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Abstract. This is an overview of our recent woks on a global bifurca-
tion analysis of multi-parameter polynomial dynamical systems. In par-
ticular, using our bifurcation-geometric approach, we study the global
dynamics and solve the problem on the maximum number and distribu-
tion of limit cycles in a polynomial Euler–Lagrange–Liénard type me-
chanical system. We consider also a rational endocrine system carrying
out a global bifurcation analysis of a reduced planar quartic Topp system
which models the dynamics of diabetes. Studying global bifurcations and
applying the Wintner–Perko termination principle, we prove that such
a system can have at most two limit cycles.
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1. Introduction

We carry out a global bifurcation analysis of planar polynomial dyna-
mical systems and, first of all, we would like to recall some basic facts on
their singular points and limit cycles. In particular, the study of singular
points of polynomial systems will use two index theorems by H. Poincaré;
see [2]. The definition of the Poincaré index is the following [2].

Definition 1.1. Let S be a simple closed curve in the phase plane not
passing through a singular point of the system

ẋ = P (x, y), ẏ = Q(x, y), (1.1)
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where P (x, y) and Q(x, y) are continuous functions (for example, poly-
nomials), and M be some point on S. If the point M goes around the
curve S in the positive direction (counterclockwise) one time, then the
vector coinciding with the direction of a tangent to the trajectory passing
through the point M is rotated through the angle 2πj (j = 0,±1,±2, . . .).
The integer j is called the Poincaré index of the closed curve S relative
to the vector field of system (1.1) and has the expression

j =
1

2π

∮
S

P dQ−Q dP

P 2 +Q2
. (1.2)

According to this definition, the index of a node or a focus, or a center
is equal to +1 and the index of a saddle is −1. The following Poincaré
index theorems are valid [2].

Theorem 1.1. The indices of singular points in the plane and at infinity
sum to +1.

Theorem 1.2. If all singular points are simple, then along an isocline
without multiple points lying in a Poincaré hemisphere which is obtained
by a stereographic projection of the phase plane, the singular points are
distributed so that a saddle is followed by a node or a focus, or a center
and vice versa. If two points are separated by the equator of the Poincaré
sphere, then a saddle will be followed by a saddle again and a node or a
focus, or a center will be followed by a node or a focus, or a center.

Consider a polynomial system in the vector form

ẋ = f(x,µ), (1.3)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial vector function).
Recall some basic facts concerning limit cycles of (1.3). Assume that

system (1.3) has a limit cycle

L0 : x = φ0(t)

of minimal period T0 at some parameter value µ=µ0∈ Rn.
Let l be the straight line normal to L0 at the point p0 = φ0(0) and

s be the coordinate along l with s positive exterior to L0. It then follows
from the implicit function theorem that there is a δ > 0 such that the
Poincaré map h(s,µ) is defined and analytic for |s| < δ and ∥µ−µ0∥ < δ.
The displacement function for system (1.3) along the normal line l to L0

is defined as the function

d(s,µ) = h(s,µ)− s.
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We denote derivatives of d with respect to s or components of µ by
subscripts, and the m-th derivative of d with respect to s by d

(m)
s . In terms

of the displacement function, a multiple limit cycle can be defined as
follows [9].

Definition 1.2. A limit cycle L0 of (1.3) is a multiple limit cycle iff

d(0,µ0) = ds(0,µ0) = 0.

It is a simple limit cycle (or hyperbolic limit cycle) if it is not a multiple
limit cycle; furthermore, L0 is a limit cycle of multiplicity m iff

d(0,µ0) = ds(0,µ0) = . . . = d(m−1)
s (0,µ0) = 0,

d(m)
s (0,µ0) ̸= 0.

Note that the multiplicity of L0 is independent of the point p0 ∈ L0

through which we take the normal line l.

Let us write down also the following formulae which have already
become classical ones and determine the derivatives of the displacement
function in terms of integrals of the vector field f along the periodic orbit
φ0(t) [9]:

ds(0,µ0) = exp

∫ T0

0
∇ · f(φ0(t),µ0) dt− 1

and
dµj (0,µ0) =

−ω 0

∥f(φ0(0),µ0)∥
×

∫ T0

0
exp

(
−
∫ t

0
∇ · f(φ0(τ),µ0) dτ

)
× f ∧ fµj (φ0(t),µ0) dt

for j = 1, . . . , n, where ω0 = ±1 according to whether L0 is positively
or negatively oriented, respectively, and where the wedge product of two
vectors x = (x1, x2) and y = (y1, y2) in R2 is defined as

x ∧ y = x1 y2 − x2 y1.

Similar formulae for dss(0,µ0) and dsµj (0,µ0) can be derived in terms
of integrals of the vector field f and its first and second partial derivatives
along φ0(t).

Now we can formulate the Wintner–Perko termination principle [34]
for polynomial system (1.3).
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Theorem 1.3. Any one-parameter family of multiplicity-m limit cycles
of relatively prime polynomial system (1.3) can be extended in a unique
way to a maximal one-parameter family of multiplicity-m limit cycles
of (1.3) which is either open or cyclic.

If it is open, then it terminates either as the parameter or the limit
cycles become unbounded; or, the family terminates either at a singular
point of (1.3), which is typically a fine focus of multiplicity m, or on a
(compound) separatrix cycle of (1.3) which is also typically of multipli-
city m.

The proof of this principle for general polynomial system (1.3) with
a vector parameter µ ∈ Rn parallels the proof of the planar termination
principle for the system

ẋ = P (x, y, λ), ẏ = Q(x, y, λ) (1.4)

with a single parameter λ ∈ R (see [9, 34]), since there is no loss of
generality in assuming that system (1.3) is parameterized by a single
parameter λ; i. e., we can assume that there exists an analytic mapping
µ(λ) of R into Rn such that (1.3) can be written as (1.4) and then
we can repeat everything that had been done for system (1.4) in [34].
In particular, λ is said to be a field-rotation parameter if it rotates the
vectors of the field in one direction [2, 9, 34]. If λ is a field rotation
parameter of (1.4), the following Perko’s theorem on monotonic families
of limit cycles is valid; see [34].

Theorem 1.4. If L0 is a nonsingular multiple limit cycle of (1.4) for
λ = λ0, then L0 belongs to a one-parameter family of limit cycles of
(1.4); furthermore:

1) if the multiplicity of L0 is odd, then the family either expands or
contracts monotonically as λ increases through λ0;

2) if the multiplicity of L0 is even, then L0 bifurcates into a stable
and an unstable limit cycle as λ varies from λ0 in one sense and L0

disappears as λ varies from λ0 in the opposite sense; i. e., there is a fold
bifurcation at λ0.

We use these theorems and develop our methods for studying limit
cycle bifurcations of polynomial dynamical systems [5], [9]– [23]. In Sec-
tion 2, applying canonical systems with field rotation parameters and
using geometric properties of the spirals filling the interior and exterior
domains of limit cycles, we solve the problem on the maximum number
and distribution of limit cycles in an Euler–Lagrange–Liénard type me-
chanical system. In Section 3, we consider an endocrine system model
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carrying out a global qualitative analysis of a reduced planar quartic Topp
system which models the dynamics of diabetes; in particular, studying
global bifurcations and applying the Wintner–Perko termination princi-
ple, we prove that such a system can have at most two limit cycles. This
is related to the solution of Hilbert’s sixteenth problem on the maximum
number and distribution of limit cycles in planar polynomial dynamical
systems [9].

2. The Euler–Lagrange–Liénard polynomial
mechanical system

We study an Euler–Lagrange–Liénard type equation [23,24]

ẍ+ h(x) ẋ2 + f(x) ẋ+ g(x) = 0 (2.1)

and the corresponding dynamical system

ẋ = y, ẏ = −g(x)− f(x) y − h(x) y2. (2.2)

Equation (2.1) is a composition of two equations. One of them is

α(q) q̈ + β(q) q̇2 + γ(q) = 0, (2.3)

where q ∈ R; α(q), β(q) and γ(q) are scalar functions, which represents
a generic form of dynamics for an n-degree of freedom Euler–Lagrange
system

d
dt

(
∂L

∂Q̇

)
− ∂L

∂Q
= B(Q)u, (2.4)

where L(Q, Q̇) is a Lagrangian, Q ∈ Rn is a vector of generalized coordi-
nates, u ∈ Rn−1 and B(Q) is n× (n− 1) matrix function of full rank for
each Q. Equation (2.3) can be used, in particular, for solving the periodic
motion problem in mechanical systems; see, e. g., [38] and the references
therein.

The other one is the Liénard equation

ẍ+ f(x) ẋ+ g(x) = 0 (2.5)

with the corresponding dynamical systems in the form

ẋ = y, ẏ = −g(x)− f(x) y, (2.6)

particular cases of which we have considered in [10–17]; see also [7, 8,
27, 31, 32, 35, 39]. There are many examples in the natural sciences and
technology in which this and related systems are applied [1, 2, 33, 37].
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Such systems are often used to model either mechanical or electrical, or
biomedical systems, and in the literature, many systems are transformed
into Liénard type to aid in the investigations. They can be used, e. g.,
in certain mechanical systems, where f(x) represents a coefficient of the
damping force and g(x) represents the restoring force or stiffness, when
modeling wind rock phenomena and surge in jet engines [1,33]. Such sys-
tems can be also used to model resistor-inductor-capacitor circuits with
non-linear circuit elements. Recently, e. g., the Liénard system has been
shown to describe the operation of an optoelectronics circuit that uses a
resonant tunnelling diode to drive a laser diode to make an optoelectronic
voltage controlled oscillator [37].

There are also a number of examples of technical systems which are
modelled with quadratic damping: a term in the second-order dynam-
ics model, which is quadratic with respect to the velocity state variable.
These examples include bearings, floating off-shore structures, vibration
isolation and ship roll damping models [6, 28]. In robotics, quadratic
damping appears in feed-forward control and in nonlinear impedance
devices, such as variable impedance actuators [3]. Variable impedance
actuators are of particular interest for collaborative robotics [36].

We suppose that system (2.2), where g(x), h(x) and f(x) are arbi-
trary polynomials, has an anti-saddle (a node or a focus, or a center)
at the origin and write it in the form [23,24]

ẋ = y,

ẏ = −x(1 + a1 x+ . . .+ a2l x
2l) + y(α0 + α1 x+ . . .+ α2k x

2k)

+ y2(c0 + c1 x+ . . .+ c2n x
2n).

(2.7)

Note that for g(x) ≡ x and h(x) ≡ 0, by the change of variables
X = x and Y = y + F (x), where F (x) =

∫ x
0 f(s) ds, (2.7) is reduced to

an equivalent system

Ẋ = Y − F (X), Ẏ = −X (2.8)

which can be written in the new notation of variables [10]– [13] as follows:

ẋ = y, ẏ = −x+ F (y) (2.9)
or

ẋ = y, ẏ = −x+γ1 y+γ2 y
2+γ3 y

3+ . . .+γ2k y
2k+γ2k+1 y

2k+1. (2.10)

In [10–13], we have presented a solution of Smale’s thirteenth problem
[39] proving that the Liénard system (2.10) with a polynomial of degree
2k+1 can have at most k limit cycles and we can conclude now that our
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results [10–13] agree with the conjecture of [31] on the maximum number
of limit cycles for the classical Liénard polynomial system (2.10). There
were some attempts to construct counterexamples to this conjecture, e. g.,
in [7, 8]. But that “counterexamples” were completely wrong.

In [14–17], we have studied the general Liénard polynomial system
(h(x) ≡ 0)

ẋ = y,

ẏ = −x(1 + a1 x+ . . .+ a2l x
2l)

+ y(α0 + α1 x+ . . .+ α2k x
2k).

(2.11)

In [14–16], under some assumptions on the parameters of (2.11), and
in [17], in the general case, we have found the maximum number of limit
cycles and their possible distribution for system (2.11).

Consider system (2.7) supposing that a21 + . . . + a22l ̸= 0. Its finite
singularities are determined by the algebraic system

x (1 + a1 x+ . . .+ a2l x
2l) = 0, y = 0. (2.12)

This system always has an anti-saddle at the origin and, in general,
can have at most 2l+1 finite singularities which lie on the x-axis and are
distributed so that a saddle (or saddle-node) is followed by a node or a
focus, or a center and vice versa [2]. For studying the infinite singularities,
the methods applied in [2] for Rayleigh’s and van der Pol’s equations and
also Erugin’s two-isocline method developed in [9] can be used; see [10–
17].

Following [9], we will study limit cycle bifurcations of (2.7) by means
of canonical systems containing field rotation parameters of (2.7) [2, 9].

Theorem 2.1. The Euler–Lagrange–Liénard polynomial system (2.7)
with limit cycles can be reduced to one of the canonical forms:

ẋ = y,

ẏ = −x (1 + a1x+ . . .+ a2lx
2l)

+ y(α0−β1−. . .−β2k−1+β1x+α2x
2+. . .+β2k−1x

2k−1+α2kx
2k)

+y2(c0 + c1 x+ . . .+ c2n x
2n)

(2.13)
or

ẋ = y ≡ P (x, y),

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(α0−β1−. . .−β2k−1+β1x+α2x
2+. . .+β2k−1x

2k−1+α2kx
2k)

+y2(c0 + c1 x+ . . .+ c2n x
2n) ≡ Q(x, y),

(2.14)
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where 1 + a1x+ . . .+ a2lx
2l ̸= 0, α0, α2, . . . , α2k are field rotation para-

meters and β1, β3, . . . , β2k−1 are semi-rotation parameters.

Proof. Let us compare system (2.7) with (2.13) and (2.14). It is easy to
see that system (2.13) has the only finite singular point: an anti-saddle
at the origin. System (2.14) has at list two singular points including an
anti-saddle at the origin and a saddle which, without loss of generality,
can be always putted into the point (1, 0). Instead of the odd parameters
α1, α3, . . . , α2k−1 in system (2.7), also without loss of generality, we have
introduced new parameters β1, β3, . . . , β2k−1 into (2.13) and (2.14).

We will study now system (2.14) (system (2.13) can be studied ab-
solutely similarly). Let all of the parameters α0, α2, . . . , α2k and β1,
β3, . . . , β2k−1 vanish in this system,

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+y2(c0 + c1 x+ . . .+ c2n x
2n)

(2.15)

and consider the corresponding equation

dy

dx
=

x(x−1)(1+b1x+. . .+b2l−1x
2l−1)+y2(c0+c1 x+. . .+c2n x

2n)

y

≡ F (x, y).
(2.16)

Since F (x,−y) = −F (x, y), the direction field of (2.16) (and the
vector field of (2.15) as well) is symmetric with respect to the x-axis.
It follows that for arbitrary values of the parameters b1, . . . , b2l−1 sys-
tem (2.15) has centers as anti-saddles and cannot have limit cycles sur-
rounding these points. Therefore, we can fix the parameters b1, . . . , b2l−1

in system (2.14), fixing the position of its finite singularities on the x-axis.

To prove that the even parameters α0, α2, . . . , α2k rotate the vector
field of (2.12), let us calculate the following determinants:

∆α0 = P Q′
α0

−QP ′
α0

= y2 ≥ 0,

∆α2 = P Q′
α2

−QP ′
α2

= x2y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆α2k
= P Q′

α2k
−QP ′

α2k
= x2ky2 ≥ 0.

By definition of a field rotation parameter [2,9], for increasing each of
the parameters α0, α2, . . . , α2k, under the fixed others, the vector field
of system (2.14) is rotated in the positive direction (counterclockwise)



526 Limit cycles of multi-parameter polynomial...

in the whole phase plane; and, conversely, for decreasing each of these
parameters, the vector field of (2.14) is rotated in the negative direction
(clockwise).

Calculating the corresponding determinants for the parameters β1,
β3, . . . , β2k−1, we can see that

∆β1 = P Q′
β1

−QP ′
β1

= (x− 1) y2,

∆β3 = P Q′
β3

−QP ′
β3

= (x3 − 1) y2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆β2k−1
= P Q′

β2k−1
−QP ′

β2k−1
= (x2k−1− 1) y2.

It follows [2,9] that, for increasing each of the parameters β1, β3, . . . ,
β2k−1, under the fixed others, the vector field of system (2.14) is rotated
in the positive direction (counterclockwise) in the half-plane x > 1 and in
the negative direction (clockwise) in the half-plane x < 1 and vice versa
for decreasing each of these parameters. We will call these parameters
as semi-rotation ones.

Thus, for studying limit cycle bifurcations of (2.7), it is sufficient
to consider the canonical systems (2.13) and (2.14) containing the field
rotation parameters α0, α2, . . . , α2k and the semi-rotation parameters
β1, β3, . . . , β2k−1. The theorem is proved [23,24].

By means of the canonical systems (2.13) and (2.14), we will prove
the following theorem [23,24].

Theorem 2.2. The Euler–Lagrange–Liénard polynomial system (2.7)
can have at most k+ l+1 limit cycles, k+1 surrounding the origin and
l surrounding one by one the other singularities of (2.7).

Proof. According to Theorem 2.1, for the study of limit cycle bifur-
cations of system (2.7), it is sufficient to consider the canonical sys-
tems (2.13) and (2.14) containing the field rotation parameters α0,
α2, . . . , α2k and the semi-rotation parameters β1, β3, . . . , β2k−1. We will
work with (2.14) again (system (2.13) can be considered in a similar
way).

Vanishing all of the parameters α0, α2, . . . , α2k and β1, β3, . . . , β2k−1

in (2.14), we will have system (2.15) which is symmetric with respect
to the x-axis and has centers as anti-saddles. Its center domains are
bounded by either separatrix loops or digons of the saddles or saddle-
nodes of (2.15) lying on the x-axis.

Let us input successively the semi-rotation parameters β1, β3, . . . ,
β2k−1 into system (2.15) beginning with the parameters at the highest
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degrees of x and alternating with their signs. So, begin with the param-
eter β2k−1 and let, for definiteness, β2k−1 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−1 + β2k−1x
2k−1) + y2(c0 + c1 x+ . . .+ c2n x

2n).

(2.17)

In this case, the vector field of (2.17) is rotated in the negative direc-
tion (clockwise) in the half-plane x < 1 turning the center at the origin
into a rough stable focus. All of the other centers lying in the half-
plane x > 1 become rough unstable foci, since the vector field of (2.17)
is rotated in the positive direction (counterclockwise) in this half-plane
[2, 9].

Fix β2k−1 and input the parameter β2k−3 < 0 into (2.17):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 − β2k−1 + β2k−3x
2k−3 + β2k−1x

2k−1)

+y2(c0 + c1 x+ . . .+ c2n x
2n).

(2.18)

Then the vector field of (2.18) is rotated in the opposite directions
in each of the half-planes x < 1 and x > 1. Under decreasing β2k−3,
when β2k−3 = −β2k−1, the focus at the origin becomes nonrough (weak),
changes the character of its stability and generates a stable limit cycle.
All of the other foci in the half-plane x > 1 will also generate unstable
limit cycles for some values of β2k−3 after changing the character of their
stability. Under further decreasing β2k−3, all of the limit cycles will
expand disappearing on separatrix cycles of (2.18) [2, 9].

Denote the limit cycle surrounding the origin by Γ0, the domain out-
side the cycle by D01, the domain inside the cycle by D02 and consider
logical possibilities of the appearance of other (semi-stable) limit cycles
from a “trajectory concentration” surrounding this singular point. It is
clear that, under decreasing the parameter β2k−3, a semi-stable limit cy-
cle cannot appear in the domain D02, since the focus spirals filling this
domain will untwist and the distance between their coils will increase
because of the vector field rotation [10–17].

By contradiction, we can also prove that a semi-stable limit cycle
cannot appear in the domain D01. Suppose it appears in this domain
for some values of the parameters β∗

2k−1 > 0 and β∗
2k−3 < 0. Return

to system (2.15) and change the inputting order for the semi-rotation
parameters. Input first the parameter β2k−3 < 0:
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ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 + β2k−3x
2k−3) + y2(c0 + c1 x+ . . .+ c2n x

2n).

(2.19)

Fix it under β2k−3 = β∗
2k−3. The vector field of (2.19) is rotated coun-

terclockwise and the origin turns into a rough unstable focus. Inputting
the parameter β2k−1 > 0 into (2.19), we get again system (2.18) the vec-
tor field of which is rotated clockwise. Under this rotation, a stable limit
cycle Γ0 will appear from a separatrix cycle for some value of β2k−1. This
cycle will contract, the outside spirals winding onto the cycle will un-
twist and the distance between their coils will increase under increasing
β2k−1 to the value β∗

2k−1. It follows that there are no values of β∗
2k−3 < 0

and β∗
2k−1 > 0 for which a semi-stable limit cycle could appear in the

domain D01.
This contradiction proves the uniqueness of a limit cycle surrounding

the origin in system (2.18) for any values of the parameters β2k−3 and
β2k−1 of different signs. Obviously, if these parameters have the same
sign, system (2.18) has no limit cycles surrounding the origin at all.
On the same reason, this system cannot have more than l limit cycles
surrounding the other singularities (foci or nodes) of (2.18) one by one.

It is clear that inputting the other semi-rotation parameters
β2k−5, . . . , β1 into system (2.18) will not give us more limit cycles, since
all of these parameters are rough with respect to the origin and the other
anti-saddles lying in the half-plane x > 1. Therefore, the maximum num-
ber of limit cycles for the system

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+y(−β1−. . .−β2k−3−β2k−1+β1x+. . .+β2k−3x
2k−3+β2k−1x

2k−1)

+y2(c0 + c1 x+ . . .+ c2n x
2n)

(2.20)
is equal to l + 1 and they surround the anti-saddles (foci or nodes)
of (2.20) one by one.

Suppose that β1 + . . .+ β2k−3 + β2k−1 > 0 and input the last rough
parameter α0 > 0 into system (2.20):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(α0 − β1 − . . .− β2k−1 + β1x+ . . .+ β2k−1x
2k−1)

+y2(c0 + c1 x+ . . .+ c2n x
2n).

(2.21)

This parameter rotating the vector field of (2.21) counterclockwise in
the whole phase plane also will not give us more limit cycles, but under
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increasing α0, when α0 = β1 + . . . + β2k−1, we can make the focus at
the origin nonrough (weak), after the disappearance of the limit cycle Γ0
in it. Fix this value of the parameter α0 (α0 = α∗

0) :

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1) + y2(c0 + c1 x+ . . .+ c2n x

2n).

(2.22)

Let us input now successively the other field rotation parameters
α2, . . . , α2k into system (2.22) beginning again with the parameters at
the highest degrees of x and alternating with their signs; see [10–17]. So,
begin with the parameter α2k and let α2k < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2kx

2k)

+y2(c0 + c1 x+ . . .+ c2n x
2n).

(2.23)

In this case, the vector field of (2.23) is rotated clockwise in the whole
phase plane and the focus at the origin changes the character of its sta-
bility generating again a stable limit cycle. The limit cycles surrounding
the other singularities of (2.23) can also still exist. Denote the limit cycle
surrounding the origin by Γ1, the domain outside the cycle by D1 and
the domain inside the cycle by D2. The uniqueness of a limit cycle sur-
rounding the origin (and limit cycles surrounding the other singularities)
for system (2.23) can be proved by contradiction like we have done above
for (2.18); see also [10–17].

Let system (2.23) have the unique limit cycle Γ1 surrounding the
origin and l limit cycles surrounding the other antisaddles of (2.23). Fix
the parameter α2k < 0 and input the parameter α2k−2 > 0 into (2.23):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2 + α2kx
2k)

+y2(c0 + c1 x+ . . .+ c2n x
2n).

(2.24)

Then the vector field of (2.24) is rotated in the opposite direction (coun-
terclockwise) and the focus at the origin immediately changes the char-
acter of its stability (since its degree of nonroughness decreases and the
sign of the field rotation parameter at the lower degree of x changes) gen-
erating the second (unstable) limit cycle Γ2. The limit cycles surrounding
the other singularities of (2.24) can only disappear in the corresponding
foci (because of their roughness) under increasing the parameter α2k−2.
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Under further increasing α2k−2, the limit cycle Γ2 will join with Γ1 form-
ing a semi-stable limit cycle, Γ12, which will disappear in a “trajectory
concentration” surrounding the origin. Can another semi-stable limit
cycle appear around the origin in addition to Γ12? It is clear that such
a limit cycle cannot appear either in the domain D1 bounded on the
inside by the cycle Γ1 or in the domain D3 bounded by the origin and Γ2

because of the increasing distance between the spiral coils filling these
domains under increasing the parameter [10–17].

To prove the impossibility of the appearance of a semi-stable limit
cycle in the domain D2 bounded by the cycles Γ1 and Γ2 (before their
joining), suppose the contrary, i. e., that for some values of these param-
eters, α∗

2k < 0 and α∗
2k−2 > 0, such a semi-stable cycle exists. Return to

system (2.22) again and input first the parameter α2k−2 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2)

+y2(c0 + c1 x+ . . .+ c2n x
2n).

(2.25)

This parameter rotates the vector field of (2.25) counterclockwise pre-
serving the origin as a nonrough stable focus.

Fix this parameter under α2k−2 = α∗
2k−2 and input the parameter

α2k < 0 into (2.25) getting again system (2.22). Since, by our as-
sumption, this system has two limit cycles surrounding the origin for
α2k > α∗

2k, there exists some value of the parameter, α12
2k (α

12
2k < α∗

2k < 0),
for which a semi-stable limit cycle, Γ12, appears in system (2.24) and then
splits into a stable cycle Γ1 and an unstable cycle Γ2 under further de-
creasing α2k. The formed domain D2 bounded by the limit cycles Γ1, Γ2

and filled by the spirals will enlarge since, on the properties of a field
rotation parameter, the interior unstable limit cycle Γ2 will contract and
the exterior stable limit cycle Γ1 will expand under decreasing α2k. The
distance between the spirals of the domain D2 will naturally increase,
which will prevent the appearance of a semi-stable limit cycle in this
domain for α2k < α12

2k [10–17].
Thus, there are no such values of the parameters, α∗

2k < 0 and
α∗
2k−2 > 0, for which system (2.24) would have an additional semi-stable

limit cycle surrounding the origin. Obviously, there are no other values of
the parameters α2k and α2k−2 for which system (2.24) would have more
than two limit cycles surrounding this singular point. On the same rea-
son, additional semi-stable limit cycles cannot appear around the other
singularities (foci or nodes) of (2.24). Therefore, l + 2 is the maximum
number of limit cycles in system (2.24).
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Suppose that system (2.24) has two limit cycles, Γ1 and Γ2, sur-
rounding the origin and l limit cycles surrounding the other antisaddles
of (2.24) (this is always possible if −α2k ≫ α2k−2 > 0). Fix the param-
eters α2k, α2k−2 and consider a more general system inputting the third
parameter, α2k−4 < 0, into (2.22):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4 + α2k−2x
2k−2 + α2kx

2k)

+y2(c0 + c1 x+ . . .+ c2n x
2n).

(2.26)
For decreasing α2k−4, the vector field of (2.26) will be rotated clock-
wise and the focus at the origin will immediately change the character
of its stability generating a third (stable) limit cycle, Γ3. With further
decreasing α2k−4, Γ3 will join with Γ2 forming a semi-stable limit cycle,
Γ23, which will disappear in a “trajectory concentration” surrounding
the origin; the cycle Γ1 will expand disappearing on a separatrix cycle
of (2.26).

Let system (2.26) have three limit cycles surrounding the origin: Γ1,
Γ2, Γ3. Could an additional semi-stable limit cycle appear with decreasing
α2k−4 after splitting of which system (2.26) would have five limit cycles
around the origin? It is clear that such a limit cycle cannot appear either
in the domain D2 bounded by the cycles Γ1 and Γ2 or in the domain D4

bounded by the origin and Γ3 because of the increasing distance between
the spiral coils filling these domains after decreasing α2k−4. Consider two
other domains: D1 bounded on the inside by the cycle Γ1 andD3 bounded
by the cycles Γ2 and Γ3. As before, we will prove the impossibility of the
appearance of a semi-stable limit cycle in these domains by contradiction.

Suppose that for some set of values of the parameters
α∗
2k < 0, α∗

2k−2 > 0 and α∗
2k−4 < 0 such a semi-stable cycle exists. Re-

turn to system (2.22) again inputting first the parameters α2k−2 > 0 and
α2k−4 < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4 + α2kx
2k)

+y2(c0 + c1 x+ . . .+ c2n x
2n).

(2.27)

Fix the parameter α2k−2 under the value α∗
2k−2. With decreasing α2k−4,

a separatrix cycle formed around the origin will generate a stable limit
cycle Γ1. Fix α2k−4 under the value α∗

2k−4 and input the parameter
α2k > 0 into (2.27) getting system (2.26).



532 Limit cycles of multi-parameter polynomial...

Since, by our assumption, (2.26) has three limit cycles for α2k > α∗
2k,

there exists some value of the parameter α23
2k (α23

2k < α∗
2k < 0) for which

a semi-stable limit cycle, Γ23, appears in this system and then splits into
an unstable cycle Γ2 and a stable cycle Γ3 with further decreasing α2k.
The formed domain D3 bounded by the limit cycles Γ2, Γ3 and also the
domain D1 bounded on the inside by the limit cycle Γ1 will enlarge and
the spirals filling these domains will untwist excluding a possibility of
the appearance of a semi-stable limit cycle there [10–17].

All other combinations of the parameters α2k, α2k−2, and α2k−4 are
considered in a similar way. It follows that system (2.26) can have at
most l + 3 limit cycles.

If we continue the procedure of successive inputting the field rotation
parameters, α2k, . . . , α2, into system (2.22),

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2x

2 + . . .+ α2kx
2k)

+y2(c0 + c1 x+ . . .+ c2n x
2n),

(2.28)

it is possible to obtain k limit cycles surrounding the origin and l sur-
rounding one by one the other singularities (foci or nodes) (−α2k ≫
α2k−2 ≫ −α2k−4 ≫ α2k−6 ≫ . . .).

Then, by means of the parameter α0 ̸= β1 + . . .+ β2k−1 (α0 > α∗
0, if

α2 < 0, and α0 < α∗
0, if α2 > 0), we will have the canonical system (2.14)

with an additional limit cycle surrounding the origin and can conclude
that this system (i. e., the Euler–Lagrange–Liénard polynomial system
(2.7) as well) has at most k+l+1 limit cycles, k+1 surrounding the origin
and l surrounding one by one the antisaddles (foci or nodes) of (2.14)
(and (2.7) as well). The theorem is proved [23,24].

3. The Topp model of diabetes dynamics

In [40], a novel model of coupled β-cell mass, insulin, and glucose dy-
namics was presented, which is used to investigate the normal behavior
of the glucose regulatory system and pathways into diabetes. The behav-
ior of the model is consistent with the observed behavior of the glucose
regulatory system in response to changes in blood glucose levels, insulin
sensitivity, and β-cell insulin secretion rates.

In the post-absorptive state, glucose is released into the blood by the
liver and kidneys, removed from the interstitial fluid by all the cells of
the body, and distributed into many physiological compartments, e. g.,
arterial blood, venous blood, cerebral spinal fluid, interstitial fluid [40].
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Since we are primarily concerned with the evolution of fasting blood
glucose levels over a time-scale of days to years, glucose dynamics are
modeled with a single-compartment mass balance equation

Ġ = a− (b+ cI)G. (3.1)

Insulin is secreted by pancreatic β-cells, cleared by the liver, kidneys,
and insulin receptors, and distributed into several compartments, e. g.,
portal vein, peripheral blood, and interstitial fluid. The main concern is
the long-time evolution of fasting insulin levels in peripheral blood. Since
the dynamics of fasting insulin levels on this time-scale are slow, we use
a single-compartment equation given by

İ =
βG2

1 +G2
− αI. (3.2)

Despite a complex distribution of pancreatic β cells throughout the
pancreas, β-cell mass dynamics have been successfully quantified with a
single-compartment model

β̇ = (−l +mG− nG2)β. (3.3)

Finally, the Topp model (a rational endocrine system) is

Ġ = a− (b+ cI)G,

İ =
βG2

1 +G2
− αI,

β̇ = (−l +mG− nG2)β

(3.4)

with parameters as in [40].
On the short timescale, β is approximately constant and, relabelling

the variables, the fast dynamics is a planar system

ẋ = a− (b+ c y)x,

ẏ =
βx2

1 + x2
− α y.

(3.5)

By rescaling time, this can be written in the form of a quartic dynamical
system:

ẋ = (1 + x2)(a− (b+ c y)x) ≡ P,

ẏ = βx2 − α y(1 + x2) ≡ Q.
(3.6)

Together with (3.6), we will also consider an auxiliary system (see
[2, 9, 34])

ẋ = P − γQ, ẏ = Q+ γP, (3.7)
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applying to these systems new bifurcation methods and geometric ap-
proaches developed in [5, 9–22, 24] and carrying out the qualitative anal-
ysis of (3.6).

Consider system (3.6). Its finite singularities are determined by the
algebraic system

(1 + x2)(a− (b+ c y)x) = 0,

βx2 − α y(1 + x2) = 0
(3.8)

which can give us at most three singular points in the first quadrant: a
saddle S and two antisaddles (non-saddles), A1 and A2, according to the
second Poincaré index theorem (Theorem 1.2). Suppose that with respect
to the x-axis they have the following sequence: A1, S, A2. System (3.6)
can also have one singular point (an antisaddle) or two singular points
(an antisaddle and a saddle-node) in the first quadrant.

To study singular points of (3.6) at infinity, consider the correspond-
ing differential equation

dy

dx
=

βx2 − α y(1 + x2)

(1 + x2)(a− (b+ c y)x)
. (3.9)

Dividing the numerator and denominator of the right-hand side of
(3.9) by x4(x ̸= 0) and denoting y/x by u (as well as dy/dx), we will get
the equation

u2 = 0, where u = y/x, (3.10)

for all infinite singularities of (3.9) except when x = 0 (the “ends” of the
y-axis); see [2, 9]. For this special case we can divide the numerator and
denominator of the right-hand side of (3.9) by y4 (y ̸= 0) denoting x/y
by v (as well as dx/dy) and consider the equation

v2 = 0, where v = x/y. (3.11)

According to the Poincaré index theorems (Theorem 1.1 and Theorem 1.2),
the equations (3.10) and (3.11) give us two double singular points (saddle-
nodes) at infinity for (3.9): on the “ends” of the x and y axes.

Using the obtained information on singular points and applying geo-
metric approaches developed in [5, 9–22, 24], we can study now the limit
cycle bifurcations of system (3.6).

Applying the definition of a field rotation parameter [2,9,34], to sys-
tem (3.6), let us calculate the corresponding determinants for the param-
eters a, b, c, α, and β, respectively:

∆a = PQ′
a −QP ′

a = −(1 + x2)(βx2 − α y(1 + x2)), (3.12)
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∆b = PQ′
b −QP ′

b = x(1 + x2)(βx2 − αy(1 + x2)), (3.13)

∆c = PQ′
c −QP ′

c = xy(1 + x2)(βx2 − α y(1 + x2)), (3.14)

∆α = PQ′
α −QP ′

α = −y(1 + x2)2(a− (b+ c y)x), (3.15)

∆β = PQ′
β −QP ′

β = x2(1 + x2)(a− (b+ c y)x). (3.16)

It follows from (3.12)–(3.14) that in the first quadrant the signs of ∆a,
∆b, ∆c depend on the sign of βx2 − α y(1 + x2) and from (3.15) and
(3.16) that the signs of ∆α and ∆β depend on the sign of a−(b+c y)x on
increasing (or decreasing) the parameters a, b, c, α, and β, respectively.

Therefore, to study limit cycle bifurcations of system (3.6), it makes
sense together with (3.6) to consider also the auxiliary system (3.7) with
field-rotation parameter γ :

∆γ = P 2 +Q2 ≥ 0. (3.17)

Using system (3.7) and applying Perko’s results, we prove the follow-
ing theorem [21,22,24].

Theorem 3.1. The reduced Topp system (3.6) can have at most two
limit cycles.

Proof. In [4,5,30,41], where a similar quartic system was studied, it was
proved that the cyclicity of singular points in such a system is equal
to two and that the system can have at least two limit cycles; see also
[18,20,26,29] with similar results.

Consider systems (3.6)–(3.7) supposing that the cyclicity of singular
points in these systems is equal to two and that the systems can have
at least two limit cycles. Let us prove now that these systems have at
most two limit cycles. The proof is carried out by contradiction applying
Catastrophe Theory; see [9, 34].

We will study more general system (3.7) with three parameters: α, β,
and γ (the parameters a, b, and c can be fixed, since they do not generate
limit cycles). Suppose that (3.7) has three limit cycles surrounding the
singular point A1, in the first quadrant. Then we get into some domain
of the parameters α, β, and γ being restricted by definite conditions on
three other parameters, a, b, and c. This domain is bounded by two fold
bifurcation surfaces forming a cusp bifurcation surface of multiplicity-
three limit cycles in the space of the parameters α, β, and γ.

The corresponding maximal one-parameter family of multiplicity-
three limit cycles cannot be cyclic, otherwise there will be at least one
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point corresponding to the limit cycle of multiplicity four (or even higher)
in the parameter space.

Extending the bifurcation curve of multiplicity-four limit cycles thro-
ugh this point and parameterizing the corresponding maximal one-para-
meter family of multiplicity-four limit cycles by the field rotation para-
meter, γ, according to Theorem 1.4, we will obtain two monotonic curves
of multiplicity-three and one, respectively, which, by the Wintner–Perko
termination principle (Theorem 1.3), terminate either at the point A1 or
on a separatrix cycle surrounding this point. Since on our assumption
the cyclicity of the singular point is equal to two, we have obtained a
contradiction with the termination principle stating that the multiplicity
of limit cycles cannot be higher than the multiplicity (cyclicity) of the
singular point in which they terminate.

If the maximal one-parameter family of multiplicity-three limit cycles
is not cyclic, using the same principle (Theorem 1.3), this again contra-
dicts the cyclicity of A1 not admitting the multiplicity of limit cycles to
be higher than two. This contradiction completes the proof in the case
of one singular point in the first quadrant.

Suppose that system (3.7) with three finite singularities, A1, S, and
A2, has two small limit cycles around, for example, the point A1 (the
case when limit cycles surround the point A2 is considered in a similar
way). Then we get into some domain in the space of the parameters α, β,
and γ which is bounded by a fold bifurcation surface of multiplicity-two
limit cycles.

The corresponding maximal one-parameter family of multiplicity-two
limit cycles cannot be cyclic, otherwise there will be at least one point cor-
responding to the limit cycle of multiplicity three (or even higher) in the
parameter space. Extending the bifurcation curve of multiplicity-three
limit cycles through this point and parameterizing the corresponding
maximal one-parameter family of multiplicity-three limit cycles by the
field rotation parameter, γ, according to Theorem 1.4, we will obtain
a monotonic curve which, by the Wintner–Perko termination principle
(Theorem 1.3), terminates either at the point A1 or on some separatrix
cycle surrounding this point. Since we know at least the cyclicity of the
singular point which on our assumption is equal to one in this case, we
have obtained a contradiction with the termination principle.

If the maximal one-parameter family of multiplicity-two limit cycles
is not cyclic, using the same principle (Theorem 1.3), this again contra-
dicts the cyclicity of A1 not admitting the multiplicity of limit cycles
higher than one. Moreover, it also follows from the termination prin-
ciple that either an ordinary (small) separatrix loop or a big loop, or
an eight-loop cannot have the multiplicity (cyclicity) higher than one in
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this case. Therefore, according to the same principle, there are no more
than one limit cycle in the exterior domain surrounding all three finite
singularities, A1, S, and A2.

Thus, taking into account all other possibilities for limit cycle bi-
furcations (see [4,5,30,41]), we conclude that system (3.7) (and (3.6) as
well) cannot have either a multiplicity-three limit cycle or more than two
limit cycles in any configuration. The theorem is proved [21,22,24].
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ẋ = y −

∑2
i=0 ai x

2i+1 is equal to two. Differ. Equ., 11, 301–302.



V. A. Gaiko 539

[36] Savin, S., Khusainov, R., Klimchik, A. (2019). Control of actuators with linearized
variable stiffness. IFAC-PapersOnLine, 52, 713–718.

[37] Slight, T.J., Romeira, B., Liquan, W., Figueiredo, J.M.L., Wasige, E., Ironside,
C.N.A. (2008). Liénard oscillator resonant tunnelling diode-laser diode hybrid
integrated circuit: model and experiment. IEEE J. Quantum Electronics, 44,
1158–1163.

[38] Shiriaev, A., Robertsson, A., Perram, J., Sandberg, A. (2006). Periodic motion
planning for virtually constrained Euler–Lagrange systems. Systems Control Let-
ters, 55, 900–907.

[39] Smale, S. (1998). Mathematical problems for the next century. Math. Intelli-
gencer, 20, 7–15.

[40] Topp, B., Promislow, K., Devries, G., Miuraa, R.M., Finegood, D.T. (2000).
A model of β-cell mass, insulin, and glucose kinetics: pathways to diabetes. J.
Theor. Biol., 206, 605–619.

[41] Zhu, H., Campbell, S.A., Wolkowicz, G.S.K. (2002). Bifurcation analysis of a
predator–prey system with nonmonotonic functional response. SIAM J. Appl.
Math., 63, 636–682.

Contact information

Valery A. Gaiko United Institute of Informatics Problems,
National Academy of Sciences of Belarus,
Minsk, Belarus
E-Mail: valery.gaiko@gmail.com




