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Abstract. In this paper, we have introduced a Stancu generalization of
the Szasz–Mirakyan–Bernstein Operators defined on the space of contin-
uous functions defined on a compact interval. We have given a general
formula for the moments of that operators. We have used Korovkin’s
Theorem for uniform approximation under some restrictions. We have
obtained some results for the approximation rates in terms of modulus
of continuity. Finally, we gave some Voronovskaya-type theorems.
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1. Introduction

Approximation theory has been used in the theory of approximation
of continuous functions in terms of sequences of positive and linear op-
erators and even today it is an active area of study. There are a lot of
operators and their generalizations used for approximate to continuous
functions that their Korovkin type approximation properties and rates of
convergence are examined. The most famous and useful of these opera-
tors are Bernstein operators. Let f : [0, 1] → R be a continuous function.
For each positive integer n, the n-th Bernstein operator of f , Bn(f) is
defined as

Bn(f ;x) =
n∑

k=0

pn,k(x)f

(
k

n

)
, x ∈ [0, 1]

where
pn,k(x) =

(
n

k

)
xk(1− x)n−k, 0 ≤ k ≤ n. (1.1)
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The Bernstein polynomials was introduced by S.N. Bernstein [2] in 1912.
With the help of this polynomials Bernstein both proved the Weierstrass
Theorem and showed that it can be approximated with positive linear
polynomial operators to arbitrary continuous function in a compact in-
terval. In 1968, D.D. Stancu [10] introduced a linear positive operators
which are known as Bernstein Stancu polynomials:

Bα,β
n (f ;x) =

n∑
k=0

pn,k(x)f

(
k + α

n+ β

)
where f ∈ C[0, 1], x ∈ [0, 1] and α, β are fixed real numbers such that
0 ≤ α ≤ β. In the case of α = β = 0, they turn into the classical Bernstein
polynomials. Some generalizations of Bernstein Stancu operatos can be
found in [4, 6, 8, 9]. In 1950, O. Szasz [11] introduced a generalization of
Bernstein polynomials to the infinite interval, which are known as Szasz–
Mirakjan operators in literature and defined as

Sn(f ;x) =

∞∑
m=0

qn,m(x)f
(m
n

)
, x ∈ [0,∞)

where
qn,m(x) = e−nx (nx)

m

m!
, m ∈ N0. (1.2)

Some generalizations of Szasz–Mirakjan operators can be found in [1, 3,
5, 7].

Recently, Tunç and Şimşek [12] introduced a hybrid version of Bern-
stein and Szasz–Mirakyan operators called as Szasz–Mirakjan–Bernstein
operators (SMB). They are defined as

Ln(f ;x) =

∞∑
m=1

qn,m−1(x)

mαn∑
k=0

pmαn,k(x)f

(
k

mαn

)
, x ∈ [0, 1],

where f ∈ C[0, 1], n ∈ N and (αn) is a nondecreasing sequence of positive
integers, and pn,k and qn,k are defined in (1.1) and (1.2), respectively.

In this study, we introduce a Stancu type generalization of the Szasz–
Mirakjan–Bernstein operators defined as follows:

Lα,β
n (f ;x) =

∞∑
m=1

qn,m−1(x)

mαn∑
k=0

pmαn,k(x)f

(
k + α

mαn + β

)
, x ∈ [0, 1]

(1.3)
where f ∈ C[0, 1], n ∈ N and (αn) is a nondecreasing sequence of inte-
gers and 0 ≤ α ≤ β, and investigate some approximation properties of
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these operators. We call the operators Lα,β
n (f ;x) are Szasz–Mirakjan–

Bernstein–Stancu (SMBS) operators. For α = β = 0, SMBS operators
become the SMB operators. In the case of α = 0, we use the notation Lβ

n

instead of L0,β
n .

In the next section, we will prove a general formula for the moments
and obtain some central moments of SMBS operators. In the last section,
we give some uniform approximation theorems using Korovkin’s Theorem
under some restrictions. Also, we obtain some results for approximation
rates in terms of modulus of continuity and Voronovkaya type theorems.

2. Auxiliary Results

In order to provide simplicity in the formulas to be obtained in the
sequel, we define the monomials as ek(x) =: xk, k ∈ N0 =: N ∪ {0} and

H(k,i)
n (x) =:

∞∑
m=1

qn,m−1(x)
(mαn)

k

(mαn + β)i
, n, i ∈ N, k ∈ N0, (2.1)

where (αn) is a nondecreasing sequence of integers, qn,k are defined in
(1.2) and 0 ≤ α ≤ β. The value of H(k,i)

n functions at the point x = 0 is
as follows:

H(k,i)
n (0) =

αk
n

(αn + β)i
. (2.2)

Lemma 2.1. We have

H(k,i)
n (x) ≤ 1

2

(
2

nαnx

)i−k

(2.3)

for all x > 0 and k < i.

Proof. Let n, i ∈ N and k ∈ N0. If x > 0 and k < i, then we have

H(k,i)
n (x) =

∞∑
m=1

qn,m−1(x)
(mαn)

k

(mαn + β)i

≤ e−nx

(nαnx)
i−k

∞∑
m=1

(nx)m+i−k−1

(m+ i− k − 1)!
·
∏i−k−1

j=1 (m+ j)

mi−k−1
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=
e−nx

(nαnx)
i−k

∞∑
m=1

(nx)m+i−k−1

(m+ i− k − 1)!
·
i−k−1∏
j=1

(
1 +

j

mi−k−1

)

≤ 2i−k−1

enx(nαnx)
i−k

∞∑
m=i−k

(nx)m

m!

=
2i−k−1

enx(nαnx)
i−k

(
enx −

i−k−1∑
m=0

(nx)m

m!

)

=
1

2

(
2

nαnx

)i−k
(
1− e−nx

i−k−1∑
m=0

(nx)m

m!

)
≤ 1

2

(
2

nαnx

)i−k

.

Remark 2.1. If the sequence (αn) is bounded, then the functions H
(k,i)
n

do not converge to zero at the point x = 0. However, if the sequence

(αn) diverges to infinity, the sequence (H
(k,i)
n ) converges to zero for each

x ≥ 0.

Lemma 2.2. We have

1− kυn
nx

(
1− e−nx

)
≤ nαnxH

(k−1,k)
n (x) ≤ 1 (2.4)

for all x > 0 and n, k ∈ N, where υn = [[β/αn ]] + 1, ([[ · ]] stands for the
greatest integer function).

Proof. By using the inequality (2.3), we have

nαnxH
(k−1,k)
n ≤ nαnx

1

2

2

nαnx
= 1

that gives the right hand of (2.4). The inequality on the left is seen as a
result of the following processes:

nαnxH
(k−1,k)
n (x) = nαnxe

−nx
∞∑

m=1

(nx)m−1

(m− 1)!

(mαn)
k−1

(mαn + β)k

= e−nx
∞∑

m=1

(nx)m

(m− 1)!

mk−1

(m+ β/αn )k
.

Taking υn = [[β/αn ]] + 1 and applying Bernouille’s inequality we obtain

e−nx
∞∑

m=1

(nx)m

(m− 1)!

mk−1

(m+ β
αn

)k
≥ e−nx

∞∑
m=0

(nx)m

m!

(
m

m+ υn

)k

= e−nx
∞∑

m=0

(nx)m

m!

(
1− υn

m+ υn

)k
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≥ e−nx
∞∑

m=0

(nx)m

m!

(
1− kυn

m+ υn

)

= 1− kυne
−nx

∞∑
m=0

(nx)m

m!

1

m+ υn

≥ 1− kυn
nxenx

∞∑
m=0

(nx)m+1

(m+ 1)!

= 1− kυn
nx

(
1− 1

enx

)
.

Remark 2.2. If limn→∞ αn = ∞ then υn is 1 for sufficiently large inte-
gers n.

The general formula for the moments of SMBS operators is given
below.

Theorem 2.1. For k ∈ N0, the equality

Lα,β
n (ek;x) =

k∑
i=0

i∑
j=0

j∑
p=0

(
i

j

)
(α)i−j S (k, i) s (j, p)xjH(p,k)

n (x) (2.5)

holds, where s(j, p) are first kind Stirling numbers, S(k, i) are second
kind Stirling numbers and (·)m is Pochhemmer symbol.

Proof. For k ∈ N0, since we have

Lα,β
n (ek;x) =

∞∑
m=1

qn,m−1 (x)B
α,β
mαn (ek;x)

for SMBS operators, where Bα,β
m are Bernstein–Stancu operators, using

general moment formula for them we get

Lα,β
n (ek;x) =

∞∑
m=1

qn,m−1 (x)

(mαn + β)k

k∑
i=0

i∑
j=0

S (k, i)

(
i
j

)
(α)i−j(mαn)jx

j .

By simple calculations, we obtain

Lα,β
n (ek;x) (2.6)

=
∞∑

m=1

qn,m−1 (x)
k∑

i=0

i∑
j=0

S (k, i)

(
i
j

)
(α)i−j

j∑
p=0

s (j, p) (mαn)
pxj

=
k∑

i=0

i∑
j=0

j∑
p=0

(
i
j

)
(α)i−jS (k, i) s (j, p)xjH(p,k)

n (x) .
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Let us write clearly the first four moment formulae necessary for the
proof of the results to be given in the next section. The following formu-
lae are easily obtained from the Theorem 2.1 after the necessary arrange-
ments are made.

Corollary 2.1. For x ∈ [0, 1] and n ∈ N, we have

Lα,β
n (e0;x) = 1

Lα,β
n (e1;x) = x+ (α− βx)H(0,1)

n (x)

Lα,β
n (e2;x) = x2 +

(
x (1 + 2α)− x2 (1 + 2β)

)
H(1,2)

n (x)

+
(
α2 − x2β2

)
H(0,2)

n (x)

Lα,β
n (e3;x) = x3 +

(
3x2 (1 + α)− 3x3 (1 + β)

)
H(2,3)

n (x)

+
((
1 + 3α+ 3α2

)
x− x3

(
3β2 − 2

)
− 3x2 (1 + α)

)
H(1,3)

n (x)

+
(
α3 − x3β3

)
H(0,3)

n (x)

Lα,β
n (e4;x) = x4

(
x3 (6 + 4α)− x4 (6 + 4β)

)
H(3,4)

n (x)

+
(
x2
(
7 + 12α+ 6α2

)
− x3 (18 + 12α)− x4

(
6β2 − 11

))
H(2,4)

n (x)

+
(
x
(
1 + 4α+ 6α2 + 4α3

)
− x2

(
7 + 12α+ 6α2

)
+ x3 (12 + 8α)

−x4
(
6 + 4β3

))
H(1,4)

n (x) +
(
α4 − x4β4

)
H(0,4)

n (x).

For α = 0, the following equations are true for the moments of the
SMBS operators.

Corollary 2.2. For x ∈ [0, 1] and n ∈ N, we have

Lβ
n(e0;x) = 1

Lβ
n(e1;x) = x− βxH(0,1)

n (x)

Lβ
n(e2;x) = x2 +

(
x− x2 (1 + 2β)

)
H(1,2)

n (x)− x2β2H(0,2)
n (x)

Lβ
n(e3;x) = x3 +

(
3x2 − 3x3 (1 + β)

)
H(2,3)

n (x)

+
(
x− 3x2 − x3

(
3β2 − 2

))
H(1,3)

n (x)− x3β3H(0,3)
n (x)

Lβ
n(e4;x) = x4 +

(
6x3 − x4 (6 + 4β)

)
H(3,4)

n (x)

+
(
7x2 − 18x3 − x4

(
6β2 − 11

))
H(2,4)

n (x)

+
(
x− 7x2 + 12x3 − x4

(
6 + 4β3

))
H(1,4)

n (x)− x4β4H(0,4)
n (x).

With the help of Corollaries 2.1 and 2.2 , the following formulas for
the central moments of the SMBS operators are easily obtained.
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Corollary 2.3. For x ∈ [0, 1] and n ∈ N, we have

Lα,β
n ((e1 − x);x) = (α− βx)H(0,1)

n (x)

Lα,β
n ((e1 − x)2;x) = x(1− x)H(1,2)

n (x) + (α− βx)2H(0,2)
n (x)

Lα,β
n ((e1 − x)3;x) = x (1− x) (3 (α− βx) + 1− 2x)H(1,3)

n (x)

+ (α− βx)3H(0,3)
n (x)

Lα,β
n ((e1 − x)4;x) = 3x2(1− x)2H(2,4)

n (x) + (α− βx)4H(0,4)
n (x)

+ x (1− x)
(
x2
(
6β2 + 8β + 6

)
− x (4β (1 + 3α) + 6 + 8α)

+6α2 + 4α+ 1
)
H(1,4)

n (x).

Corollary 2.4. Let α = 0. For x ∈ [0, 1] and n ∈ N, we have

Lβ
n((e1 − x);x) = −βxH(0,1)

n (x)

Lβ
n((e1 − x)2;x) = x(1− x)H(1,2)

n (x) + (βx)2H(0,2)
n (x)

Lβ
n((e1 − x)3;x) = x (1− x) (−3βx+ 1− 2x)H(1,3)

n (x)− (βx)3H(0,3)
n (x)

Lβ
n((e1 − x)4;x) = 3x2(1− x)2H(2,4)

n (x) + x (1− x)
(
x2
(
6β2 + 8β + 6

)
−x (4β + 6) + 1)H(1,4)

n (x) + (βx)4H(0,4)
n (x).

Lemma 2.3. We have

Lα,β
n

(
(e1 − x)4;x

)
≤ cn (x)

2

(nαn)
2 (2.7)

for every x ∈ (0, 1] and each n ∈ N, where cn is a function defined on
(0, 1] and satisfies

lim
n→∞

cn (x) = 3(1− x)2 (2.8)

for all x ∈ (0, 1].

Proof. Let x ∈ (0, 1] and n ∈ N. By using the inequality (2.1) for i = 4
and k = 0, 2, 3 in the last equation in Corollary 2.3 we get followings:

Lα,β
n

(
(e1 − x)4;x

)
≤ 3x2(1− x)2

1

2

(
2

nαnx

)2

+ (α− βx)4
1

2

(
2

nαnx

)4

+ x (1− x)
∣∣x2 (6β2 + 8β + 6

)
− x (4β (1 + 3α) + 6 + 8α)

+6α2 + 4α+ 1
∣∣ 1
2

(
2

nαnx

)3

=
1

2

(
2

nαn

)2(
3(1− x)2 +O

(
1

nαnx4

))
=

2

(nαn)
2 cn (x) .
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3. Main Results and Proofs

In this section, we give some uniform approximation theorems us-
ing Korovkin’s Theorem under some restrictions. Also, we obtain some
results for approximation rates in terms of modulus of continuity and
Voronovkaya type theorems.

Theorem 3.1. If f ∈ C[0, 1], then for all ϵ ∈ (0, 1), the sequence(
L
(α,β)
n (f)

)
converges uniformly to f on [ϵ, 1].

Proof. Let ϵ ∈ (0, 1) be given. To prove the theorem, it will be sufficient

to show that the sequence
(
L
(α,β)
n (f)

)
satisfies the conditions of the

Korovkin’s Theorem on [ϵ, 1]. From the equations in Corollary 2.1, we
have ∣∣∣Lα,β

n (e0;x)− e0(x)
∣∣∣ = 0 =: γ0n;

and using the inequality (2.1) for i = 1, k = 0, we get for x ∈ [ϵ, 1]∣∣∣Lα,β
n (e1;x)− e1(x)

∣∣∣ ≤ |α− βx|H(0,1)
n (x) ≤ |α− βx|

nαnx
≤ C1

nαnε
=: γ1n,

where C1 = max {α, β − α}; and finally, using the inequality (2.1) for
i = 2, k = 0, 1, we get∣∣∣Lα,β

n (e2;x)− e2(x)
∣∣∣ ≤ ∣∣x(1 + 2α)− x2(1 + 2β)

∣∣H(1,2)
n (x)

+
∣∣α2 − x2β2

∣∣H(0,2)
n (x)

≤ |1 + 2α− x(1 + 2β)|
nαn

+
2
∣∣α2 − x2β2

∣∣
(nαnx)

2

≤ C2

nαn
+

C3

(nαn)
2 =: γ2n

where C2 = max
x∈[ε,1]

|2α+ 1− x(1 + 2β)| and C3 = 2 max
x∈[ε,1]

∣∣∣α/x2 − β2
∣∣∣.

Consequently, since limn→∞γin = 0 for each i = 0, 1, 2, then the sequence(
Lα,β
n (f)

)
converges uniformly to the function f on [ε, 1].

In Theorem 3.1, it is seen that uniform convergence is possible only
in compact subintervals of (0, 1] if α is nonzero. If α is equal to zero,
this problem disappears. We can see this from the next theorem.

Theorem 3.2. If f ∈ C[0, 1], then the sequence
(
Lβ
n(f)

)
converges uni-

formly to f on [0, 1].
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Proof. Let f ∈ C [0, 1] and x ∈ [0, 1], from the equations in Corollary
2.2, we have ∣∣∣Lβ

n(e0;x)− e0(x)
∣∣∣ = 0 =: λ0

n

and using the inequality (2.1) for i = 1, k = 0, we get∣∣∣Lβ
n(e1;x)− e1(x)

∣∣∣ ≤ βxH(0,1)
n (x) ≤ β

nαn
=: λ1

n

and finally, using the inequality (2.1) for i = 2, k = 0, 1, we get∣∣∣Lα,β
n (e2;x)− e2(x)

∣∣∣ ≤ ∣∣x− x2(1 + 2β)
∣∣H(1,2)

n (x) + x2β2H(0,2)
n (x)

≤ |1− x(1 + 2β)|
nαn

+
2β2

(nαn)
2

≤ 2 + 2β

nαn
+

2β2

(nαn)
2 =: λ2

n.

Since limn→∞λi
n = 0 for each i = 0, 1, 2, then the sequence

(
Lβ
n(f)

)
converges to the function f uniformly on [0, 1].

Theorem 3.3. If f ∈ C [0, 1], then, for all ε ∈ (0, 1), we have

∥∥∥Lα,β
n (f)− f

∥∥∥
[ε,1]

≤ 2ω

(
f ;

√
C

nαn

)
, (3.1)

where C is a constant independent of n, ω(f ; .) is the modulus of contiu-
nity of f and ∥.∥[a,b] is the uniform norm defined on the space C[a, b].

Proof. Since Lα,β
n is a positive and linear operator for each n ∈ N, the

inequality∣∣∣Lα,β
n (f ;x)− f(x)

∣∣∣ ≤Lα,β
n (|f − f(x)| ;x)

≤
(
1 +

1

δ
Lα,β
n (|e1 − x| ;x)

)
ω (f ; δ)

holds for each δ > 0. By using Cauchy–Schwarz inequality, we get

∣∣∣Lα,β
n (f ;x)− f(x)

∣∣∣ ≤

(
1 +

1

δ

√
Lα,β
n

(
(e1 − x)2;x

))
ω (f ; δ) . (3.2)
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From Corollary 2.3 and the inequality (2.1) for i = 2 and k = 0, 1, we
get

Lα,β
n ((e1 − x)2;x) = x(1− x)H(1,2)

n (x) + (α− βx)2H(0,2)
n (x)

≤ 1− x

nαn
+

2(α− βx)2

(nαnx)
2

≤ 1

nαn

(
1 + 2

(
α+ β

ε

)2
)

=:
C

nαn

for each x ∈ [ε, 1]. If we take δ =
√

C/(nαn) in (3.2), then the desired
inequality is achieved.

For α = 0, we can extend the inequality (3.1) to the interval [0, 1] by
the following theorem.

Theorem 3.4. For any f ∈ C [0, 1], we have

∥∥∥Lβ
n(f)− f

∥∥∥
[0,1]

≤ 2ω

(
f ;

√
1

nαn
+

2β2

(nαn)
2

)
.

Proof. Since Lβ
n is a positive and linear operator for each n ∈ N, the

inequality ∣∣∣Lβ
n(f ;x)− f(x)

∣∣∣ ≤ Lβ
n (|f − f(x)| ;x)

≤
(
1 +

1

δ
Lβ
n (|e1 − x| ;x)

)
ω (f ; δ)

holds for each δ > 0. By using Cauchy-Schwarz inequality, we get

∣∣∣Lβ
n(f ;x)− f(x)

∣∣∣ ≤

(
1 +

1

δ

√
Lβ
n

(
(e1 − x)2;x

))
ω (f ; δ) . (3.3)

From Corollary 2.4 and the inequality (2.1) for i = 2 and k = 0, 1, we
get

Lβ
n((e1 − x)2;x) = x(1− x)H(1,2)

n (x) + (βx)2H(0,2)
n (x)

≤ 1− x

nαn
+

2β2

(nαn)
2

≤ 1

nαn
+

2β2

(nαn)
2 .
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Considering that Lβ
n((e1 − x)2;x) = 0 for x = 0, for every x ∈ [0, 1],

it is seen that the inequality ;

Lβ
n((e1 − x)2;x) ≤ 1

nαn
+

2β2

(nαn)
2

is achieved. This inequality is written in place in (3.3) and if take δ2 =
1

nαn
+ 2β2

(nαn)
2 we reach the desired inequality .

The following is a Voronovskaya-type theorem for SMBS operators.

Theorem 3.5. If f ∈ C2 [0, 1], then

lim
n→∞

nαn

[
Lα,β
n (f ;x)− f (x)

]
=

(α− βx)

x
f ′ (x) +

(1− x)

2
f ′′ (x) (3.4)

for every x ∈ (0, 1]. If αn → ∞, then the following equation is true for
x = 0:

lim
n→∞

αn

[
Lα,β
n (f ; 0)− f (0)

]
= αf ′ (x) . (3.5)

Proof. Let x ∈ (0, 1] be fixed. The Taylor formula of the function f at
the point x can be written as

f (t) = f (x) + (t− x) f ′ (x) +
1

2
(t− x)2f ′′ (x) + (t− x)2r (t;x) , (3.6)

where r ( · ;x) is a continuous function at point t = x and lim
t→x

r (t;x) = 0.

If SMBS operators are applied to both sides of equation (3.6), we get

Lα,β
n (f ;x) =f (x)Lα,β

n (e0;x) + f ′ (x)Lα,β
n ((e1 − x) ;x)

+
f ′′ (x)

2
Lα,β
n

(
(e1 − x)2;x

)
+ Lα,β

n

(
r (· ;x) (e1 − x)2;x

)
.

Considering the first two equations in Corollary 2.3, we obtain

Lα,β
n (f ;x)−f (x) = f ′ (x) (α− βx)H(0,1)

n (x)

+
1

2
f ′′ (x)

(
x (1− x)H(1,2)

n (x) + (α− βx)2H(0,2)
n (x)

)
+ Lα,β

n

(
r (· ; x) (e1 − x)2;x

)
.
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As a result of the necessary arrangements, if x < 1, then we have∣∣∣∣nαn

(
Lα,β
n (f ;x)− f (x)

)
− (α− βx) f ′ (x)

x
− (1− x) f ′′ (x)

2

∣∣∣∣
≤
∣∣∣nαnxH

(0,1)
n (x)− 1

∣∣∣ ∣∣f ′ (x)
∣∣

+

(∣∣∣nαnxH
(1,2)
n (x)− 1

∣∣∣+ (α− βx)2

1− x
nαnH

(0,2)
n (x)

)∣∣f ′′ (x)
∣∣

+ nαnL
α,β
n

(
r (· ; x) (e1 − x)2;x

)
. (3.7)

If x = 1, then the inequality∣∣∣nαn

(
Lα,β
n (f ; 1)− f (1)

)
− (α− β) f ′ (1)

∣∣∣ ≤ ∣∣∣nαnH
(0,1)
n (1)− 1

∣∣∣ ∣∣f ′ (1)
∣∣

+
nαn

2
(α− β)2H(0,2)

n (1)
∣∣f ′′ (1)

∣∣+ Lα,β
n

(
r (· ; 1) (e1 − 1)2; 1

)
(3.8)

is obtained. From the inequalities (2.4), we get

lim
n→∞

nαnxH
(0,1)
n (x) = lim

n→∞
nαnxH

(1,2)
n (x) = 1

and if the inequality (2.1) is used we obtain

0 ≤ lim
n→∞

nαnH
(0,2)
n (x) ≤ lim

n→∞
nαn

2

(nαnx)
2 = lim

n→∞

2

nαnx2
= 0.

Thus the right hands of the inequalities (3.7) and (3.8) vanish when
n → ∞.

It is sufficient to show that limn→∞ nαnL
α,β
n

(
r (· ;x) (e1 − x)2;x

)
=

0 to complete the proof. If we apply the Cauchy–Schwarz inequality and
then use the inequality (2.7) we obtain

nαnL
α,β
n

(
r (· ;x) (e1 − x)2;x

)
≤
√

n2αn
2Lα,β

n

(
(e1 − x)4;x

)
.

√
Lα,β
n

(
(r (· ;x))2;x

)
≤
√

n2αn
2

2

(nαn)
2 cn (x).

√
Lα,β
n

(
(r (· ; x))2;x

)
=
√

2cn (x).

√
Lα,β
n

(
(r (· ; x))2;x

)
.

From the equation (2.8), the first multiplier goes to
√

6 (1− x) when
n → ∞. Since r (x;x) = 0 for the second multiplier, according to the
Korovkin Theorem, we obtain

lim
n→∞

Lα,β
n

(
(r (· ;x))2;x

)
= (r(x;x))2 = 0.
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This ends the proof of (3.4). Now, let x = 0. Since the Taylor formula of

the function f is Lα,β
n (f ; 0) = f

(
α

αn+β

)
, considering the Lagrange form

of the remainder, we have

αn

(
Lα,β
n (f ; 0)− f (0)

)
= αn

(
f

(
α

αn + β

)
− f (0)

)
=

ααn

αn + β
f ′ (0) +

α2αn

(αn + β)2
f ′′ (ξn) ,

where ξn ∈ (0, α
αn+β ). If the limit of both sides is taken when n → ∞,

the equation (3.5) is obtained, since f ′′ ∈ C [0, 1] and αn → ∞ when
n → ∞. Thus, the proof of the theorem is now complete.

Corollary 3.1. If f ∈ C2 [0, 1], then we have

lim
n→∞

nαn

[
Lβ
n (f ;x)− f (x)

]
= −βf ′ (x) +

(1− x)

2
f ′′ (x) (3.9)

for every x ∈ (0, 1].
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