem to the study of the linear Poisson equation
from our last paper [12] on the basis of Lemma 3 on completely continuous
Poincare operator PG and Remark 7 on its boundedness at infinity from
the previous section.

In the proof of the next theorem the initial operator F (·) := F (·, 0) ≡
0. Hence F has the only one fixed point (at the origin) and its index is
equal to 1 and, thus, hypothesis (H2) in Section 4 will be automatically
satisfied.

Theorem 3. Let ν : ∂D → C, |ν(ζ)| ≡ 1, be of countable bounded
variation and let φ : ∂D → R be measurable with respect to the logarith-
mic capacity.

Suppose that H : D → R is a function in the class Lp(D) for p > 2
with compact support in D and Q : R → R is a continuous function with

lim
t→∞

Q(t)

t
= 0 . (7.1)

Then there is a function U : D → R in the class W 2,p
loc (D) ∩ C

1,α
loc (D)

with α = (p− 2)/p such that

△U(z) = H(z) ·Q(U(z)) a.e. in D (7.2)
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and, in addition, U is a generalized harmonic function with a source
G ∈ Lp(D) and the angular limits

lim
z→ζ

∂U

∂ν
(z) = φ(ζ) q.e. on ∂D . (7.3)

Moreover, U = PG, where PG is the Poincare operator described in
the last section, and the support of G is in the support of H and the
upper bound of ∥G∥p depends only on ∥H∥p and on the function Q.

Proof. If ∥H∥p = 0 or ∥Q∥C = 0, then any harmonic function from
Theorem 7.2 in [13] gives the desired solution of (7.2). Thus, we may
assume that ∥H∥p ̸= 0 and ∥Q∥C ̸= 0. Set Q∗(t) = max

|τ |≤t
|Q(τ)|, t ∈

R+ := [0,∞). Then the function Q∗ : R+ → R+ is continuous and
nondecreasing and, moreover, by (7.1)

lim
t→∞

Q∗(t)

t
= 0 . (7.4)

By Lemma 3 and Remark 7 we obtain the family of operators F (G; τ) :
LpH(D) → LpH(D), where L

p
H(D) consists of functions G ∈ Lp(D) with

supports in the support of H,

F (G; τ) := τH ·Q(PG) ∀ τ ∈ [0, 1] (7.5)

which satisfies all groups of hypothesis H1–H3 of Theorem 1 in [15].
Indeed:

H1). First of all, by Lemma 3 the function F (G; τ) ∈ LpH(D) for all
τ ∈ [0, 1] and G ∈ LpH(C) because the function Q(PG) is continuous and,
furthermore, the operators F (· ; τ) are completely continuous for each
τ ∈ [0, 1] and even uniformly continuous with respect to the parameter
τ ∈ [0, 1].

H2). The index of the operator F (· ; 0) is obviously equal to 1.
H3). Let us assume that solutions of the equations G = F (G; τ) is not

bounded in LpH(D), i.e., there is a sequence of functions Gn ∈ LpH(D) with
∥Gn∥p → ∞ as n → ∞ such that Gn = F (Gn; τn) for some τn ∈ [0, 1],
n = 1, 2, . . .. However, then by Remark 7 we have that, for some constant
M > 0,

∥Gn∥p ≤ ∥H∥p Q∗ (M ∥Gn∥p)

and, consequently,

Q∗(M ∥Gn∥p)
M ∥Gn∥p

≥ 1

M ∥H∥p
> 0 (7.6)
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for all large enough n. The latter is impossible by condition (4.4). The
obtained contradiction disproves the above assumption.

Thus, by Theorem 1 in [15] there is a function G ∈ LpH(D) with
F (G; 1) = G, and by Lemma 3 the function U := PG gives the desired
solution of (4.2).

Remark 8. By the construction in the above proof, the source G :
D → R is a fixed point of the nonlinear operator ΩG := H · Q(PG) :
LpH(D) → LpH(D), where LpH(D) consists of functions G in Lp(D) with
supports in the support of H.

We are able to say more in Theorem 3 for the case of Re n(ζ)ν(ζ) > 0,
where n(ζ) is the inner normal to ∂D at the point ζ. Indeed, the latter
magnitude is a scalar product of n = n(ζ) and ν = ν(ζ) interpreted as
vectors in R2 and it has the geometric sense of projection of the vector
ν into n. In view of (7.3), since the limit φ(ζ) is finite, there is a finite
limit U(ζ) of U(z) as z → ζ in D along the straight line passing through
the point ζ and being parallel to the vector ν because along this line

U(z) = U(z0) −
1∫

0

∂U

∂ν
(z0 + τ(z − z0)) dτ . (7.7)

Thus, at each point with condition (7.3), there is the directional derivative

∂U

∂ν
(ζ) := lim

t→0

U(ζ + t · ν)− U(ζ)

t
= φ(ζ) . (7.8)

In particular, in the case of the Neumann problem, Re n(ζ)ν(ζ) ≡
1 > 0, where n = n(ζ) denotes the unit inner normal to ∂D at the point
ζ, and we have by Theorem 3 and Remark 8 the following significant
result.

Corollary 4. Let φ : ∂D → R be measurable with respect to logarith-
mic capacity, H : D → R be in Lp(D), p > 2, with compact support in D
and let Q : R → R be a continuous function with condition (7.1).

Then one can find generalized harmonic functions U : D → R with
a source G ∈ Lp(D) satisfying equation (7.2) such that q.e. on ∂D there
exist:

1) the finite limit along the normal n(ζ)

U(ζ) := lim
z→ζ

U(z) ,

2) the normal derivative

∂U

∂n
(ζ) := lim

t→0

U(ζ + t · n(ζ))− U(ζ)

t
= φ(ζ) ,
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3) the angular limit

lim
z→ζ

∂U

∂n
(z) =

∂U

∂n
(ζ) .

8. On Poincare problem in more general domains

Now we extend the above results to Jordan domains with the quasi-
hyperbolic boundary condition. Recall once more that such domains
include, for instance, domains with quasiconformal boundaries and, in
particular, domains with smooth and Lipschitz boundaries, but in gene-
ral quasiconformal curves can be even nowhere locally rectifiable.

Theorem 4. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν| ≡ 1, be
in CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose that H : D → R is a function in the class Lp(D) for p > 2
with compact support in D and Q : R → R is a continuous function with

lim
t→∞

Q(t)

t
= 0 . (8.1)

Then there is a function U : D → R in the class W 2,p
loc (D) ∩ C1,α

loc (D)
with α = (p− 2)/p such that

△U(ξ) = H(ξ) ·Q(U(ξ)) a.e. in D (8.2)

and, in addition, U is a generalized harmonic function with a source
G ∈ Lp(D) and with the angular limits

lim
ξ→ω

∂U

∂ν
(ξ) = φ(ω) q.e. on ∂D . (8.3)

Moreover, U(ξ) = PG̃(c(ξ)), where c is a conformal mapping of D
onto D, PG̃ is the Poincare operator described in the previous section,

G̃ = G ◦ c−1, and the support of G is in the support of H and the upper
bound of ∥G∥p depends only on ∥H∥p, the function Q and the domain D.

Proof. Arguing similarly to the first item in the proof of Theorem 2, we
see that ν̃ := ν ◦ c−1

∗ ∈ CBV(∂D) and φ̃ := φ ◦ c−1
∗ is measurable with

respect to the logarithmic capacity, where c∗ := c̃|∂D : ∂D → ∂D is the
restriction to the boundary of the homeomorphic extension of c to D
onto D.
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Now, set H̃ = |C ′|2 ·H ◦C, where C is the inverse conformal mapping
C := c−1 : D → D. Then it is clear by the hypothesis of Theorem
4 that H̃ has compact support in D and belongs to the class Lp(D).
Consequently, by Theorem 3 there is a function Ũ : D → R in the class
W 1,p

loc (D) ∩ C
1,α
loc (D) with α = (p− 2)/p such that

△Ũ(z) = H̃(z) ·Q(Ũ(z)) a.e. in D (8.4)

and Ũ is a generalized analytic function with a source G̃ ∈ Lp(D) and
the angular limits

lim
z→ζ

∂Ũ

∂ν̃
(z) = φ̃(ζ) q.e. on ∂D , (8.5)

moreover, Ũ = PG̃, where PG̃ is the Poincare operator described in

Section 6, and the support of G̃ is in the support of H̃ and the upper
bound of ∥G̃∥p depends only on ∥H̃∥p and on the function Q.

Next, setting U = Ũ ◦ c, by simple calculations, see e.g. Section
1.C in [1], we obtain that △U = |c′|2 · △Ũ ◦ c and, consequently, the
function U : D → C is in the classW 1,p

loc (D)∩C1,α
loc (D) with α = (p−2)/p

that satisfies equation (8.2), U is a generalized harmonic function with
a source G ∈ Lp(D) and, moreover, U(ξ) = PG̃(c(ξ)), where PG̃ is the

Poincare operator from Section 6, G̃ = G ◦ c−1, and the support of G
is in the support of H and the upper bound of ∥G∥p depends only on
∥H∥p, the function Q and the domain D.

Finally, arguing similarly to the last item in the proof of Theorem 2,
we show that (8.5) implies (8.3).

Remark 9. By the construction in the above proof, the source G =
G̃◦c, where c is a conformal mapping ofD onto D and G̃ : D → R is a fixed
point of the nonlinear operator Ω̃G∗ := H̃ · Q(PG∗) : L

p

H̃
(D) → Lp

H̃
(D),

where Lp
H̃
(D) consists of functions G∗ in Lp(D) with supports in the

support of H̃ := |C ′|2 ·H ◦C, where C is the inverse conformal mapping
C := c−1 : D → D.

We are able to say more in Theorem 4 for the case of Re n(ζ)ν(ζ) > 0,
where n(ζ) is the inner normal to ∂D at the point ζ. Indeed, the latter
magnitude is a scalar product of n = n(ζ) and ν = ν(ζ) interpreted as
vectors in R2 and it has the geometric sense of projection of the vector
ν into n. In view of (8.3), since the limit φ(ζ) is finite, there is a finite
limit U(ζ) of U(z) as z → ζ in D along the straight line passing through



V. Gutlyanskĭı, O. Nesmelova, V. Ryazanov, A. Yefimushkin379

the point ζ and being parallel to the vector ν because along this line

U(z) = U(z0) −
1∫

0

∂U

∂ν
(z0 + τ(z − z0)) dτ . (8.6)

Thus, at each point with condition (8.3), there is the directional derivative

∂U

∂ν
(ζ) := lim

t→0

U(ζ + t · ν)− U(ζ)

t
= φ(ζ) . (8.7)

In particular, in the case of the Neumann problem, Re n(ζ)ν(ζ) ≡ 1 >
0, where n = n(ζ) denotes the unit interior normal to ∂D at the point ζ,
and we have by Theorem 4 and Remark 9 the following significant result.

Corollary 5. Let D be a Jordan domain in C with the quasihyperbolic
boundary condition, the unit inner normal n(ζ), ζ ∈ ∂D, belong to the
class CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose that H : D → R is in Lp(D), p > 2, with compact support in
D. Then one can find a generalized harmonic function U : D → R with
a source G ∈ Lp(D) satisfying equation (8.2) such that q.e. on ∂D there
exist:

1) the finite limit along the normal n(ζ)

U(ζ) := lim
z→ζ

U(z) ,

2) the normal derivative

∂U

∂n
(ζ) := lim

t→0

U(ζ + t · n(ζ))− U(ζ)

t
= φ(ζ) ,

3) the angular limit

lim
z→ζ

∂U

∂n
(z) =

∂U

∂n
(ζ) .

9. Poincare and Neumann problems in physical
applications

Theorem 4 and Corollary 5 on the Poincare and Neumann boundary-
value problems, correspondingly, with arbitrary measurable boundary
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data over the logarithmic capacity can be applied to mathematical prob-
lems appearing under modeling various types of physical and chemical
absorption with diffusion, plasma states, stationary burning etc.

The first circle of such applications is relevant to reaction-diffusion
problems. Problems of this type are discussed in [6], p. 4, and, in detail,
in [2]. A nonlinear system is obtained for the density U and the tempe-
rature T of the reactant. Upon eliminating T the system can be reduced
to equations of the type (8.2),

△U = σ ·Q(U) (9.1)

with σ > 0 and, for isothermal reactions, Q(U) = Uβ where β > 0
that is called the order of the reaction. It turns out that the density
of the reactant U may be zero in a subdomain called a dead core. A
particularization of results in Chapter 1 of [6] shows that a dead core may
exist just if and only if β ∈ (0, 1) and σ is large enough, see also the cor-
responding examples in [9]. In this connection, the following statements
may be of independent interest.

Corollary 6. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν| ≡ 1, be
in CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose that H : D → R is a function in the class Lp(D) for p > 2
with compact support in D.

Then there is a solution U : D → R in the class W 2,p
loc (D) ∩ C1,α

loc (D)
with α = (p− 2)/p of the semi-linear Poisson equation

△U(ξ) = H(ξ) · Uβ(ξ) , 0 < β < 1 , a.e. in D (9.2)

satisfying the Poincare boundary condition on directional derivatives

lim
ξ→ω

∂U

∂ν
(ξ) = φ(ω) q.e. on ∂D (9.3)

in the sense of the angular limits.
Moreover, U is a generalized harmonic function with a source G ∈

Lp(D) whose support is in the support of H and the upper bound of ∥G∥p
depends only on ∥H∥p, the function Q and the domain D.

Corollary 7. In particular, in the case of the Neumann problem,
i.e., if ν(ζ) is the unit interior normal n(ζ) to ∂D at the point ζ, one
can find a solution U : D → R in the class W 2,p

loc (D) ∩ C1,α
loc (D) with

α = (p−2)/p of the semi-linear Poisson equation (9.2) such that q.e. on
∂D there exist:
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1) the finite limit along the normal n(ζ)

U(ζ) := lim
z→ζ

U(z) ,

2) the normal derivative

∂U

∂n
(ζ) := lim

t→0

U(ζ + t · n(ζ))− U(ζ)

t
= φ(ζ) ,

3) the angular limit

lim
z→ζ

∂U

∂n
(z) =

∂U

∂n
(ζ) .

Note also that certain mathematical models of a thermal evolution of
a heated plasma lead to nonlinear equations of the type (9.1). Indeed, it
is known that some of them have the form △ψ(u) = f(u) with ψ′(0) = ∞
and ψ′(u) > 0 if u ̸= 0 as, for instance, ψ(u) = |u|q−1u under 0 < q < 1,
see e.g. [6]. With the replacement of the function U = ψ(u) = |u|q ·signu,
we have that u = |U |Q · signU , Q = 1/q, and, with the choice f(u) =
|u|q2 · signu, we come to the equation △U = |U |q · signU = ψ(U).

Corollary 8. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν| ≡ 1, be
in CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that H : D → R is a function in the class Lp(D) for
p > 2 with compact support in D.

Then there is a solution U : D → R in the class W 2,p
loc (D) ∩ C1,α

loc (D)
with α = (p− 2)/p of the semi-linear Poisson equation

△U(ξ) = H(ξ) · |U(ξ)|β−1U(ξ) , 0 < β < 1 , a.e. in D (9.4)

satisfying the Poincare boundary condition on directional derivatives (9.3).

Moreover, U is a generalized harmonic function with a source G ∈
Lp(D) whose support is in the support of H and the upper bound of ∥G∥p
depends only on ∥H∥p, the function Q and the domain D.

Corollary 9. In particular, in the case of the Neumann problem,
i.e., if ν(ζ) is the unit interior normal n(ζ) to ∂D at the point ζ, one
can find a solution U : D → R in the class W 2,p

loc (D) ∩ C1,α
loc (D) with

α = (p− 2)/p of the semi-linear Poisson equation (9.4) that q.e. on ∂D
satisfies the conclusions 1)-3) of Corollary 7.
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Moreover, U is a generalized harmonic function with a source G ∈
Lp(D) whose support is in the support of H and the upper bound of ∥G∥p
depends only on ∥H∥p, the function Q and the domain D.

Finally, we recall that in the combustion theory, see e.g. [3, 20] and
the references therein, the following model equation

∂u(z, t)

∂t
=

1

δ
· △u + eu , t ≥ 0, z ∈ D, (9.5)

takes a special place. Here u ≥ 0 is the temperature of the medium
and δ is a certain positive parameter. We restrict ourselves here by the
stationary case, although our approach makes it possible to study the
parabolic equation (9.5), see [9]. Namely, the corresponding equation of
the type (8.2) is appeared here after the replacement of the function u
by −u with the function Q(u) = e−u that is bounded at all.

Corollary 10. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν| ≡ 1, be
in CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that H : D → R is a function in the class Lp(D) for
p > 2 with compact support in D.

Then there is a solution U : D → R in the class W 2,p
loc (D) ∩ C1,α

loc (D)
with α = (p− 2)/p of the semi-linear Poisson equation

△U(ξ) = H(ξ) · eU(ξ) , a.e. in D (9.6)

satisfying the Poincare boundary condition on directional derivatives (9.3).
Moreover, U is a generalized harmonic function with a source G ∈

Lp(D) whose support is in the support of H and the upper bound of ∥G∥p
depends only on ∥H∥p, the function Q and the domain D.

Corollary 11. In particular, in the case of the Neumann problem,
i.e., if ν(ζ) is the unit interior normal n(ζ) to ∂D at the point ζ, one
can find a solution U : D → R in the class W 2,p

loc (D) ∩ C1,α
loc (D) with

α = (p− 2)/p of the semi-linear Poisson equation (9.6) that q.e. on ∂D
satisfies the conclusions 1)-3) of Corollary 7. Moreover, U is a generali-
zed harmonic function with a source G ∈ Lp(D) whose support is in the
support of H and the upper bound of ∥G∥p depends only on ∥H∥p, the
function Q and the domain D.

10. Dirichlet problem for Poisson’s type equations

The situation with the Dirichlet problem is much simpler that makes
possible to lower the degree of integrability of sources G.
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As known, NG for G ∈ Lp with p > 1 and with support in D is con-
tinuous in C, belongs to the class W 2,p(D) and △NG = G a.e. Moreover,
NG ∈ W 1,q

loc (C) for q > 2, consequently, NG is locally Hölder continuous.
If G ∈ Lp(C), p > 2, then NG ∈ C1,α

loc (C) for α := (p − 2)/p, and for all
α ∈ (0, 1) under p = ∞, see e.g. Lemma 3 in [10] or Theorem 2 in [11].

Furthermore, the collection {NG} is equicontinuous if the collection
{G} is bounded by the norm in Lp(C). Moreover, on each compact set S
in C

∥NG∥C ≤ M · ∥G∥p , (10.1)

where M is a constant depending only on S and, in particular, the rest-
riction of NG to D is a completely continuous bounded linear operator,
see e.g. Lemma 2 in [10] or Theorem 1 in [11].

By Proposition 1 there is a space of harmonic functions u in the unit
disk D of the infinite dimension with the angular limits q.e. on ∂D

lim
z→ζ

u(z) = ψ(ζ) := φ(ζ) − φG(ζ) , φG(ζ) := NG(ζ) . (10.2)

Note that U := u+NG|D with such u are continuous solutions of the
Poisson equation △U = G a.e. in the class W 2,p

loc (D) with the angular
limits

lim
z→ζ

U(z) = φ(ζ) q.e. on ∂D . (10.3)

By Remark 2 such a harmonic function u : D → R can be obtained
in the form of the real part of the analytic function

SΨ(z) :=
z

π

∫
∂D

Ψ(ζ)

(ζ − z)2
d ζ , z ∈ D , (10.4)

where Ψ is an antiderivative of the function ψ from Corollary 1.
Consequently, such a harmonic function u can be represented in the

form

u(z) = u0(z) − uG(z) , u0(z) := Re SΦ(z) , uG(z) := Re SΦG
(z) ,

(10.5)
where Φ and ΦG are antiderivatives of φ and φG in Corollary 1, corres-
pondingly. Note that the harmonic function u0 does not depend on the
sources G at all.

Let us choose the function ΦG in a suitable way to guarantee that
the correspondence G 7→ u + NG|D is a Dirichlet operator DG that is
completely continuous on compact sets in D generating solutions of the
Poisson equation △U = G a.e. in the class C∩W 2,p

loc (D) with the Dirichlet
boundary condition (10.3).
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Namely, the following function ΦG is an antiderivative for the function
φG:

ΦG(ζ) :=

ϑ∫
0

NG(e
iθ) d θ − S(ϑ) , ζ = eiϑ, θ , ϑ ∈ [0, 2π] , (10.6)

where S : [0, 2π] → C is either zero or a singular function of the form

S(ϑ) := C(ϑ)

2π∫
0

NG(e
iθ) d θ , ζ = eiϑ, θ , ϑ ∈ [0, 2π] , (10.7)

with a singular function C : [0, 2π] → [0, 1] of the Cantor ladder type,
i.e., C is continuous, nondecreasing, C(0) = 0, C(2π) = 1 and C ′ = 0
q.e. Recall that the existence of such functions C follows from Lemma
3.1 in [7].

Setting uG = Re SΦG
, it is easy to see by (10.1) that

|ΦG(ζ)| ≤ 4πM · ∥G∥p ∀ ζ ∈ ∂D (10.8)

and by (2.6) that, for constants Cr and C∗
r depending only on r ∈ (0, 1),

|uG(z)| ≤ |SΦG
(z)| ≤ Cr · ∥G∥p , ∀ z ∈ Dr , (10.9)

|uG(z1)− uG(z2)| ≤ |SΦG
(z1)− SΦG

(z2)| ≤ C∗
r ∥G∥p|z1 − z2|, z1, z2 ∈ Dr.

(10.10)
Consequently, the operator uG := Re SΦG

is completely continuous on
compact sets in D by the Arzela–Ascoli theorem, see e.g. Theorem IV.6.7
in [5]. Thus, we obtain the next conclusion.

Lemma 4. Let φ : ∂D → R be measurable over logarithmic capa-
city. Then there is a Dirichlet operator DG over G : D → C in Lp(D),
p > 1, generating continuous solutions U : D → R of the Poisson equa-
tion △U = G in the class W 2,p

loc (D) with the Dirichlet boundary condition
(10.3) in the sense of angular limits q.e. on ∂D, that is completely con-
tinuous over Dr for each r ∈ (0, 1).

Remark 10. Note that the nonlinear operator DG constructed above
is not bounded except the trivial case Φ ≡ 0 because then D0 = SΦ ̸= 0.
However, the restriction of the operator DG to Dr under each r ∈ (0, 1)
is bounded at infinity in the sense that max

z∈Dr

|DG(z)| ≤M · ∥G∥p for some

M > 0 and all G with large enough ∥G∥p. Note also that by Corollary 1
we are able always to choose Φ for any φ, including φ ≡ 0, which is not
identically 0 in the unit disk D.
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Moreover, by the above construction U := DG belongs to the class
W 1,q

loc (D) for some q > 2, consequently, U is locally Hölder continuous.
If G ∈ Lp(D), p > 2, then U ∈ C1,α

loc (D) for α := (p − 2)/p, and for all
α ∈ (0, 1) under p = ∞.

Lemma 4 and Remark 10 make it possible to obtain the following
statement on the Dirichlet problem with arbitrary boundary data that are
measurable over logarithmic capacity for semi-linear Poisson equations.

Theorem 5. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., and φ : ∂D → R be mea-
surable with respect to logarithmic capacity.

Suppose that H : D → R is a function in the class Lp(D) for p > 1
with compact support in D and Q : R → R is a continuous function with

lim
t→∞

Q(t)

t
= 0 . (10.11)

Then there is a continuous solution U of the class W 2,p
loc (D) for the

equation

△U(z) = H(z) ·Q(U(z)) (10.12)

a.e. in D with the angular limits q.e. on ∂D

lim
z→ζ

U(z) = φ(ζ) . (10.13)

Moreover, U belongs to the class W 1,q
loc (D) for some q > 2 and, conse-

quently, U is locally Hölder continuous. Furthermore, if G ∈ Lp(D) with
p > 2, then U ∈ C1,α

loc (D) for α := (p− 2)/p, and for all α ∈ (0, 1) under
p = ∞.

The proof of Theorem 5 will be a simple exercise for the reader because
of it is perfectly similar to one for Theorems 3 and 4 and its general scheme
is based again on the Leray–Schauder approach.

Theorem 5 can be applied to the study of the physical phenomena
discussed by us in the last section. In this connection, the particular
cases of the function Q(t) of the forms et, tβ and |t|β−1t with β ∈ (0, 1)
will be useful.

Finally, due to the factorization theorem in [9], we are able by the
quasiconformal replacements of variables to extend the above results to
semi–linear equations of the Poisson type describing the corresponding
physical phenomena in anisotropic and inhomogeneous media, too, that
shall be published elsewhere.
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