
Український математичний вiсник
Том 18 (2021), № 3, 406 – 418
https://doi.org/10.37069/1810-3200-2021-18-3-7

Maximal coefficient functionals on
univalent functions

Samuel L. Krushkal

Abstract. Recently the author presented a new approach to solving
the coefficient problems for holomorphic functions based on the features
of Bers’ fiber spaces for punctured Riemann surfaces. The holomorphy
of functionals causes strong rigid constrains.

This paper extends the previous results to a broad class of plurisub-
harmonic coefficient functionals and provides new extremal features of
the Koebe function.
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1. Introductory remarks. Main result

This paper continues the recent authors research on solving the clas-
sical coefficient problems for holomorphic functions by applying a new
approach based on lifting the functionals onto the Bers fiber space over
the universal Teichmüller space.

Estimating holomorphic functionals depending on the Taylor coeffi-
cients of univalent holomorphic functions is an old problem arising in
various geometric and physical applications of complex analysis. The
indicated approach has been offered in [14,15].

The goal of this paper is to extend the obtained results to subharmonic
functionals, to avoid the strong rigid constrains caused by holomorphy.

We consider on the canonical class S of univalent functions

f(z) = z + a2z
2 + a3z

3 + . . .
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on the unit disk D = {|z| < 1} the general plurisubharmonic polynomial
coefficient functionals of the form

J(f) = J(αn1,...,nm)

= max
−π≤ϑ1,...,ϑm≤π

∣∣∣ N∑
|n|=2

αn1,...,nman1 . . . anm ei(n1ϑ1+···+nmϑm)
∣∣∣, (1)

where |n| = n1+ · · ·+nm and the factors αn1,...,nm do not depend on coef-
ficients aj . For such functionals, we have the following general distortion
theorem.

Theorem. Any nonconstant plurisubharmonic coefficient functional (1)
is maximized on the class S only by the rotations

wτ,θ(z) = e−iθw(eiτz) (2)

of the Koebe function

κ0(z) =
z

(1− z)2
= z +

∞∑
2

nzn. (3)

This theorem shows that the rigid constrains to holomorphic func-
tionals in [14,15] (the rotational invariance, restrictions to location of the
zero set), are omitted in the case of plurisubharmonic functionals.

In particular, the theorem gives, taking J(f) = |an|, the estimate
|an| ≤ n on S stated by the Bieberbach conjecture (see [3, 8, 14]).

We also mention another important consequence from this theorem.

Corollary. The Koebe function (and its rotations) maximizes every
trigonometric polynomial

N∑
|n|=2

an1 . . . anm ei(n1ϑ1+···+nmϑm)

of a degree N ≥ 2 generated by the coefficients of functions f ∈ S.

2. Functions with quasiconformal extension

In a similar way, one can consider plurisubharmonic functionals on ro-
tationally invariant subclasses X of S satisfying some essential additional
conditions and extend to this classes the results of [15].
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A completely different situation arises for univalent functions admit-
ting quasiconformal extension across the unit circle S1 = {|z| = 1} to
the whole Riemann sphere Ĉ = C ∪ {∞} with a prescribed bound for
their dilatations. Such functions are intrinsically connected with the Te-
ichmüller space theory bridging it with geometric function theory and
play a crucial role in both these fields. But this class does not obey the
conditions indicated above.

Consider, for example, the subclass S(k) of S, which consists of f ∈ S
admitting k-quasiconformal extensions f̂ onto the Riemann sphere Ĉ =
C∪{∞} with the additional normalization f(∞) = ∞. These extensions
satisfy in the complementary disk

D∗ = Ĉ \ D = {z ∈ Ĉ : |z| > 1}

the Beltrami equation ∂zw = µ(z)∂zw with ∥µ∥∞ ≤ k < 1. The quantity
k(w) = ∥µw∥∞ is called quasiconformal dilatation of the map w.

There is a lot of holomorphic and subharmonic polynomial functionals
J(f) : S(k) → C satisfying

max
S(k)

|J(f)| = k.

Such functionals arise, for example, from the Grunsky coefficients
αn,n(f) of functions f ∈ S(k) with equal Grunsky and Teichmüller norms
(see, e.g., [11, 17]).

Recall that due to the classical Grunsky theorem, a holomorphic func-
tion f(z) = z + a2z

2 + . . . in a neighborhood of the origin z = 0 can be
extended to a univalent function on D if and only if its Grunsky coeffi-
cients αmn satisfy the inequality∣∣∣ ∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ ≤ 1, (4)

where αmn are defined by

log
f(z)− f(ζ)

z − ζ
=

∞∑
m,n=1

αmnz
mζn, (z, ζ) ∈ (D)2,

the sequence x = (xn) runs over the unit sphere S(l2) of the Hilbert space

l2 with norm ∥x∥2 =
∞∑
1
|xn|2, and the principal branch of the logarithmic

function is chosen (cf. [7]). The quantity

κ(f) = sup
{∣∣∣ ∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ : x = (xn) ∈ S(l2)
}
≤ 1
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is called the Grunsky norm of f .
For the functions with k-quasiconformal extensions (k < 1), we have

instead of (4) a stronger bound

∣∣∣ ∞∑
m,n=1

√
mn αmnxmxn

∣∣∣ ≤ k for any x = (xn) ∈ S(l2), (5)

established first by Kühnau in [18]. Then κ(f) ≤ k(f), where k(f)
denotes the Teichmüller norm of f which is equal to the infimum of
dilatations k(wµ) = ∥µ∥∞ of quasiconformal extensions of f to Ĉ.

Each coefficient αmn is represented as a polynomial of a finite number
of the initial coefficients a2, . . . , as of f ; hence it depends holomorphically
on Beltrami coefficients of quasiconformal extensions of f as well as on
the Schwarzian derivatives Sf .

It is technically more convenient to deal with the inverted functions

F (z) = 1/f(1/z) = z + b0 + b1z
−1 + · · · : D∗ → Ĉ, (6)

which are univalent on D∗ and have the same Grunsky coefficients as f .
The Grunsky univalence criterion was extended by Milin [20] to arbi-

trary finitely connected domains D ∋ ∞, with appropriate generalization
of the Grunsky coefficients and the Grunsky norm. The general quasi-
conformal features of this theory, in particular, the case κ(f) = k(f) are
described in [12].

For most functions f ∈ S(k), we have the strong inequality κ(f) <
k(f) (moreover, the functions satisfying this inequality form a dense sub-
set of S; see, e.g., [12,17]), while the functions with the equal Teichmüller
and Grunsky norms play a crucial role in many applications.

Taking f ∈ S(k) with κ(f) = k(f) = k, one obtains for some n ≥ 1
after appropriate choice of parameters (xn) ∈ l2 that the corresponding
Grunsky coefficient αnn(f) of this function satisfies |αnn(f)| = k/n (and
|αnn(f)| ≤ k/n for other f).

An explicit example is given by the functions fn−1(z) =
{f1(zn−1)}1/(n−1), where

f1(z) = z/(1− ktz)2, |z| < 1, |t| = 1.

The diagonal Grunsky coefficient α(2)
n−1,n−1 of

√
fn−1(z2) satisfies (see,

e.g. [11], Section 5)

|α(2)
n−1,n−1| = k/(n− 1).
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3. Proof of Theorem

The idea of the proof actually is the same as of the main results
in [14, 15]; thus we only outline briefly the main steps.

10. Consider the collection Ŝ(1) of univalent functions on the disk D
which is the completion in the topology of locally uniform convergence
on D of the set of univalent functions

w(z) = a1z + a2z
2 + . . . with |a1| = 1,

having quasiconformal extensions across the unit circle S1 to Ĉ, which
satisfy w(1) = 1. Equivalently, this collection is a disjunct union

Ŝ(1) =
∪

−π≤θ<π
Sθ(1),

where Sθ(1) consists of univalent functions w(z) = eiθz+ a2z
2+ . . . with

quasiconformal extensions to Ĉ satisfying w(1) = 1 (also completed in
the indicated weak topology).

Every f ∈ S has its representative f̂ in Ŝ(1) (not necessarily unique)
obtained by pre and post compositions of f with rotations z 7→ eiαz
about the origin, related via (2), i.e.,

fτ,θ(z) = e−iθf(eiτz) with τ = arg z0,

where z0 is a point for which f(z0) = eiθ is a common point of the unit
circle and the boundary of domain f(D). (The existence of such a point
is a consequence of Schwarz’s lemma.)

The Schwarzian derivatives

Sf (z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

, z ∈ D,

belong to the complex Banach space B of hyperbolically bounded holo-
morphic functions φ (more precisely, of holomorphic quadratic differen-
tials φ(z)dz2 on D with the norm

∥φ∥B = sup
D
λ−2
D (z)|φ(z)|,

where λD(z) = 1/(1 − |z|2). Accordingly, λD(z)|dz| is the hyperbolic
metric on D of Gaussian curvature −4. This space B is dual to the space
A(D) of integrable holomorphic functions on D with L1 norm.

The derivatives Sf of quasiconformally extendable functions f from
any class Sθ(1) fill in the space B a path-wise bounded domain modelling
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the universal Teichmüller space T; then the Taylor coefficients of
functions f and of their Schwarzians are holomorphic functions on this
space.

The following lemma from [15] ensures the existence of univalent func-
tions in the disk with quasiconformal extension satisfying the prescribed
normalization of classes Sθ(1) and some other conditions. It concerns the
solutions of the Beltrami equation ∂zw = µ(z)∂zw on C with coefficients
µ supported in the disk D∗, i.e., from the ball

Belt(D∗)1 = {µ ∈ L∞(C) : µ|D = 0, ∥µ∥ < 1}.

Lemma 1. For any µ ∈ Belt(D∗)1 and any θ ∈ [0, 2π), there exists a
unique homeomorphic solution w = wµ(z) of the equation ∂zw = µ(z)∂zw
on Ĉ such that

w(0) = 0, w′(0) = eiθ, w(1) = 1. (7)

This solution is holomorphic on the unit disk D, and hence, w(z0) = ∞
at some point z0 with |z0| ≥ 1 (so w(z) does not have a pole in D).

Note that for µ(z) = 0 (almost everywhere on D∗) the corresponding
solution wµ(z) satisfying (7) is the elliptic fractional linear transformation
of Ĉ with the fixed points 0 and 1 given by

w = e−iθz/[(e−iθ − 1)z + 1]; (8)

it equals the identity map if θ = 0.
The prescribed normalizing conditions w(0) = 0, w′(0) = eiθ, w(1) =

1 are compatible with existence and uniqueness of the corresponding con-
formal and quasiconformal maps and the Teichmüller space theory, ensure
holomorphy of their Taylor coefficients, etc.

Note that we actually deal with the classical model of Teichmüller
spaces via domains in the Banach spaces of Schwarzian dervatives Sw
in D (or in the disk D∗) of univalent holomorphic functions normalized
either by fixing three boundary points on the unit circle S1 or via w(0) =
0, w′(0) = 1, w(z0) = z0, where z0 ∈ S1.

20. The given polynomial functional J(w), originally defined on S is
naturally determined for functions f from any class Sθ(1) and on the ball
Belt(D∗)1 by

Ĵ(µ) = J(wµ).

We now lift this functional onto the universal Teichmüller space T and
the Teichmüller space T1 = Teich(D∗) of the punctured disk D∗ = {0 <
|z| < 1}, which covers T.



412 Maximal functionals on univalent functions

Let us first consider this functional for the fixed values ϑj ∈ [−π, π],
i.e., the holomorphic functionals

Jϑ(µ) = max
−π≤ϑ1,...,ϑm≤π

∣∣∣ N∑
|n|=2

αn1,...,nm an1 . . . anmε
i(n1ϑ1+···+nmϑm)

∣∣∣, ϑj fixed.

(9)

We model the universal Teichmüller space T by the Schwarzians Sw =
φ of functions w(z) from Sθ(1); then its base point φ = 0 corresponds to
the function (8).

As was mentioned in the previous section, it is more convenient tech-
nically to deal with the inverted functions (6). In view of Lemma 1, we
can model the space T using the inverted functions W (z) = 1/w(1/z) for
w ∈ Ŝ(1).

These functions form the corresponding classes Σθ(1) of nonvanishing
univalent functions on the disk D∗ with expansions

W (z) = e−iθz + b0 + b1z
−1 + b2z

−2 + . . . , W (1) = 1,

and Σ̂(1) =
∪
θ Σθ(1).

Simple computations yield that the coefficients an of f ∈ Sθ(1) and
the corresponding coefficients bj of W (z) = 1/f(1/z) ∈ Σθ(1) are related
by

b0 + e2iθa2 = 0, bn +

n∑
j=1

ϵn,jbn−jaj+1 + ϵn+2,0an+2 = 0, n = 1, 2, ... ,

where ϵn,j are the entire powers of eiθ. This successively implies the
representations of an by bj via

an = (−1)n−1ϵn−1,0b
n−1
0 − (−1)n−1(n− 2)ϵ1,n−3b1b

n−3
0

+lower terms with respect to b0. (10)

This transforms either of functionals (1) and (9) into the coefficient
functionals J̃(W ) and J̃ϑ(W ) on Σθ(1) depending on the corresponding
coefficients bj .

Note that the coefficients αn of Schwarzians Sw(z) =
∑∞

0 αnz
n are

represented as polynomials of n+2 initial coefficients of w ∈ Sθ(1) and, in
view of (9), as polynomials of n+1 initial coefficients of the corresponding
W ∈ Σθ(1), provided that θ is given and fixed and the number eiθ is
considered to be a constant (vice versa, the coefficients an and bj are
uniquely determined by αn by solving the Schwarzian differential equation
Sw = φ or from the equation SW (z) = z−4φ(1/z) and (10).
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Recall that the canonical complex Banach structure on T is defined
by factorization of the ball

Belt(D)1 = {µ ∈ L∞(C) : µ|D∗ = 0, ∥µ∥ < 1}

of Beltrami coefficients (complex dilatations) vanishing on the comple-
mentary disk D∗ = {z ∈ Ĉ : |z| > 1}.

The coefficients µ1, µ2 ∈ Belt(D)1 are called equivalent if the corre-
sponding quasiconformal maps wµ1 , wµ2 (solutions to the Beltrami equa-
tion ∂zw = µ∂zw with µ = µ1, µ2) coincide on the unit circle S1 = ∂D∗

(hence, on D∗). Such µ and the corresponding maps wµ are called T-
equivalent. The equivalence classes [wµ]T are in one-to-one correspon-
dence with the Schwarzian derivatives Swµ(z), z ∈ D∗, which belong to
the space B = B(D∗) of hyperbolically bounded holomorphic functions
on the disk D∗ with norm ∥φ∥B = supD∗(|z|2 − 1)2|φ(z)|. Note that
φ(z) = O(|z|−4) as z → ∞.

The factorizing projection

ϕT(µ) = Swµ : Belt(D)1 → T

is a holomorphic map from L∞(D) to B. This map is a split submersion,
which means that ϕT has local holomorphic sections.

The points of Teichmüller space T1 of the punctured disk D∗ = {0 <
|z| < 1} are the classes [µ]T1 of T1-equivalent Beltrami coefficients
µ ∈ Belt(D)1 so that the corresponding quasiconformal automorphisms
wµ of the unit disk coincide on both boundary components (unit circle
S1 = {|z| = 1} and the puncture z = 0) and are homotopic on D \ {0}.

By the quotient map

ϕT1 : Belt(D)1 → T1, µ→ [µ]T1 ,

each functional J̃ϑ(Wµ) is pushed down to a bounded holomorphic func-
tional Jϑ on the space T1 with the same range domain. Accordingly, J̃
is pushed down to a plurisubharmonic functional J on T1.

Due to the Bers isomorphism theorem, the space T1 is biholomorphi-
cally isomorphic to the Bers fiber space

F(T) = {(ϕT(µ), z) ∈ T× C : µ ∈ Belt(D)1, z ∈ wµ(D)}

over the universal space T with holomorphic projection π(ψ, z) = ψ (see
[2]).

This fiber space is a bounded hyperbolic domain in B × C and rep-
resents the collection of domains Dµ = wµ(D) as a holomorphic family
over the space T.
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The indicated isomorphism between T1 and F(T) is induced by the
inclusion map j : D∗ ↪→ D forgetting the puncture at the origin via

µ 7→ (Swµ1 , wµ1(0)) with µ1 = j∗µ := (µ ◦ j0)j′0/j
′
0, (11)

where j0 is the lift of j to D.
By Koebe’s one-quarter theorem, for any univalent function W (z) =

z+b0+b1z
−1+. . . in D∗, the boundary of domain W (D∗) is located in the

disk {|w−b0| ≤ 2}. If W (z) ̸= 0 in D∗, its inversion w(z) = z+a2z
2+ . . .

is univalent in D, and b0 = −a2 satisfies |b0| ≤ 2. Using the maps W
with quasiconformal extensions, one gets by the Bers theorem that the
indicated domains Dµ are filled by the admissible values of Wµ(0); all
these domains are located in the disk {|W | ≤ 4}.

30. Using the Bers theorem, we regard the points of the space T1 as
the pairs XWµ = (SWµ ,W µ(0)), taking Wµ ∈ Sθ(1) with Beltrami coeffi-
cients µ ∈ Belt(D)1 obeying T1-equivalence (hence, also T-equivalence).
This implies the plurisubharmonic functionals |Jϑ(XWµ)| = |Jϑ(SWµ , t)|
and |J (XWµ)| = supϑ |Jϑ(SWµ , t)| on the fiber space F(T), where t =
Wµ(0) runs, respectively, over some domains Dθ,ϑ and Dθ =

∪
ϑ Dθ,ϑ,

both located in the disk {|t| ≤ 4}.
Now define on the union Dθ the corresponding functions

uθ,ϑ(t) = sup
SWµ

|Jϑ(SWµ , t)|,

where the supremum is taken over all SWµ ∈ T admissible for a given
t =Wµ(0) ∈ Dθ,ϑ, and

uθ(t) = sup
ϑ

uθ,ϑ(t). (12)

The last function plays a crucial role in our construction. The following
basic lemma provides that this function inherits from J the subharmonic-
ity.

Lemma 2. The function uθ(t) is subharmonic in the domain Dθ.

The proof of this lemma follows the lines of the corresponding lemma
in [14], with taking the maximum over ϑ, which provides the needed
rotational invariance of uθ. This proof involves a weak approximation of
the underlying space T (and simultaneously of the space T1) by finite
dimensional Teichmüller spaces of the punctured spheres in the topology
of locally uniform convergence on C and using the increasing unions of
the quotient spaces

Ts =
s∪
j=1

Σ̂0
θj
/ ∼ =

s∪
j=1

{(SWθj
,Wµ

θ (0))} ≃ T1 ∪ · · · ∪T1, (13)



Samuel L. Krushkal 415

where θj run over a dense subset Θ ⊂ [−π, π], the equivalence relation ∼
means T1-equivalence on a dense subset Σ̂0(1) in the union Σ̂(1) formed
by univalent functions Wθj (z) = e−iθjz + b0 + b1z

−2 + . . . on D∗ with
quasiconformal extension to Ĉ satisfying Wθj (1) = 1, and

Wµ
θ (0) = (Wµ1

θ1
(0), . . . ,Wµs

θs
(0)).

The Beltrami coefficients µj ∈ Belt(D)1 are chosen here independently.
The corresponding collection β = (β1, . . . , βs) of the Bers isomorphisms

βj : {(SWθj
,W

µj
θj

(0))} → F(T)

determines a holomorphic surjection of the space Ts onto F(T). The
function (12) is determined by

u(t) = sup
Θ
uθs(t),

where uθs is obtained by maximization of type (12) over Ts. For details
see [14].

30. We pass from (12) to the function

u(t) = sup
θ
uθ(t) (14)

followed by its upper semicontinuous normalization, which implies a sub-
harmonic function (still denoted by u(t)) in the domain D = ∪θ Dθ

located in the disk {|t| ≤ 4}. This domain is filled by the admissible
values of t =Wµ(0). Our goal now is to show that this domain coincides
with the disk {|t| ≤ 4}.

This is established in the same way as in [14] by applying the following
local existence theorem from [9], which we present as

Lemma 3. Let D be a finitely connected domain on the Riemann sphere
Ĉ. Assume that there are a set E0 of positive two-dimensional Lebesgue
measure and a finite number of points z1, z2, ..., zm distinguished in D.
Let α1, α2, ..., αm be non-negative integers assigned to z1, z2, ..., zm, re-
spectively, so that αj = 0 if zj ∈ E0.

Then, for a sufficiently small ε0 > 0 and ε ∈ (0, ε0), and for any
given collection of numbers wsj , s = 0, 1, ..., αj , j = 1, 2, ...,m, which
satisfy the conditions w0j ∈ D,

|w0j − zj | ≤ ε, |w1j − 1| ≤ ε, |wsj | ≤ ε (s = 0, 1, . . . aj , j = 1, ...,m),
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there exists a quasiconformal automorphism hε of domain D which is
conformal on D \ E0 and satisfies

h(s)ε (zj) = wsj for all s = 0, 1, ..., αj , j = 1, ...,m.

Moreover, the Beltrami coefficient µhε(z) = ∂z̄hε/∂zhε of h on E0 satis-
fies ∥µhε∥∞ ≤Mε and depends holomorphically on {wsj} (with indicated
values of s and j). The constants ε0 andM depend only on the sets D,E0

and the vectors (z1, ..., zm) and (α1, ..., αm).

We apply this lemma to quasiconformally extendable functions from
Ŝ(1), which are dense in this subclass (in topology of locally uniform
convergence on D).

Now, let w0 be an extremal of the given functional J on Ŝ(1). Then
|Jϑ(w0)| > 0 for appropriate ϑ. Pass to the function

w0r(z) =
1

r
w0(rz) = reiθz + r2a02z

2 + . . .

with r close to 1 and to its image w̃0r in Ŝ(1), using the corresponding
rotations of type (2). This image is univalent and holomorphic on the
closed disk D and satisfy also the third normalization condition w(1) = 1.

Varying appropriately the coefficients a2, am1 , . . . , ams of w0r by Lem-
ma 3 with quasiconformal variation h conformal on w0r(D), one derives
that the maximal subharmonic function (14) must be positive on the
whole disk {|t| ≤ 4}, and this function is circularly symmetric. Therefore,
it attains its maximal value, which coincides with max |J(f)| on S, on
the boundary circle {|t| = 4}. Since the points of this circle correspond
only to rotations of the function (3), the assertion the theorem follows.
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