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Abstract. The present work considers properties of generally convex
sets in the n-dimensional real Euclidean space Rn, n > 1, known as
weakly m-semiconvex, m = 1, 2, . . . , n − 1. For all that, the subclass
of not m-semiconvex sets is distinguished from the class of weakly m-
semiconvex sets. A set of the space Rn is called m-semiconvex if, for
any point of the complement of the set to the whole space, there is an
m-dimensional half-plane passing through this point and not intersect-
ing the set. An open set of Rn is called weakly m-semiconvex if, for
any point of the boundary of the set, there exists an m-dimensional half-
plane passing through this point and not intersecting the given set. A
closed set of Rn is called weakly m-semiconvex if it is approximated
from the outside by a family of open weakly m-semiconvex sets. An
example of a closed set with three connected components of the subclass
of weakly 1-semiconvex but not 1-semiconvex sets in the plane is con-
structed. It is proved that this number of components is minimal for
any closed set of the subclass. An example of a closed set of the sub-
class with a smooth boundary and four components is constructed. It
is proved that this number of components is minimal for any closed,
bounded set of the subclass having a smooth boundary and a not
1-semiconvex interior. It is also proved that the interior of a closed,
weakly 1-semiconvex set with a finite number of components in the plane
is weakly 1-semiconvex. Weakly m-semiconvex but not m-semiconvex
domains and closed connected sets in Rn are constructed for any n ≥ 3
and any m = 1, 2, . . . , n− 2.
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1. Introduction

As is known, a set of the multidimensional real Euclidean space Rn

is called convex if, together with its two arbitrary points, it contains the
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entire segment connecting the points [2]. Moreover, the intersection of an
arbitrary number of convex sets is again a convex set. This property of
convex sets makes it possible to determine the minimal convex set that
contains an arbitrary given set as follows:

Definition 1.1. ([2]) The intersection of all convex sets containing a
given set X ⊂ Rn is called the convex hull of the set X and is denoted
by

convX =
∩

K⊃X

K, where sets K are convex.

A class of m - semiconvex sets is one of the classes of generally convex
sets. A semiconvexity notion was proposed by Yuriy Zeliskii [7] and it
was used in the formulation of a shadow problem generalization. The
shadow problem was proposed by Gulmirza Khudaiberganov [4,5] and is
stated as follows: To find the minimal number of open (closed) balls in
the real Euclidean space Rn that are pairwise disjoint, whose centers are
located on a sphere Sn−1 (see [1]), do not contain the sphere center, and
such that any straight line passing through the sphere center intersects at
least one of the balls. To formulate the generalized shadow problem, first,
let us give the following definitions which we also use in our investigation.

Any m-dimensional affine subspace of the space Rn, 0 ≤ m < n, is
called an m-dimensional plane.

Definition 1.2. One of two parts of an m-dimensional plane, m ≥ 1,
of the space Rn, n ≥ 2, into which it is divided by its any of (m − 1)-
dimensional planes (herewith, the points of the (m−1)-dimensional plane
are included) is said to be an m-dimensional half-plane.

For instance, the 1 – dimensional half-plane is a ray, the 2 – dimen-
sional half-plane is a half-plane, etc.

Definition 1.3. ( [6]) A set E ⊂ Rn is called m-semiconvex with
respect to a point x ∈ Rn \ E, 1 ≤ m < n, if there exists an m-
dimensional half-plane H such that x ∈ H and H ∩ E = ∅.

Definition 1.4. ([6]) A set E ⊂ Rn is called m-semiconvex , 1 ≤ m <
n, if it is m-semiconvex with respect to every point x ∈ Rn \ E.

One can easily see that both definitions satisfy the axiom of convexity:
The intersection of each subfamily of these sets also satisfies the definition.
Thus, for any set E ⊂ Rn we can consider the minimal m-semiconvex set
containing E and defined as follows:
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Definition 1.5. ([9]) The intersection of all m-semiconvex sets with fixed
m containing a given set E ⊂ Rn is called the m-semiconvex hull of
the set E and is denoted by

convmE =
∩

K⊃E

K, where sets K are m-semiconvex.

The generalized shadow problem is To find the minimum number of
pairwise disjoint closed (open) balls in Rn (centered on a sphere Sn−1

and whose radii are smaller than the radius of the sphere) such that any
ray starting at the center of the sphere necessarily intersects at least one
of these balls.

In the terms of m-semiconvexity, this problem can be reformulated as
follows: What is the minimum number of pairwise disjoint closed (open)
balls in Rn whose centers are located on a sphere Sn−1 and the radii are
smaller than the radius of this sphere such that the center of the sphere
belongs to the 1-semiconvex hull of the family of these balls?

In the paper [7] the generalized shadow problem is solved as n = 2.
And only the sufficient number of the balls is indicated as n = 3.

We shall use the following standard notations. For a set G ⊂ Rn let G
be its closure, IntG be its interior, and ∂G = G \ IntG be its boundary.

Definition 1.6. ( [8]) An open set G ⊂ Rn is called weakly m-semi-
convex, 1 ≤ m < n, if it is m-semiconvex with respect to any point
x ∈ ∂G.

Definition 1.7. ([3]) They say that a set E is approximated from the
outside by a family of open sets Ek, k = 1, 2, . . ., if Ek+1 is contained
in Ek, and E = ∩kEk.

It can be proved that any set approximated from the outside by a
family of open sets is closed.

Definition 1.8. ([8]) A closed set E ⊂ Rn is called weakly m-semi-
convex if it can be approximated from the outside by a family of open
weakly m-semiconvex sets.

Thus, any weakly m-semiconvex set E is either open or closed. Among
closed weakly m-semiconvex sets there are also sets with empty interior:

E = E = E \ IntE = ∂E.

Let us denote the classes of m-semiconvex and weakly m-semiconvex
sets in Rn, n ≥ 2, 1 ≤ m < n, by Sn

m and WSn
m, respectively. There

are weakly 1-semiconvex sets in R2 which are not 1-semiconvex, i. e., the
class WS2

1 \S2
1 is not empty. Moreover, the following proposition is true:
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Lemma 1.1. ([8]) Let an open set E ⊂ R2 belong to the class WS2
1 \S2

1.
Then E is disconnected.

The maximal connected subsets Ei, i = 1, 2, . . ., of a nonempty set
E ⊂ Rn are called connected components (components) of the set E.
Herewith, E = ∪iE

i.
In [8] the elegant in its simplicity example of an open set of the

class WS2
1 \ S2

1 with three connected components was constructed (see
Figure 1).

Figure 1.

In addition, the assumption was made that any open set of the class
WS2

1 \ S2
1 consists of not less than three components. This proposition

was proved in [9].

Lemma 1.2. ([9]) Let an open set E ⊂ R2 belong to the class WS2
1 \S2

1.
Then E consists of not less than three components.

We say that a component G of an open, bounded subset of the plane
has smooth boundary if ∂G is the image of a C1-embedding of the unit
circle. We say that an open, bounded subset of the plane has smooth
boundary if each of its components has smooth boundary.

Lemma 1.3. ([10]) Let an open, bounded set E ⊂ R2 with smooth bound-
ary belong to the class WS2

1 \ S2
1. Then E consists of not less than four

components.

Definition 1.9. ([10]) A point x ∈ Rn \E is called an m-nonsemicon-
vexity point of a set E ⊂ Rn if any m-dimensional half-plane with x
on its boundary intersects E.

The set of all m-nonsemiconvexity points of a set E ⊂ Rn, n ≥ 2, is
denoted by (E)♢m, 1 ≤ m < n. Thus, if a set E ⊂ Rn is not m-semiconvex,
then obviously (E)♢m ̸= ∅. And let

(E)♢1 := (E)♢, E ⊂ Rn, n ≥ 2.
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Definition 1.10. ([10]) We say that a set E ⊂ Rn is projected from
a point x ∈ Rn on a set G ⊂ Rn if any ray, starting at the point x and
intersecting E, intersects G as well.

Two interesting lemmas follow directly from Lemmas 1.2, 1.3.

Lemma 1.4. ([10]) Let an open set E ⊂ R2 belong to the class WS2
1 \

S2
1 and consist of three components. Then none of its components is

projected on the union of the others from a point of 1-nonsemiconvexity
of E.

Lemma 1.5. ([10]) Let an open, bounded set E ⊂ R2 belong to the class
WS2

1 \ S2
1 and consist of four components with smooth boundary. Then

none of its components is projected on the union of the others from a
point of 1-nonsemiconvexity of E.

The present work proceeds the research of Yu. Zelinskii and his stu-
dents by investigating the topological properties mainly of closed sets of
the classes WS2

1 \ S2
1 and WSn

m \ Sn
m, n ≥ 3, 1 ≤ m < n− 1.

In chapter 2, an example of a closed set of the class WS2
1 \ S2

1 with
three components and an example of a closed set of the class WS2

1 \ S2
1

with smooth boundary and with four and more components are con-
structed.

In chapter 3, it is proved that, similarly to the case of open sets of
the class WS2

1 \ S2
1, the closed sets of the class WS2

1 \ S2
1 also consist

of not less than three components. Moreover, if they are bounded, have
smooth boundary and not 1-semiconvex interior, then they consist of not
less than four components. It is also proved that the interior of a closed,
weakly 1-semiconvex set with a finite number of components in the plane
is weakly 1-semiconvex.

In chapter 4, domains and closed connected sets of the classes WSn
m\

Sn
m, n ≥ 3, 1 ≤ m < n− 1, are constructed. In conclusion, a list of open

problems concerning the topic is proposed.

2. Examples of closed sets of the class WS2
1 \ S2

1

First, give some denotations. The interval between points x, y ∈ Rn

will be written as xy and the distance between the points will be written
as |x−y|. Let U(y, ε) := {x ∈ Rn : |x−y| < ε}, ε > 0, be a neighborhood
of a point y ∈ Rn.

Lemma 2.1. The closure of an open set E of the class WSn
m \ Sn

m,
n ≥ 2, is not m-semiconvex, 1 ≤ m < n.
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Proof. Since E ∈ WSn
m \ Sn

m, there exists an m-nonsemiconvexity point
x ∈ Rn \ E of the set E. Since E ⊂ E, any m-dimensional half-plane
with x on its boundary and intersecting E intersects E as well. Thus, x
is an m-nonsemiconvexity point of E.

In [10] examples of open sets of the class WS2
1 \S2

1 including an open
set with smooth boundary were constructed (see Figure 2 a), 3 b)). Here
we construct examples of closed sets of the class WS2

1 \ S2
1 using the

examples from [10]. To do this, first, we consider some accessory open
sets of the class WS2

1 \ S2
1.

In the following example open sets of the class WS2
1 \ S2

1 consisting
of three components are considered.

Example 2.1. Let E1 be an open rectangle with vertices Ai, i = 1, 4,
and the sides parallel to the axes. Let E2 be an open set with vertices Bj ,
j = 1, 6, as on Figure 2 a). Let B0 ∈ B1O, where O is the origin. Let us
consider the points Bt ∈ B0B1, t ∈ [0, 1], defined as Bt := tB1+(1−t)B0.
Let γt, t ∈ [0, 1], be the ray starting at Bt and passing through the point
A1. Let γ̃t be the ray symmetric to γt with respect to the axis Oy. Then
let γ̃t start at a point B̃t and Ct

1 := γt ∩ γ̃t, t ∈ [0, 1]. Let the length of
A2A3 be such that the line η passing through the points A2, B6 intersects
the triangle B0B̃0C

0
1 . Then Ct

2 := η ∩ γ̃t and Ct
3 := η ∩ γt, t ∈ [0, 1].

Let ξ be a straight parallel to the axis Ox, intersecting the rays γt, γ̃t ,
t ∈ [0, 1], and not intersecting E1, E2. Now we construct open rectangles
Et

3, t ∈ [0, 1], with vertices Dt
i , i = 1, 4, laying under the line ξ and such

that Dt
1 ∈ γ̃t, D

t
2 ∈ γt (see Figure 2 a)).

Then, by the construction, any ray starting at a point of the open
triangle Ct

1C
t
2C

t
3 intersects the set Et := E1 ∪ E2 ∪ Et

3, and any ray
starting at ∂Et does not intersect Et, t ∈ [0, 1]. Thus, each set Et,
t ∈ [0, 1], belongs to the class WS2

1 \ S2
1.

Now construct the example of a closed set of the class WS2
1 \ S2

1.

Example 2.2. Let E0 := E1 ∪ E2 ∪ E0
3 be the set from the previous

example. By Lemma 2.1, the closed set E0 is not 1-semiconvex. Show
that E0 is approximated from the outside by a family of open, weakly
1-semiconvex sets.

Let Ed
1 := Ad

1A
d
2A

d
3A

d
4 ⊃ E1, d > 0, be the open rectangle such that

|Ad
1A

d
2| = d + |A1A2|, |Ad

1A
d
4| = d + |A1A4| and Ed2

1 ⊂ Ed1
1 for any

0 < d2 < d1, Figure 2 b).

Let Ed
2 := Bd

1B
d
2 . . . B

d
6 ⊃ E2 and Ed2

2 ⊂ Ed1
2 for any 0 < d2 <

d1. Let Od ∈ Bd
1B

d
6 ∩ Oy and Bd

0 be a point of the open interval
Bd

1O
d. Let us consider the points Bd

t ∈ Bd
0B

d
1 , t ∈ [0, 1], defined as



546 Topological properties of closed...

Figure 2.

Bd
t := tBd

1 + (1− t)Bd
0 . Let γd,t, t ∈ [0, 1], be the ray starting at Bd

t and
passing through the point Ad

1.

Let d0 be such that Ed0
1 ∩ Ed0

2 = ∅ and G = γd0,1 ∩ γ0,0 ̸= ∅. For a
fixed d ≤ d0 among all rays γd,t, t ∈ [0, 1], we choose the one γd := γd,t(d)
passing through the point G.

Let γ̃d be the ray symmetric to γd with respect to the axis Oy, 0 ≤
d ≤ d0.

Let a straight ξ from the previous example be passing through the
point G. Construct open rectangles Ed

3 , 0 < d ≤ d0, laying under the

line ξ, and such that Dd
1 ∈ γ̃d, D

d
2 ∈ γd and Ed2

3 ⊂ Ed1
3 for any d2 < d1.

Consider the family of the open weakly 1-semiconvex sets E
d0
k :=

3∪
j=1

E
d0
k
j , k = 1, 2, . . .. By the constructions, Ed2 ⊂ Ed1 for any 0 < d2 <

d1 ≤ d0. Moreover,
∩
k

E
d0
k = E0. Thus, the closed set E0 belongs to the

class WS2
1 \ S2

1.

Example 2.3. The following systems of open balls are examples of sets
of the class WS2

1 \ S2
1 with smooth boundary.

Let B(o1, r), B(o2, r) be open balls with centers o1, o2 placed symmet-
ric with respect to the origin O on the axis Ox (see Figure 3 a)). Let γ be
the common tangent line to the balls passing through the origin. Suppose
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x = x(t), y = y(t) is one-to-one continuous mapping of the interval [0, 1]
onto the arc ˘P0P1 ⊂ ∂B(o1, r) such that (x(0), y(0)) ≡ P0 = γ∩∂B(o1, r),
(x(1), y(1)) ≡ P1 = Oo1 ∩ ∂B(o1, r). Let γt, t ∈ [0, 1], be the ray start-
ing at the point (x(t), y(t)) ∈ ˘P0P1 and tangent to the ball B(o2, r)
from the inside, i.e intersecting Ox. Let ξ be a line parallel to the
axis Ox and not intersecting the balls but intersecting the rays γt. To
fix the point O1 ∈ Oy, let us draw the ball B(O1, R1) tangent to the
ray γ1 and the line ξ. Now we consider the balls B(O1, Rt), t ∈ [0, 1],
with centers at the point O1 and tangent to the rays γt. It is clear
that Rt1 < Rt2 for any t1, t2 ∈ [0, 1] such that t1 < t2. And let
B(O2, Rt), t ∈ [0, 1], be the balls symmetric to the corresponding balls
B(O1, Rt) with respect to the origin. Then each system of four open balls
Bt := {B(oi, r), B(Oi, Rt), i = 1, 2}, t ∈ (0, 1], is a weakly 1-semiconvex
and not 1-semiconvex set. Indeed, by the constructions, for any bound-
ary point of Bt there exists a ray starting at this point and not inter-
secting the set, whereas any ray starting at a point of the open rhombus
AtDtCtFt generated by the intersection of the ray γt, t ∈ (0, 1], the ray
symmetric to it with respect to the axis Ox, and the rays symmetric to
them with respect to the axis Oy intersects the set.

Figure 3.

Let us construct an example of a closed set of the class WS2
1 \ S2

1

with smooth boundary.

Example 2.4. Let B(o1, r), B(o2, r) be the open balls from the previous
example and let |o1o2| = 2d. Let ∆r1 be a number such that 0 <

∆r1 < min

{
1,

r(d− r)

d+ r

}
and let us draw a system of concentric balls

{B(oi, r +∆r), 0 < ∆r ≤ ∆r1, i = 1, 2}. Let us fix ∆r and for every ball
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B(oi, r+∆r) construct the rays γt,∆r as previews. Since ∆r1 <
r(d− r)

d+ r
,

the rays γ1,∆r1 and γ0,0 are intersected at a point A1. Let us fix ∆r and
among all rays γt,∆r, t ∈ [0, 1], chose the one γt(∆r),∆r that is passing
through the point A1. Let us fix the point O1 ∈ Oy by constructing the
ball B(O1, R+∆R(∆r1)) tangent to the ray γ1,∆r1 and the line ξ passing
through the point A1 (see Figure 4).

Figure 4.

Now we can construct the system of concentric circles
{B(O1, R+∆R(∆r))} that are tangent to the respective rays γt(∆r),∆r

and the system {B(O2, R+∆R(∆r))} symmetric to the first one with
respect to the origin. It is easy to see that ∆R(∆r1) < ∆R(∆r2) for any
∆r1,∆r2 ∈ (0,∆r1] such that ∆r1 < ∆r2.

By the construction, every set

B∆r := {B(oj , r +∆r), B(Oj , R+∆R(∆r)), j = 1, 2} ,
0 < ∆r ≤ ∆r1, (2.1)

is weakly 1-semiconvex. Moreover, the set (B∆r)
♢ of 1-nonsemiconvexity

points of the set B∆r is the open rhombus A∆rD∆rC∆rF∆r, 0 < ∆r ≤
∆r1, generated by the intersection of the ray γt(∆r),∆r, the ray symmetric
to it with respect to the axis Ox, and the rays symmetric to them with
respect to the axis Oy. Thus, each open set B∆r, 0 < ∆r ≤ ∆r1,
belongs to the class WS2

1 \S2
1. Also note here that, by the construction,

(B∆r1)
♢ ⊂ (B∆r2)

♢ for any 0 < ∆r1 < ∆r2 ≤ ∆r1.
In addition, every set B∆r, 0 < ∆r < ∆r1, belongs to the class

WS2
1 \ S2

1. Indeed, the sets B∆r are not 1-semiconvex by Lemma 2.1.
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Moreover, B∆r is approximated from the outside by the family of sets

B∆r,k :=

{
B

(
oj , r +∆r +

∆r1 −∆r

k

)
,

B

(
Oj , R+∆R

(
∆r +

∆r1 −∆r

k

))
, j = 1, 2

}
,

0 < ∆r < ∆r1, k = 1, 2, . . . . (2.2)

Now place the center o3 of the concentric open disks with radii r+∆r,
0 < ∆r ≤ ∆r1, at the point (R+∆R(∆r1)+r+∆r1, 0). Then the union
of five closed disks{
B(oi, r +∆r), B(Oj , R+∆R(∆r)), i = 1, 2, 3, j = 1, 2

}
, 0 <∆r <∆r1,

belongs to the class WS2
1\S2

1. Adding more closed, nonoverlapping disks
of the radius r+∆r and centers on the axis Ox in the positive direction,
we will get a closed set of the class WS2

1 \ S2
1 with smooth boundary

consisting of any finite or even countable number of components.

3. Topological properties of closed sets of the class
WS2

1 \ S2
1

Before presenting the main results of this chapter, first, let us provide
two lemmas and one theorem, given that their statements are extended
to all n ≥ 2, 1 ≤ m < n.

Lemma 3.1. Let a closed, weakly m-semiconvex set E ⊂ Rn, n ≥ 2,
1 ≤ m < n, with the number of components N be given. Then E is
approximated from the outside by a family of open, weakly m-semiconvex
sets Ek, k = 1, 2, . . ., such that the number of components of each set Ek

is not greater than N .

Proof. Since E is weakly m-semiconvex, there exists a family of open
weakly m-semiconvex sets Gk, k = 1, 2, . . ., approximating E from the
outside. Let every set Ek, k = 1, 2, . . ., consist of only the components
of Gk containing points of E. Consider a point yk ∈ ∂Ek. Then yk ∈
∂Gk. Since Gk is open and weakly m-semiconvex, there exists an m-
dimensional half-plane Lyk passing through yk and such that Lyk ∩Gk ̸=
∅. Since Gk ⊃ Ek, then Lyk ∩ Ek ̸= ∅. Thus, any set Ek, k = 1, 2, . . .,
is open, weakly m-semiconvex, and consists of components the number
of which is not greater than N .

Since Gk ⊃ Gk+1 ⊃ Ek+1 and Ek+1 is contained only in those com-
ponents of Gk which contain points of E, then Ek ⊃ Ek+1. Let us prove
that E = ∩kEk.
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Suppose x ∈ ∩kEk, then x ∈ Ek for any k = 1, 2, . . .. Since Ek ⊂ Gk,
then x ∈ Gk for any k = 1, 2, . . .. Therefore, x ∈ ∩kGk = E. Now let x ∈
E. Since Gk ⊃ E, k = 1, 2, . . ., the point x belongs to some component
G0

k of Gk for any k = 1, 2, . . .. Then x ∈ G0
k ⊂ Ek, k = 1, 2, . . ., which

gives x ∈ ∩kEk.
Thus, E is approximated from the outside by the family of open sets

Ek, k = 1, 2, . . ., by Definition 1.7.

Lemma 3.2. Let a closed set E ⊂ Rn, n ≥ 2, belong to the class WSn
m \

Sn
m, 1 ≤ m < n. Then for any family of open, weakly m-semiconvex sets

Ek, k = 1, 2, . . ., approximating the set E from the outside, there exists
an index k0 ∈ N such that every set Ek, k = k0, k0 + 1, . . ., of the family
is not m-semiconvex.

Proof. Since E is not m-semiconvex, it has a point of m-nonsemiconve-
xity x ∈ Rn \E. For a family of sets Ek, k = 1, 2, . . ., there exists k0 ∈ N
such that every set Ek, k = k0, k0 + 1, . . ., does not contain the point x.
Any m-dimensional half-plane with x on its boundary intersects E ⊂ Ek,
k = k0, k0 + 1, . . ., and therefore intersects Ek. Thus, x ∈ Rn \ Ek, k =
k0, k0+1, . . ., is a point of m-nonsemiconvexity of Ek, k = k0, k0+1, . . .,
which means that each set Ek is not m-semiconvex.

Theorem 3.1. Let a closed set E ⊂ Rn, n ≥ 2, of the class WSn
m \Sn

m,
1 ≤ m < n, with the number of components N be given. Then E is
approximated from the outside by a family of open sets Ek, k = 1, 2, . . .,
of the class WSn

m \ Sn
m such that the number of components of each set

Ek is not greater than N .

Proof. By Lemma 3.1, E is approximated from the outside by a family of
open, weakly m-semiconvex sets Gk, k = 1, 2, . . ., such that the number
of components of each set Gk is not greater than N . By Lemma 3.2, there
exists an index k0 such that every set Gk, k = k0, k0 + 1, . . ., belongs to
the class WSn

m \ Sn
m. Thus, E is approximated from the outside by the

family of sets
Ek := Gk0+(k−1), k = 1, 2, . . . ,

satisfying the lemma conditions.

Theorem 3.2. Let a closed set E ⊂ R2 belong to the class WS2
1 \ S2

1.
Then E consists of not less than three components.

Proof. Suppose E is connected. Then, by Theorem 3.1, it can be ap-
proximated from the outside by a family of domains Ek, k = 1, 2, . . .,
of the class WS2

1 \ S2
1. But this contradicts Lemma 1.1. Thus, E is

disconnected.
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Suppose E consists of two components. By Theorem 3.1, it can
be approximated from the outside by a family of open sets Ek, k =
1, 2, . . ., of the class WS2

1 \S2
1 consisting of one or two components. This

contradicts Lemma 1.2. Thus, E consists of more than two components.
Examples 2.2 and 2.4 complete the proof.

Definition 3.1. The set of all points of the rays starting at a point
x ∈ Rn \ A and passing through a set A ⊂ Rn is called the cone of the
set A with respect to the point x and is denoted by SxA. We suppose
that x /∈ SxA whenever A is open and x ∈ SxA otherwise.

It is not difficult to prove that SxA is open whenever A is open.

Theorem 3.3. Let E ⊂ R2 be a closed set with a finite number of
components and such that IntE ̸= ∅. If E is weakly 1-semiconvex, then
IntE is weakly 1-semiconvex.

Proof. Suppose IntE is not weakly 1-semiconvex. Then there exists a
1-nonsemiconvexity point y ∈ ∂E of the set IntE.

Without loss of generality, suppose Ei, i = 1, . . . , k, are the compo-
nents of IntE such that their cones SyEi, i = 1, . . . , p, p ≤ k, are the
angles of values less than 2π and the other SyEi, i = p + 1, . . . , k, are
the angles of the value 2π. Let Si,j = SyEi ∩ SyEj , i, j = 1, . . . , k (see
Figure 5 a)). Since y is a 1-nonsemiconvexity point of IntE, then for
any fixed index i ∈ {1, . . . , k} there exist the indices j(i) ∈ {1, . . . , k}
such that Si,j(i) ̸= ∅. Since the cones SyEi, i = 1, . . . , p, are open,
we can reduce them so that the intersections of the reduced cones re-
main non empty. Denote the reduced cones by S̃yEi, i = 1, . . . , p. Then

S̃yEi ⊂ SyEi. So, the boundary of S̃yEi consists of two rays starting at
y. Denote them by γ1i (y), γ

2
i (y). Moreover, γ1i (y), γ

2
i (y) ⊂ SyEi. Thus,

γ1i (y) ∩Ei ̸= ∅, γ2i (y) ∩ Ei ̸= ∅ by Definition 3.1.

Let

x1i ∈ γ1i (y) ∩Ei, x2i ∈ γ2i (y) ∩ Ei, i = 1, . . . , p.

Construct curves λi ⊂ Ei, i = 1, p, connecting the points x1i , x
2
i . Let

also x1i , x
2
i , i = p + 1, . . . , k, be points of Ei, i = p + 1, . . . , k, such that

a curve λi ⊂ Ei connecting the points has the cone Syλi = SyEi. Then
for any ray γ(y) starting at the point y, there exists i ∈ {1, . . . , k} such
that γ(y) ∩ λi ̸= ∅.

Consider the function

dj(x) = inf
x0∈∂Ej

|x− x0|, x ∈ Ej , j = 1, k.
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Figure 5.

It is continuous in the domain Ej , j = 1, k. Then its restriction on the
compact λj , j = 1, k, reaches its minimum dj > 0 on this compact, i. e.,

dj = min
x∈λj

dj(x), j = 1, k.

Since E has the finite number of components, there exists

d = min
j=1,k

dj > 0.

Then for any point x ∈ λj , j = 1, k, its neighborhood U(x, d) ⊂ E.
Consider the neighborhood U(y, d) of the point y (see Figure 5 b)).
Since E is weakly 1-semiconvex, there exists a family of open, weakly
1-semiconvex sets Gk, k = 1, 2, . . ., approximating E from the outside.
This gives that starting from some index k0, ∂Gk ∩U(y, d) ̸= ∅, k ≥ k0.
Let zk ∈ ∂Gk ∩ U(y, d), k = k0, k0 + 1, . . .. Draw an arbitrary ray ηzk
starting at zk. The ray ηy parallel to ηzk and starting at y intersects
some curve λq, q ∈ {1, . . . , k}, at a point xq. Since U(xq, d) ⊂ E and
ηzk ∩ U(xq, d) ̸= ∅, then ηzk ∩ E ̸= ∅. Since Gk ⊃ E, k = 1, 2, . . ., then
ηzk ∩Gk ̸= ∅, k ≥ k0.

Since we choose the ray ηzk arbitrarily, the point zk ∈ ∂Gk is a
1-nonsemiconvexity point of Gk, k = k0, k0 + 1, . . ., and we have now
reached a contradiction. Thus, the assumption is wrong, and the theorem
is proved.

The converse statement is not always true. An example of a closed,
not weakly 1-semiconvex set such that its interior is weakly 1-semiconvex
is as follows. Consider an open, connected, weakly 1-semiconvex set
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Figure 6.

E ⊂ R2 such that IntE = E and connect any two of its boundary points
by a curve γ ⊂ R2 \ E (see Figure 6). Then the closed set γ ∪ E is
not weakly 1-semiconvex and its interior is weakly 1-semiconvex, since
Int (γ ∪ E) = E.

Theorem 3.4. Let a closed, bounded set E ⊂ R2 belong to the class
WS2

1 \ S2
1, have smooth boundary, IntE ̸= ∅, and IntE is not 1-

semiconvex. Then E consists of not less than four components.

Proof. Suppose E consists of less than four components. Then IntE
belongs to the class WS2

1 \S2
1, has smooth boundary, and consists of less

than four components by Theorem 3.3. But this contradicts Lemma 1.3.
Example 2.4 completes the proof.

The condition of Theorem 3.4 that IntE has 1-nonsemiconvexity
points is not unnecessary, since there exists a closed set of the class
WS2

1 \ S2
1 with smooth boundary such that its interior is 1-semiconvex,

which the following example shows.
Consider the set B0 that is the union of four discs from Example 2.4:

B0 = {B(oj , r), B(Oj , R), j = 1, 2} .

Its closure B0 is approximated from the outside by the family of open,
weakly 1-semiconvex sets

{B(oj , r +∆r1/k), B(Oj , R+∆R(∆r1/k)), j = 1, 2} , k = 1, 2, . . . .

Moreover, any ray starting at the origin O ∈ R2 \ B0 intersects B0.
Thus, B0 belongs to the class WS2

1 \ S2
1. In addition, IntB0 = B0 is

1-semiconvex (see Figure 4).
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4. Connected sets of the class WSn
m \ Sn

m, n ≥ 3, 1 ≤ m <
n− 1

It turns out that for the sets of the class WSn
m \Sn

m, n ≥ 3, 1 ≤ m <
n − 1, the estimate of the number of components is not the same as for
the sets of the class WS2

1 \ S2
1. To show this, first, prove the following

Theorem 4.1. Let Ep ⊂ Rp, p ≥ 2, be an open or a closed set of the
class WSp

1 \ Sp
1 . Then the set E := Ep × Rn−p ⊂ Rn, n ≥ 3, belongs to

the class WSn
n−p+1 \ Sn

n−p+1.

Proof. First, consider the case when the set Ep and, therefore, the set E
are open. Prove that E is weakly (n− p+ 1)-semiconvex. For any point
x = (x1, . . . , xp, xp+1 . . . , xn) ∈ ∂E, it is true that xp = (x1, . . . , xp) ∈
∂Ep. By the theorem conditions, there exists a closed ray γxp ⊂ Rp,
starting at the point xp and such that γxp ∩ Ep = ∅. Then the closed,
(n− p+ 1)-dimensional half-plane γxp × Rn−p passes through the point
x and does not intersect E.

Now suppose the set Ep is closed. Then, by the theorem condi-
tions, it is approximated from the outside by a family of open weakly
1-semiconvex sets Ep

k ⊂ Rp, p ≥ 2, k = 1, 2, . . .. The set E is also
closed and is approximated from the outside by the family of open sets
Ep

k × Rn−p ⊂ Rn, n ≥ 3, k = 1, 2, . . ., which are weakly (n − p + 1)-
semiconvex, as it was proved above. Thus, E is weakly (n − p + 1)-
semiconvex.

Prove that the open or closed set E is not (n−p+1)-semiconvex. Con-
sider the point y = (y1, . . . , yp, yp+1 . . . , yn) ∈ Rn \ E, where (y1, . . . , yp)
is a point of 1-nonsemiconvexity of the set Ep. Draw the p-dimensional
plane Lp(y) passing through the point y and parallel to the p-dimensional
plane containing the set Ep. The set Ep(y) := Lp(y)∩E obviously is not
1-semiconvex with respect to its affine hull. Then any ray starting at y
and laying in the p-dimensional plane Lp(y) intersects E.

Let Hn−p+1(y) be an arbitrary (n − p + 1)-dimensional half-plane
with the point y on its boundary that is an (n − p)-dimensional plane
Ln−p(y) and let Ln−p+1(y) be the (n−p+1)-dimensional plane generated
by Hn−p+1(y) and its complementary (n−p+1)-dimensional half-plane.
The intersection Ln−p+1(y) ∩ Lp(y) is an l-dimensional plane, l ≥ 1,
contained in Lp(y), and Ln−p(y)∩Lp(y) is a k-dimensional plane, k ≥ 0,
also contained in Lp(y). Then Hn−p+1(y) ∩ Lp(y) contains at least one
ray starting at y and intersecting Ep(y), which gives Hn−p+1(y)∩E ̸= ∅.
Thus, y is an (n − p + 1)-nonsemiconvexity point of E. The theorem is
proved.
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Theorem 4.2. There exist domains and closed connected sets in the
space Rn, n ≥ 3, of the class WSn

m \ Sn
m, 1 ≤ m < n− 1.

Proof. Prove the theorem by constructing examples of appropriate sets.
First construct the domains in the space R3 of the class WS3

1 \ S3
1 ap-

proximating from the outside a closed connected set.
Consider the following open sets

B0 := B∆r1/2 =

=

{
B

(
oj , r +

∆r1
2

)
, B

(
Oj , R+∆R

(
∆r1
2

))
, j = 1, 2

}
,

Bk := B∆r1/2, k =

{
B

(
oj , r +

∆r1
2

+
∆r1
2k

)
,

B

(
Oj , R+∆R

(
∆r1
2

+
∆r1
2k

))
, j = 1, 2

}
, k = 1, 2, . . . ,

of the classWS2
1\S2

1 constructed in Example 2.4, see (2.1), (2.2) as ∆r =
∆r1/2. Then the closed set B0 ∈ WS2

1 \ S2
1 is approximated from the

outside by the family of the sets Bk, k = 1, 2, . . .. And, as it was noticed
in Example 2.4, each set (Bk)

♢, k = 0, 1, 2, . . ., is an open rhombus,
moreover, (B0)

♢ ⊂ (Bk+1)
♢ ⊂ (Bk)

♢ ⊂ (B∆r1)
♢ = A∆r1D∆r1C∆r1F∆r1

for k = 1, 2, . . ..
Let

∆r0 := 0, ∆rk :=
∆r1
2k

, k = 1, 2, . . . .

Consider the sets

˜̃E3
k := Bk × [∆rk − s, s−∆rk], s > ∆r1, k = 0, 1, 2, . . . . (4.1)

Let P 2
k ⊂ R2 be the convex hull of the set Bk, k = 0, 1, 2, . . .. Construct

the following prisms:

Pl3k := P 2
k ×

[
−∆rk − 1− s,∆rk − s

]
,

P r3k := P 2
k ×

[
s−∆rk, s+ 1 +∆rk

]
, k = 0, 1, . . . .

Now consider the sets

Ẽ3
k := Int (Pl3k ∪

˜̃E3
k ∪ Pr3k), k = 0, 1, . . . .

They are 1-semiconvex with respect to any point of ∂Ẽ3
k except the points

of the respective rhombuses:

R̃l
2

k := {(x1, x2, x3) ∈ ∂Ẽ3
k : (x1, x2) ∈ (Bk)

♢, x3 = ∆rk − s},

R̃r
2

k := {(x1, x2, x3) ∈ ∂Ẽ3
k : (x1, x2) ∈ (Bk)

♢, x3 = s−∆rk}.
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Moreover,

(Ẽ3
k)

♢ = (Bk)
♢ × [∆rk − s, s−∆rk].

Figure 7.

Let A′
kD

′
kC

′
kF

′
k be the open rhombus the sides of which are paral-

lel to the respective sides of the rhombus A∆r1D∆r1C∆r1F∆r1 and let
the distance between the sides of A′

kD
′
kC

′
kF

′
k and the respective sides of

A∆r1D∆r1C∆r1F∆r1 be equal to ∆r1/2−∆rk. ThenA∆r1D∆r1C∆r1F∆r1 =
A′

1D
′
1C

′
1F

′
1 and

A′
0D

′
0C

′
0F

′
0 ⊃ A′

k+1D
′
k+1C

′
k+1F

′
k+1 ⊃ A′

kD
′
kC

′
kF

′
k ⊃ (Bk)

♢ ⊃ (B0)
♢,

k = 1, 2, . . . . (4.2)

Consider the rhombuses

Rl2k := {(x1, x2, x3) ∈ ∂Ẽ3
k : (x1, x2) ∈ A′

kD
′
kC

′
kF

′
k, x3 = ∆rk − s},

Rr2k := {(x1, x2, x3) ∈ ∂Ẽ3
k : (x1, x2) ∈ A′

kD
′
kC

′
kF

′
k, x3 = s−∆rk},

k = 0, 1, . . ., and some vectors
−→
a3l ,

−→
a3r such that the angle between

−→
a3l

and the negative direction of the axis Ox3 and the angle between
−→
a3r and

the positive direction of the axis Ox3 are greater than 0 and less than
π

2
. This provides that two oblique prisms Ll3k ⊂ Pl3k, Lr

3
k ⊂ Pr3k with

respective bases Rl2k, Rr2k and generating rays parallel to the vectors
−→
a3l ,−→

a3r are such that Ll30 ⊃ Ll3k+1 ⊃ Ll3k, Lr
3
0 ⊃ Lr3k+1 ⊃ Lr3k, k = 1, 2, . . .

(see Figure 7 b)).
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Remove the closures of the prisms Ll3k, Lr
3
k from the set Ẽ3

k , k =
0, 1, . . . (see Figure 7 a)). Then, considering (4.2), the sets

E3
k := Ẽ3

k \ (Ll3k ∪ Lr3k), k = 0, 1, . . . ,

are weakly 1-semiconvex domains. Moreover, choose s form (4.1) large
enough so that the prisms

L3
k := A′

kD
′
kC

′
kF

′
k × [∆rk − s, s−∆rk], k = 0, 1, . . . ,

contain the points of 1-nonsemiconvexity of the respective sets E3
k , i. e.,

L3
k ⊃ (Ẽ3

k)
♢ ⊃ (E3

k)
♢, k = 0, 1, . . . . (4.3)

Thus, the domains E3
k ⊂ R3, k = 0, 1, . . ., belong to the class WS3

1 \
S3
1. And the closure E3

0 of the set E3
0 is approximated from the outside by

the family of the domains E3
k , k = 1, 2, . . . (see Figure 7 b)). Moreover,

E3
0 is not 1-semiconvex by Lemma 2.1. Thus, the closed and connected

set E3
0 belongs to the class WS3

1 \ S3
1.

Construct domains in the space R4 of the class WS4
1 \ S4

1 approxi-
mating from the outside a closed connected set.

Consider the sets

˜̃E4
k := E3

k × [∆rk − s, s−∆rk], k = 0, 1, 2, . . . .

Let P 3
k ⊂ R3 be the convex hull of the set E3

k , k = 0, 1, 2, . . .. Construct
the following prisms:

Pl4k := P 3
k ×

[
−∆rk − 1− s,∆rk − s

]
,

P r4k := P 3
k ×

[
s−∆rk, s+ 1 +∆rk

]
, k = 0, 1, . . . .

Now consider the sets

Ẽ4
k := Int (Pl4k ∪

˜̃E4
k ∪ Pr4k), k = 0, 1, . . . .

They are 1-semiconvex with respect to any point of ∂Ẽ4
k except the points

of the sets

R̃l
3

k := {(x1, x2, x3, x4) ∈ ∂Ẽ4
k : (x1, x2, x3) ∈ (E3

k)
♢, x4 = ∆rk − s},

R̃r
3

k := {(x1, x2, x3, x4) ∈ ∂Ẽ4
k : (x1, x2, x3) ∈ (E3

k)
♢, x4 = s−∆rk}.

Moreover,

(Ẽ4
k)

♢ = (E3
k)

♢ × [∆rk − s, s−∆rk], k = 0, 1, . . . .
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Now consider the following sets:

Rl3k := {(x1, x2, x3, x4) ∈ ∂Ẽ4
k : (x1, x2, x3) ∈ L3

k, x4 = ∆rk − s},
Rr3k := {(x1, x2, x3, x4) ∈ ∂Ẽ4

k : (x1, x2, x3) ∈ L3
k, x4 = s−∆rk},

k = 0, 1, . . .. Since L3
k+1 ⊃ L3

k, then Rl3k+1 ⊃ Rl3k and Rr3k+1 ⊃ Rr3k.
Moreover, considering (4.3),

Rl3k ⊃ R̃l
3

k, Rr3k ⊃ R̃r
3

k. (4.4)

Consider some vectors
−→
a4l ,

−→
a4r such that the angle between

−→
a4l and the

negative direction of the axis Ox4 and the angle between
−→
a4r and the

positive direction of the axis Ox4 are greater than 0 and less than
π

2
.

Remove the closures of two oblique prisms Ll4k ⊂ Pl4k, Lr
4
k ⊂ Pr4k with

respective bases Rl3k, Rr3k and generating rays parallel to the vectors
−→
a4l ,−→

a4r from the set Ẽ4
k , k = 0, 1, . . .. Then, considering (4.4), the sets

E4
k := Ẽ4

k \ (Ll4k ∪ Lr4k), k = 0, 1, . . . ,

are weakly 1-semiconvex domains. Moreover, choose s form (4.1) large
enough so that the prisms

L4
k := L3

k × [∆rk − s, s−∆rk], k = 0, 1, . . . ,

contain points of 1-nonsemiconvexity of the respective sets E4
k , i. e.,

L4
k ⊃ (Ẽ4

k)
♢ ⊃ (E4

k)
♢, k = 0, 1, . . ..

Thus, the domains E4
k ⊂ R4, k = 0, 1, . . ., belong to the class WS4

1 \
S4
1. And the closure E4

0 of the set E4
0 is approximated from the outside

by the family of the domains E4
k , k = 1, 2, . . .. Moreover, E4

0 is not

1-semiconvex by Lemma 2.1. Thus, the closed and connected set E4
0

belongs to the class WS4
1 \ S4

1.
Extending the process of constructing the sets En

k , k = 1, 2, . . ., and

En
0 to the spaces Rn, n > 4, using the sets En−1

k , En−1
0 by the induction,

we obtain domains and closed connected sets of the class WSn
1 \ Sn

1 for
any n ≥ 3. Then, by Theorem 4.1, the domains

En−m+1
k × Rm−1 ⊂ Rn, n ≥ 3, 1 ≤ m < n− 1, k = 1, 2, . . . ,

and the closed connected sets

En−m+1
0 × Rm−1 ⊂ Rn, n ≥ 3, 1 ≤ m < n− 1,

belong to the class WSn
m \ Sn

m. The theorem is proved.



T. M. Osipchuk 559

Conclusion

In conclusion, we list some open problems arising in this work:

1. Is Lemma 1.3 valid for an arbitrary unbounded, open set of the class
WS2

1 \ S2
1 with smooth boundary?

2. Is Theorem 3.4 valid for an arbitrary closed set of the class WS2
1\S2

1

with smooth boundary?

3. Is the interior of a closed, weakly m-semiconvex set of Rn, n ≥ 2,
weakly m-semiconvex for any m = 1, 2, . . . , n− 1?

4. What is the minimal number of the components of a set of the class
WSn

n−1 \ Sn
n−1, n ≥ 3?
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