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Abstract. The article is devoted to the Fermi–Pasta–Ulam type sys-
tems with saturable nonlinearities that describes an infinite systems of
particles on a two dimensional lattice. The main result concerns the ex-
istence of traveling waves solutions with periodic relative displacement
profiles. By means of critical point theory, we obtain sufficient conditions
for the existence of such solutions.
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1. Introduction

In the present paper we study the Fermi–Pasta–Ulam type systems
that describes the dynamics of an infinite systems of nonlinearly coupled
particles on a two dimensional lattice. It is assumed that each particle
interacts nonlinearly with its four nearest neighbors. The equations of
motion of the system considered are of the form

q̈n,m = W ′
1(qn+1,m − qn,m)−W ′

1(qn,m − qn−1,m)

+W ′
2(qn,m+1 − qn,m)−W ′

2(qn,m − qn,m−1), (n,m) ∈ Z2, (1.1)

where qn,m = qn,m(t) is a coordinate of the (n,m)-th particle at time t,
W1 and W2 are the potentials of interaction. Equations (1.1) form an
infinite system of ordinary differential equations.

Notice that this system is a representative of a wide class of systems
called lattice dynamical systems extensively studied in last decades. Such
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systems also include the Discrete Sine–Gordon type equations and the
Fermi–Pasta–Ulam type systems. Equations of such type are of interest
in view of numerous applications in physics [2, 16–18,22].

Among the solutions of such systems, traveling waves deserve special
attention. In papers [1,21,23,24] periodic and solitary traveling waves in
Fermi–Pasta–Ulam system on 1D–lattice are studied. While [7], [11] and
[13] deal with traveling waves for such systems on 2D–lattice. In papers [6,
14,19,20] traveling waves for infinite systems of linearly coupled oscillators
on 2D–lattice are studied, while [26] deal with periodic in time solutions
for such systems. Paper [8] is devoted to the existence of solitary traveling
waves for such systems. Papers [5, 9, 10] is devoted to the existence of
homoclinic and heteroclinic traveling waves for the discrete sine–Gordon
type equations on 2D–lattice.

In contrast to the previous results (see [3] and [7]), in this paper we
study system (1.1) with saturable nonlinearities which means that at in-
finity W ′

i (r) growth as const · r, i.e. Wi(r) are asymptotically quadratic
at infinity (i = 1, 2). Note that in [12] and [23] such nonlinearities are
considered. Important examples of saturable nonlinearities are the fol-
lowing

f(u) =
ν|u|p

1 + µ|u|p
u, µ > 0, ν > 0, p > 1,

and
f(u) = χ(1− exp(−a|u|p)u, χ > 0, a > 0, p > 0.

2. Statement of a problem

A traveling wave solution of Eq. (1.1) is a function of the form

qn,m(t) = u(n cosφ+m sinφ− ct),

where the profile function u(s) of the wave, or simply profile, satisfies the
equation

c2u′′(s) = W ′
1(u(s+ cosφ)− u(s))−W ′

1(u(s)− u(s− cosφ))

+W ′
2(u(s+ sinφ)− u(s))−W ′

2(u(s)− u(s− sinφ)), (2.1)

where s = n cosφ+m sinφ− ct.
In what follows, a solution of Eq. (2.1) is understood as a function

u(s) from the space C2(R) satisfying Eq. (2.1) for all s ∈ R.
We consider the case of periodic traveling waves. The profile function

of such wave satisfies the following periodicity condition

u′(s+ 2k) = u′(s), s ∈ R, (2.2)
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where k > 0 is an arbitrary real number. Note that the profile of such
wave is not necessarily periodic. But its relative displacement profiles r±i
are periodic:

r±1 (s) =

s±cosφ∫
s

u′(τ)dτ, r±2 (s) =

s±sinφ∫
s

u′(τ)dτ.

Therefore, such waves are also called periodic (see [24]).
We always assume that

(i) Wi(r) =
c2i
2 r

2 + fi(r), where ci ∈ R, fi ∈ C1(R), fi(0) = f ′
i(0) = 0

and f ′
i(r) = o(r) as r → 0, i = 1, 2;

(ii) there exists a finite limit lim
r→±∞

f ′
i(r)
r = l, and the functions gi(r) =

f ′
i(r)− lr are bounded (i = 1, 2);

(iii) fi(r) ≥ 0 for all r ∈ R and for every r0 > 0 there exists δ0 =
δ0(r0) > 0 such that

1

2
rf ′

i(r)− fi(r) ≥ δ0

for |r| ≥ r0 (i = 1, 2).

To simplify notation, we denote

hi(r) := f ′
i(r) = lr + gi(r), i = 1, 2,

and

Gi(r) :=

r∫
0

gi(ρ)dρ, i = 1, 2,

and additionally assume that one of two conditions is satisfied:

(iv2) Gi(r) → −∞ as r → ±∞ (i = 1, 2);

or

(v2) c2
(
πn
k

)2 − 4(c21 + l) sin2
(
πn
2k cosφ

)
− 4(c22 + l) sin2

(
πn
2k sinφ

)
̸= 0 for

all n ∈ N.

Remark 2.1. Assumption (iii) implies, in particular, that the functions
fi(r) are increasing for r ≥ 0 and descending for r ≤ 0, and Gi(r) < 0
for all r ̸= 0, i = 1, 2.
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The important role is played by the quantity defined by the equality

c0(φ) :=
√

c21 cos
2 φ+ c22 sin

2 φ.

Let Ek be the Hilbert space defined by

Ek =
{
u ∈ H1

loc(R) : u′(s+ 2k) = u′(s), u(0) = 0
}

with the scalar product

(u, v)k =

k∫
−k

u′(s)v′(s)ds

and corresponding norm ∥u∥k = (u, u)
1
2 . By the embedding theorem,

Ek ⊂ C([−k, k]), where C([−k, k]) is the space of continuous functions
on [−k, k]. The norm in dual space E∗

k is denoted by ∥ · ∥k,∗. In fact, Ek

is 1-codimensional subspace of the Hilbert space

Ẽk = {u ∈ H1
loc(R) : u′(s+ 2k) = u′(s)}

with ∫ k

−k
u′(s)v′(s)ds+ u(0)v(0)

as the scalar product.
On Ẽk we define operators Ẽk → Ẽk :

(Au)(s) := u(s+ cosφ)− u(s) =

∫ s+cosφ

s
u′(τ)dτ,

(Bu)(s) := u(s+ sinφ)− u(s) =

∫ s+sinφ

s
u′(τ)dτ.

These operators are bounded linear operators satisfying the inequali-
ties (see [3], Lemma 6.1)

∥Au∥L∞(−k,k) ≤ l1(k) · ∥u∥k, ∥Au∥L2(−k,k) ≤ | cosφ| · ∥u∥k, (2.3)

∥Bu∥L∞(−k,k) ≤ l2(k) · ∥u∥k, ∥Bu∥L2(−k,k) ≤ | sinφ| · ∥u∥k, (2.4)

where

l1(k) =

{
| cosφ|

√[
1
2k

]
+ 1, 0 < 2k < 1,

| cosφ|, 2k ≥ 1,
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and

l2(k) =

{
| sinφ|

√[
1
2k

]
+ 1, 0 < 2k < 1,

| sinφ|, 2k ≥ 1,

where
[

1
2k

]
is the integer part of 1

2k .
On the space Ek we consider the functional

Jk(u) =

k∫
−k

[
c2

2
(u′(s))2 − c21

2
(Au(s))2 − c22

2
(Bu(s))2

−f1(Au(s))− f2(Bu(s))] ds.

Remark 2.2. It is easily verified that, under the assumptions imposed,
the functional Jk is well-defined C1-functional on Ek, and its derivative
is given by the formula

⟨J ′
k(u), h⟩ =

k∫
−k

[
c2u′(s)h′(s)− c21Au(s)Ah(s)− c22Bu(s)Bh(s)

−f ′
1(Au(s))Ah(s)− f ′

2(Bu(s))Bh(s)
]
ds

for u, h ∈ Ek. Moreover, any critical point of the functional Jk is a
solution of Eq. (2.1) satisfying (2.2).

Thus, to establish the existence of solutions to Eq. (2.1) satisfying
(2.2), it is suffice to prove the existence of nontrivial critical points of the
functional Jk. This requires a special form of the mountain pass theorem
(see [24, 25]).

Let I : H → R be a C1-functional on a Hilbert space H with the norm
∥ · ∥. We say that I satisfies the Palais-Smale condition, if the following
condition is satisfied:

(PS) Let {un} ⊂ H be a such sequence that {I(un)} is bounded and
I ′(un) → 0, n → ∞. Then {un} contains a convergent subsequence.

If there exist e ∈ H and r > 0 such that ∥e∥ > r and

β := inf
∥u∥=r

I(u) > I(0) ≥ I(e),

then we say that the functional I possesses the mountain pass geometry.
The following theorem of the mountain pass type can be found in [15]

(Theorem 10).
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Theorem 2.1. Suppose that the C1-functional I : H → R satisfies the
Palais–Smale condition and possesses the mountain pass geometry. Let
P : H → H be a continuous mapping such that

I(Pu) ≤ I(u)

for all u ∈ H, P (0) = 0 and P (e) = e. Then there exists a critical point
u ∈ PH (the closure of PH) of the functional I with the critical value

I(u) = b := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ β,

where Γ := {γ ∈ C([0, 1],H) : γ(0) = 0, γ(1) = e}.

Let

(Pu)(s) :=

s∫
0

|u′(t)|dt.

Remark 2.3. It is easily verified that P is a continuous map from Ek

into itself and PEk consists of a non-decreasing functions.

3. Main result

The main result of this paper is the following theorem that establishes
the existence of periodic waves with non-decreasing and non-increasing
profiles.

Theorem 3.1. Assume (i2)–(iii2) and either (iv2) or (v2). If φ ∈
[πn, π2 + πn], n ∈ Z, k > 0 and c20 < c2 < c20 + l, then Eq. (2.1)
has a non-constant non-decreasing and non-increasing solutions satisfy-
ing (2.2).

Note that from a physical point of view, the increasing waves are
expansion waves, and the decreasing waves are compression waves.

Remark 3.1. Since we consider monotone waves, we may only suppose
that the assumptions of Theorem 3.1 hold for r ≥ 0 (respectively, for
r ≤ 0), and obtain non-decreasing (respectively, non-increasing) waves.
On the other hand, proving the results we may assume, for instance, that
fi(r) are even functions.

For convenience, we represent the functional Jk in the form

Jk(u) =
1

2
Qk(u, u)−

k∫
−k

[G1(Au(s)) +G2(Bu(s))] ds, (3.1)
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where

Qk(u, h)=

k∫
−k

[
c2u′(s)v′(s)−(c21 + l)Au(s)Ah(s)−(c22 + l)Bu(s)Bh(s)

]
ds.

Then the derivative can be written as

⟨J ′
k(u), h⟩ = Qk(u, h)−

k∫
−k

[g1(Au(s))Ah(s) + g2(Bu(s))Bh(s)] ds (3.2)

for u, h ∈ Ek.
Let

σ(ξ) := c2ξ2 − 4(c21 + l) sin2
(
ξ

2
cosφ

)
− 4(c22 + l) sin2

(
ξ

2
sinφ

)
and ξn = πn

k , where n = 1, 2, ... . We set

e0(s) = s, e(1)n (s) = sin(ξns), e
(2)
n (s) = cos(ξns)− 1,

where n = 1, 2, ... . Then the system of functions

{e0, e(1)n , e(2)n : n = 1, 2, ...}

is a complete orthogonal system in Ek. This system is also orthogonal
with respect to the bilinear form Qk. In addition,

Qk(e0, e0) = 2k(c2 − c20 − l)

and
Qk

(
e(1)n , e(1)n

)
= Qk

(
e(2)n , e(2)n

)
= kσ(ξn), n = 1, 2, ... .

Let
E−

k := span{e0, e(1)n , e(2)n : σ(ξn) < 0},

E0
k := span{e(1)n , e(2)n : σ(ξn) = 0}

and
E+

k := span{e(1)n , e(2)n : σ(ξn) > 0}.

These subspaces are mutually orthogonal with respect to both the scalar
product and the form Qk, and

Ek = E−
k ⊕ E0

k ⊕ E+
k .
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The spaces E−
k and E0

k are finite dimensional, and E+
k is infinite di-

mensional. Obviously, the form Qk is negative definite on E−
k , positive

definite on E+
k , and zero on E0

k .
We denote by u−, u0 and u+ the orthogonal projections of u ∈ Ek on

E−
k , E0

k and E+
k , respectively.

Now we verify the conditions of Theorem 2.1 for the functional Jk.

Lemma 3.1. Under the assumptions of Theorem 3.1 functional Jk sat-
isfies the Palais–Smale condition.

Proof. Let {un} ⊂ Ek be a Palais-Smale sequence of Jk, i.e. {Jk(un)} is
bounded and J ′

k(un) → 0, n → ∞. We prove that the sequence {un} is
bounded. Since the form Qk is positive (respectively, negative) definite
on E+

k (respectively, on E−
k ), then there exists α > 0 such that

±Qk(u, u) ≥ α∥u∥2k

for all u ∈ E±
k . Since J ′

k(un) → 0, n → ∞, then

∥J ′
k(un)∥k,∗ ≤ 1

for n large enough. Thus, from (3.2) with u = un and h = u±n we have
that

α∥u±n ∥2k ≤ ∥u±n ∥k +
k∫

−k

[
|g1(Aun(s))||Au±n (s)|+ |g2(Bun(s))||Bu±n (s)|

]
ds

for all n large enough. By assumption (ii) and inequalities (2.3), (2.4)
we obtain that

α∥u±n ∥2k ≤ C∥u±n ∥k
with some C > 0. Hence, the sequences {u+n } and {u−n } are bounded.

In case, when (v) is satisfied, we have E0
k = {0} and, hence, {un} =

{u+n + u−n } is bounded sequence.
Now we suppose that (iv2) is satisfied. Since {u+n + u−n } is bounded

sequence, then it remains to show that {u0n} ⊂ E0
k is bounded too. Sup-

pose the opposite. Then, passing to a subsequence, we may assume that
∥u0n∥k → ∞. By the description of E0

k , we can represent u0n in the form

u0n(s) = βn sin(ξ
0s+ φn),

where |βn| → ∞, and ξ0 ̸= 0 is an integer multiple of π
k such that

σ(ξ0) = 0. Then

Au0n(s) = 2βn sin

(
ξ0

2
cosφ

)
cos

(
ξ0(s+

1

2
cosφ) + φn

)
,
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Bu0n(s) = 2βn sin

(
ξ0

2
sinφ

)
cos

(
ξ0(s+

1

2
sinφ) + φn

)
.

And this implies that there exist two constants δ > 0, γ > 0 and a subset
Mn ⊂ [−k, k] of measure δ such that |Au0n(s)|+ |Bu0n(s)| ≥ γ|βn| on Mn.

Eq. (3.1) implies that

Jk(un) =
1

2

[
Qk(u

+
n , u

+
n ) +Qk(u

−
n , u

−
n )
]

−
k∫

−k

[
G1

(
Au+n (s) +Au−n (s) +Au0n(s)

)
+G2

(
Bu+n (s) +Bu−n (s) +Bu0n(s)

)]
ds. (3.3)

By Remark 2.1, Gi(r) < 0 on R, and inequalities (2.3), (2.4) shows that
{Au+n (s) + Au−n (s)} and {Bu+n (s) + Bu−n (s)} are bounded sequences in
L∞(−k, k). Thus,

−
k∫

−k

[
G1

(
Au+n (s) +Au−n (s) +Au0n(s)

)
+G2

(
Bu+n (s) +Bu−n (s) +Bu0n(s)

)]
ds

≥ −
∫
Mn

[
G1

(
Au+n (s) +Au−n (s) +Au0n(s)

)
+G2

(
Bu+n (s) +Bu−n (s) +Bu0n(s)

)]
ds

→ +∞.

Since all other terms in the right hand side of (3.3) are bounded, we
have that Jk(un) → +∞. We got a contradiction, which proves that
{u0n} ⊂ E0

k is bounded.
Hence, in both cases {un} is bounded.
Then, up to a subsequence (with the same denotation), un → u

weakly in Ek, hence, Aun → Au and Bun → Bu weakly in Ek, and
strongly in L2(−k, k) and C([−k, k]) (by the compactness of Sobolev
embedding). A straightforward calculation shows that

∥un − u∥2k =

k∫
−k

(
c2(u′n(s)− u′(s))2 + c2(un(s)− u(s))2

)
ds

= ⟨J ′
k(un)− J ′

k(u), un − u⟩
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+c21∥Aun −Au∥2L2(−k,k) + c22∥Bun −Bu∥2L2(−k,k)

+

k∫
−k

(
f ′
1(Aun(s))− f ′

1(Au(s))
)
(Aun(s)−Au(s)) ds

+

k∫
−k

(
f ′
2(Bun(s))− f ′

2(Bu(s))
)
(Bun(s)−Bu(s)) ds.

Obviously that all the terms on the right hand part converge to 0 (first,
fourth and fifth by weak convergence, second and third terms converge
to 0 by strong convergence). Thus, ∥un − u∥k → 0 as n → ∞, and proof
is complete.

Lemma 3.2. Under the assumptions of Theorem 3.1 functional Jk pos-
sesses the mountain pass geometry.

Proof. Due to (i), for any ε > 0 there exists r0 > 0 such that |fi(r)| ≤ εr2

as r ≤ r0 (i = 1, 2). Then, by (2.3) and (2.4), as ∥u∥k ≤ r0 we have

Jk(u) ≥
k∫

−k

[
c2

2
(u′(s))2 − c21

2
(Au(s))2 − c22

2
(Bu(s))2 − ε(Au(s))2

− ε(Bu(s))2
]
ds ≥ c2

2
∥u∥2k −

c21
2
cos2 φ∥u∥2k −

c22
2
sin2 φ∥u∥2k

−ε cos2 φ∥u∥2k − ε sin2 φ∥u∥2k =
c2 − c20 − 2ε

2
∥u∥2k.

Choosing ε small enough, we obtain that there is β > 0 such that Jk(u) ≥
β > 0 as ∥u∥k = r0.

Let us now show that there exists an element e ∈ Ek such that
Jk(e) < 0.

Let e0(s) = s and τ > 0. From (ii) it follows that |Gi(r| ≤ C|r| with
some constant C > 0. Then Eq. (3.1) implies that

Jk(τe0) ≤ k(c2 − c20 − l)τ2 + 2k(| cosφ|+ | sinφ|)|τ |.

Thus, Jk(τe0) < 0 for |τ | large enough, and hence, there exists τ0
such that Jk(τ0e0) < 0. Now it remains to take e = τ0e0 and the lemma
is proved.
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Proof of Theorem 3.1. Let the conditions of the theorem hold for r ≥
0. Lemmas 3.1 and 3.2 show that Jk satisfies almost all conditions of
Theorem 2.1. It only remains to verify the inequality Jk(Pu) ≤ Jk(u)
for all u ∈ Ek.

Let φ ∈ [2πn, π2 + 2πn], n ∈ Z. Since

(APu)(s) =

s+cosφ∫
s

(Pu)′(τ)dτ =

s+cosφ∫
s

|u′(τ)|dτ ≥

∣∣∣∣∣∣
s+cosφ∫
s

u′(τ)dτ

∣∣∣∣∣∣
and

(BPu)(s) =

s+sinφ∫
s

(Pu)′(τ)dτ =

s+sinφ∫
s

|u′(τ)|dτ ≥

∣∣∣∣∣∣
s+sinφ∫
s

u′(τ)dτ

∣∣∣∣∣∣ ,
then

(APu)(s) ≥ |(APu)(s)| ≥ (Au)(s)

and
(BPu)(s) ≥ |(BPu)(s)| ≥ (Bu)(s).

Since, due to Remark 2.1, the potentials fi(r) are increasing, we have
that

Jk(Pu) =

k∫
−k

[
c2((Pu)′(s))2 − c21(APu(s))2 − c22(BPu(s))2

−f1(APu(s))− f2(BPu(s))] ds

=

k∫
−k

[
c2(u′(s))2 − c21(APu(s))2 − c22(BPu(s))2

−f1(APu(s))− f2(BPu(s))] ds ≤

≤
k∫

−k

[
c2(u′(s))2 − c21(Au(s))

2 − c22(Bu(s))2

−f1(Au(s))− f2(Bu(s))] ds = Jk(u).

Hence, by Theorem 2.1 there exists nontrivial critical point u ∈ PEk

of the functional Jk such that Jk(u) ≥ β with β > 0 from Lemma 3.1.
By Remark 2.2, u ∈ PEk ⊂ Ek is a solution of problem (2.1), (2.1).
Furthermore, by Remark 2.3, this solution is non-decreasing and non-
constant due to the definition of space Ek.
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The case r ≤ 0 is similar (with P replaced by −P ). In this case,
non-increasing solutions are obtained.

It is easy to see that for φ ∈ [π + 2πn, 3π2 + 2πn], n ∈ Z, in the
case r ≥ 0 non-increasing solutions are obtained, and in the case r ≤ 0
non-decreasing solutions are obtained.

The proof is complete.

Conclusion

Thus, in the present paper we obtain some result on the existence of
non-constant monotone traveling waves with periodic relative displace-
ment profiles in Fermi-Pasta-Ulam type systems with saturable nonlin-
earities on a two-dimensional lattice.
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